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Abstract. In this paper, we design novel models based on Support Vec-
tor Machines and Kernel Methods for the automatic protein active site
classification. We devise innovative attribute-value and tree substruc-
ture representations derived from biological and spatial information of
proteins. We experimented such models with the Protein Data Bank ad-
equately pre-processed to make explicit the active site information. Our
results show that structural kernels used in combination with polyno-
mial kernels can be effectively applied to discriminate an active site from
other regions of a protein. Such finding is very important since it firstly
shows the successful identification of catalytic sites of a very large family
of catalytic proteins belonging to a broad classes of enzymes.

1 Introduction

Recent research in Bioinformatics has been devoted to the production and un-
derstanding of genomic data. One important step in this direction is the study
of the relation between molecular structures and their functions, which in turn
depends on the discovering of the protein active sites. As there is a large number
of synthesized proteins which have no associated function yet, i.e. whose function
remains unknown, automatic approaches for active site detection are critical.

Currently, the general strategy used to identify a protein active site involves
the expertise of researchers and biologists accumulated in years of study on
the target protein as for example in [1]. This manual approach is conducted
essentially using homology based strategies, i.e. inferring the function of a new
protein based on a close similarity to already annotated proteins. Sometimes
proteins with the same overall tertiary structure can have different active sites,
i.e. different functions and proteins with different overall tertiary structure can



show the same function and similar active sites. In these cases homology based
approaches are inadequate. Moreover, there is no general automated approach to
protein active site detection, although it is evident its usefulness to restrict the
number of candidate sites and also to automatically learn rules characterizing
an active site [2].

In this paper we define the problem of determining protein active sites in
terms of a classification problem. We modeled protein active site based on both
attribute/value and structural representations. The former representation is a set
of standard linear features whereas the latter is constituted by tree structures
extracted from graphs associated with proteins or their candidate sites. The
graph nodes (or vertexes) represent amino acids (or better residues) and edges
represent distances in the three-dimensional space between these residues.

We applied these representations to SVMs using polynomial kernels, tree ker-
nels and some combinations of them. To experimentally evaluate our approach,
we created a data set, using the protein structures retrieved from the Protein
Data Bank (PDB) [3] maintained by the Research Collaboratory for Structural
Bioinformatics (RCBS) at http://www.rcbs.org. The combined kernels show the
highest F1 measure, i.e. 68%, in the detection of active sites. This is an important
and promising result considering that the baseline based on a random selection
of active sites has an upperbound of only 2%.

In the remainder of this article Section 2 describes the faced problem. Section
3 describes the proposed linear and structural features. Section 4 describes the
experimental evaluation and reports the results of the classification experiments.
Finally, in Section 5, we summarize the results of the previous sections and
propose other interesting future research lines.

2 Protein active site classification

An active site in a protein is a topological region which defines the protein func-
tion, in other words it is a functional domain in the protein three-dimensional
structure (see also [2]). In a cell there are many types of proteins which carry out
different functions. The enzymes are those proteins able to accelerate chemical
processes inside a cell. This type of proteins are distinguished from structural
and supplying proteins for their catalytical action on the large part of molecules
constituting the living world. We limit our research to a particular class of en-
zymes, the hydrolases.

Hydrolases are maybe the most studied and known type of enzymes. They
catalyze hydrolysis reactions, generically consisting in the cleavage of a biochem-
ical compound thanks to the addition of a water molecule (H2O). The character-
istic of some hydrolases to catalyze reactions in the presence of a water molecule
motivates our model: as an hydrolase active site, we choose a sphere in a three-
dimensional space centered in the coordinates of the oxygen atom of a water
molecule. This sphere includes a portion of the protein within its volume, that
is a number of amino acids which could reciprocally interact with other amino
acids in the surrounding space, or with water molecules. In this first analysis, we



consider a sphere with a radius of 8 Å, which is the maximum distance needed
for the water-residue interaction.

Figure 1(a), shows the active site of 1A2O protein structure and its repre-
sentation according to our model. The protein residues are colored in light gray
whereas the particular catalytic residues are in dark gray. The center of the
sphere is the black colored oxygen atom of a water molecule.

(a) (b)

Fig. 1. (a) A sphere (positive example). (b) Distances.

2.1 The computational model

As stated in the previous section, we defined the functional site identification as
a classification problem, where the objects we want to classify are protein active
sites. We represent the portion of the protein contained in a spherical three-dim-
ensional region with a completely connected graph. Each vertex of this graph is
a residue and each edge represents the distance in the three-dimensional space
between a pair of vertexes.

Every amino acid is represented by two points in the three-dimensional space:
one which represents an amino acid main-chain (the α-carbon atom of the amino
acid, Cα) and one which represents an amino acid side-chain (the centroid be-
tween the coordinates of the atoms belonging to the amino acid side-chain, SC)
(see Figure 1(b)). The same kind of approximation has been described in [4]
because it seems to provide a good balance between fuzziness and specificity in
these kind of applications.

In Figure 1(b) the three-dimensional SC-SC distances and Cα-Cα distances
are indicated between the represented chain of three residues. An object (mod-
eled by a graph centered on a water molecule) can be classified as being an active
site or not with a binary classifier. Thus, we consider as a positive example, a
graph whose set of vertex includes all the catalytic amino acids and as a negative
example a graph which contain no catalytic amino acid. Moreover, to reduce the



task complexity, we extract, from the initial completely connected graph, some
spanning substructures which preserve the edges within the maximum interac-
tion distance of 5 Åbetween the side-chains of the residues.

The next section shows how the above representation model can be used along
with Support Vector Machines to design an automatic active site classifier.

3 Automatic classification of active sites

Previous section has shown that the active site representation is based on graphs.
To design the computational model of these latter, we have two possibilities: (1)
we extract scalar features able to capture the most important properties of the
graph and (2) we can use graph based kernels [5] in kernel-based machines such
as Support Vector Machines [6]. Point (2) often leads to high computational
complexity. We approached such problem by extracting a tree forest from the
target graph and applying efficient tree kernels [7].

3.1 Scalar features

Scalar features refer to typical chemical values of the molecules described in the
target graph. We defined 5 different types of such features (see Table 1):

The first class of linear features (C1) encodes chemical and physical properties
of the graph. This class represents properties such as hydrophobicity, polarity,
polarizability and Van der Waals volume of the amino acids composing the
sphere. The encoding is the same used in [8] where the features were used to
classify the function of proteins.

The second class of linear features (C2) encodes the amino acid composition
of a spherical region. There is a feature associated with every labeled vertex
(amino acid) in the graph, weighted with the inverse of the distance from the
oxygen atom of the water molecule which is the center of the sphere. This group
of features emphasizes the importance of the interaction distance of a residue
with respect to a water molecule.

The third class of features (C3) represents charge or neutrality of a spherical
region. This is measured by counting the number of positively or negatively
charged amino acids.

Another group of linear features (C5) encodes the quantity of water in a
sphere. This is measured by counting the number of water molecules within the
sphere radius. This group of features is motivated by the fact that biologists
observed that an active site is usually located in a hydrophobic core of the
protein while on the surface the quantity of water is higher and the residues
exposed to the solvent are not hydrophobic.

Finally, the last class of linear features (C6) is the one which measures the
atomic density of the sphere calculated as the total number of atoms in the
sphere.

It should be noted that (a) the last two classes of linear features are made
discrete using a different number of value intervals. A feature is associated with



Table 1. Representation: feature classes

Linear Features Description

1st Class Physical and chemical properties (amino acid attributes)
2nd Class Amino acidic Composition
3rd Class Charge/Neutrality
5th Class Water molecule quantity
6th Class Atomic density

Structural Features Description

4th Class Tree substructures from tertiary structure

an example if the measured value of a certain property falls in the correspon-
dent range. (b) These features are often used to describe protein structures in
similar tasks of Bioinformatics [8] and to develop software for protein structure
prediction like Modeler 7v7.

3.2 Structural features

We designed a class of structural features to encode the three-dimensional struc-
ture (tertiary structure) or better, the spatial configuration characterizing a
spherical region, i.e. the set of amino acids composing it with their 3D distances.
As previously mentioned this representation results in a completely connected
graph since every vertex is connected to any other vertex in the sphere graph
through an edge labeled with the 3D distance of the pair.

Starting from this completely connected

Fig. 2. Graphical representation
of a tree of a sphere

graph, we extract some tree substructures
using heuristics: for example, the one which
preserves the maximum interaction distances
to 5 Åbetween the side-chains of the residues
and a minimum spanning tree algorithm. Such
heuristics is motivated by the observation
that to perform the catalytic function it is
necessary that the side-chains of the cat-
alytic residues can interact with each other
and with the substrate. The maximum inter-
action distance between atoms in different
residue side-chains is usually of about 3-4
Å. We chose a cut-off distance of 5 Åto take
into consideration our approximation in the
representation of residues (Figure 1(b)).

The applied heuristics lead possibly to the separation in disconnected com-
ponents of the initial graph. From each of these components, using the Prim
algorithm [9], we extract the spanning tree which minimizes the cost function
c(T ), i.e. the interaction distances dxy between the side-chains of the residues x
and y. Note that as some graphs contain more than one connected component,



the Prim algorithm is applied to each of them. This leads to the extraction of a
tree forest.

We add the water molecule (center of the sphere) as root node to the obtained
spanning tree. In Figure 2, we show a tree which can represent the spherical
region in Figure 1(a). In bold light gray, we highlight the nodes which represent
catalytic amino acids.

The tree substructures generated for each example constitute the features
analyzed by our tree kernel function. If two examples are described by two tree
forests, we can use as a kernel function the summation of a tree kernels applied
to all possible pairs coming from such forests.

4 Experiments

In the subsequent subsections, we describe our classification experiments carried
out on the data set that we generated from the Protein Data Bank.

4.1 Experimental set-up

The evaluations were carried out using the SVM-light-TK software [10] (avail-
able at http://ai-nlp.info.uniroma2.it/moschitti/) which encodes tree kernels in
SVM-light [11]. We used the polynomial kernels for the linear features and tree
kernels for the structural feature processing. More precisely, we used the SST
and the PT kernels described in [7] on a simple tree, i.e. the main tertiary struc-
ture3, or on a tree forest (see Section 3.2). The former kernels are indicated with
SST T and PT T whereas the latter are called SST F and PT F. The kernel for
tree forest is simply the summation of all possible pairs of trees contained in two
examples.

We experimented our models with the protein structures downloaded from
the Protein Data Bank (PDB). We adequately pre-processed PDB files to obtain
all the information of interest for this task. In particular, we created a data set
of 14,688 examples from 48 hydrolases from the PDB structures. The data set is
composed of 171 positive examples and 14,571 negative examples, which means
a 1

125 ratio between positive and negative examples.
The results were evaluated by applying a 5-fold cross validation4 on this data

set measuring the performance with the F1 measure 5.
A noticeable attention was devoted to parameterization (cost factor, decay

factor, etc.)

3 The single tree structure is the most relevant one in the forest, that is, the tree which
contains at least a catalytic amino acid and the two nearest residue side-chains of
the sphere

4 We separated the data set into five parts, each one composed of examples belonging
to a set of nine or ten protein structures randomly assigned to this set.

5 F1 assigns equal importance to Precision P and Recall R i.e. F1 = 2P ·R
P+R



Table 2. (a) Linear features performance. (b) Combined kernel performance.

(a)

Linear Precision Recall F1

C1 5.5% 66.7% 10.2%
C2 55.9% 63.3% 59.4%
C3 20% 3.3% 5.7%
C5 2.2% 30% 4.1%
C6 5.5% 13.3% 7.8%

(b)

Precision Recall F1 ±Std.Dev.

L 62.3% 55.4% 56.2% ±6.8

SST F 66.2% 31.8% 39.9% ±13.7

L+SST F 82.9% 58.6% 68.3% ±14.5

4.2 Experiment results

Table 2(a) reports the results on the 5 types of linear features using the poly-
nomial kernel (degree 3). These results are only indicative as we did not run a
cross validation procedure. We note that most linear features cannot discrimi-
nate between active and non-active site. Only, the second class, which encodes
the structural information, shows a meaningful F1. The general low results of
linear features is caused by the remarkable complexity of the task as suggested
by the F1 upperbound of the random selection, i.e. ' 1.6%.

In order to boost the classification performance, we experimented with the
structural kernels. Table 2(b) summarizes the cross validation results: Row 2
reports the results with polynomial kernels on all the linear features (L), Row
3 shows the outcomes of the SST kernels on the tree forest (SST F) and Row 4
illustrates the performance of the polynomial kernel summed to the SST kernel
on the tree forest (L+SST F). The ± sign precedes the standard deviation eval-
uated on the 5 folds. It is worth to note that the F1 obtained with the linear
features (56.24%) improves by 12 absolute points if we use the combined model
(L+SST F), i.e. 68%.

We also experimented different variants of Tree Kernels, i.e. based on PTs.
The results of the cross validation experiments are summarized in Table 3: Row 2
reports the results with polynomial kernel plus SST F (applied to linear features
and a forest structure), Row 3 reports the cross validation results of polynomial
kernel plus SST T (applied to linear features and a tree structure) and finally
Row 4 illustrates the performance of the additive combination of polynomial
with the PT kernel (PT T) (on linear features and a tree structure).

The results show that the high- L+TK Precision Recall F1 ±Std.Dev.
SST F 82.9% 58.6% 68.3% ±14.5
SST T 79.7% 51.7% 62.3% ±10.4
PT T 80.4% 41.2% 54.4% ±9.1

Table 3. Tree kernel impact

est F1 measure can be achieved with
the SST F but quite similar per-
formance can be obtained repre-
senting examples with only a tree
structure in the forest, i.e. SST T.
In contrast to our expectations the
PT kernel, which may be considered the one most suitable for this task, shows
the lowest F1. The most plausible explanation is the highest complexity on de-
riving its correct parameterization.



Overall, the very good F1 of our best model suggests that our classification
system can be a useful tool to help the biology researcher to study the protein
functions.

5 Conclusions

In this paper, we have studied the problem of the identification of protein func-
tional sites. We have defined a novel computational representation based on
biological and spatial considerations and several classes of linear and structural
features.

The experiments with SVMs using polynomial and tree kernels and their
combinations show that the highest F1, i.e. 68%, is achieved with the combined
model. Such finding is very important since it firstly shows the successful iden-
tification of catalytic sites of a very large family of catalytic proteins belonging
to a broad classes of enzymes. Moreover, our work highlights the importance of
structural information in the detection of protein active sites. This result mo-
tivates the need of structural representations which we efficiently modeled by
means of tree kernels.
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