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Abstract. This article describes a semantic parser based on
FrameNet semantic roles that uses a broad knowledge base created
by interconnecting three major resources: FrameNet, VerbNet and
PropBank. We link the above resources through a mapping between
Intersective Levin classes, which are part of PropBank’s annotation,
and the FrameNet frames. By using Levin classes, we successfully
detect FrameNet semantic roles without relying on the frame in-
formation. At the same time, the combined usage of the above re-
sources increases the verb coverage and confers more robustness to
our parser. The experiments with Support Vector Machines on au-
tomatic Levin class detection suggest that (a) tree kernels are well
suited for the task and (b) Intersective Levin classes can be used to
improve the accuracy of semantic parsing based on FrameNet roles.

1 INTRODUCTION

Knowing the semantic roles played by the entities that appear in
a sentence is of major importance for understanding its underlying
meaning. The inherent word ambiguity can lead to very different
readings of the same sentence. One important step towards deciding
the correct reading is to find the sense of the verb in the sentence.

The previous point was highlighted by the results, obtained with
and without the frame information during the Senseval-3 competition
on FrameNet [10] role labeling task [17]. When such information
was not used by the systems, the performance drop was more than
10 percent points. This is quite intuitive as the semantics of many
roles strongly depend on the focused frame. Thus, we cannot expect
a good performance when this information is not available.

A solution to this problem is the automatic frame detection. Unfor-
tunately, our preliminary experiments showed that given a FrameNet
(FN) predicate-argument structure, the task of identifying the asso-
ciated frame can be performed with very good results when the verb
predicates have enough training examples, but becomes very chal-
lenging otherwise. The predicates not yet included in FN, e.g. be-
longing to new application domains, are especially problematic since
there is no training data available. In such cases the frame classifier
reaches very low accuracy (under 50%).

We have thus studied new means of capturing the semantic
context, other than the frame, which can be easily annotated on
FrameNet and are available on a larger scale (i.e. have a better cover-
age). A very good candidate seems to be the Intersective Levin class
information [2] that can be found as well in other predicate resources
like PropBank and VerbNet.
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1. we employ SVM Tree Kernels and structural features [19] for au-
tomatic token-based verb classification3 of the Intersective Levin
classes (ILCs);

2. we use the classifiers trained in step 1 to automatically annotate
FrameNet with Levin class information which is needed for the
semantic role labeling (SRL) task; and

3. we test the effectiveness of the ILC information in the FrameNet
SRL task.

On FrameNet, we obtain the gold Levin class annotation through a
mapping between Intersective Levin classes and FrameNet frames
[7]. This mapping employs also the PropBank corpus [11] and the
VerbNet lexicon [12].

In the remainder of this paper Section 2 and 3 introduce the
resources used by our study, namely VerbNet, PropBank and
FrameNet, Section 4 summarizes previous work on Levin verb sense
disambiguation, Section 5 focuses on Tree Kernels and the features
used while Section 6 contains a description of the performed experi-
ments. Finally, Section 7 presents our results and conclusions.

2 LEVIN AND PROPBANK

Levin clusters [15] are formed according to diathesis alternation cri-
teria which are variations in the way verbal-arguments are grammat-
ically expressed when a specific semantic phenomenon arises. For
example, two different types of diathesis alternations are the follow-
ing:

(a) Middle Alternation
[Subject, Agent The butcher] cuts [Direct Object, Patient the
meat].
[Subject, Patient The meat] cuts easily.

(b) Causative/inchoative Alternation
[Subject, Agent Janet] broke [Direct Object, Patient the cup].
[Subject, Patient The cup] broke.

In both cases, what is alternating is the grammatical function that
the Patient role takes when changing from the transitive use of the
verb to the intransitive one. The semantic phenomenon accompany-
ing these types of alternations is the change of focus from the entity
performing the action to the theme of the event.

Levin documented 79 alternations which constitute the building
blocks for the verb classes. Although alternations are chosen as the
primary means for identifying the classes, additional properties re-
lated to subcategorization, morphology and extended meanings of

3 The best semantic class is determined for the verb token given the local
context of the phrase rather than using the set of verb occurrences across a
corpus or a document (i.e. type-based classification).



verbs are taken into account as well. Thus, from a syntactic point of
view, the verbs in one Levin class have a regular behavior, different
from the verbs pertaining to other classes. Also, the classes are se-
mantically coherent and all verbs belonging to one class share the
same participant roles.

This constraint of having the same semantic roles is further en-
sured inside the VerbNet lexicon which is constructed based on a
more refined version of the Levin classification called Intersective
Levin classes [2]. The lexicon provides a regular association between
the syntactic and semantic properties of each of the described classes.
It also provides information about the syntactic frames (alternations)
in which the verbs participate together with the set of possible se-
mantic roles.

One corpus associated with the VerbNet lexicon is PropBank. The
annotation scheme of PropBank ensures that the verbs belonging to
the same Levin class and exhibiting the same diathesis alternations
share similarly-labeled arguments. Inside one Levin class to one ar-
gument corresponds one semantic role numbered sequentially from
Arg0 to Arg5. Higher numbered argument labels are less consistent
and assigned per verb basis.

Besides semantic roles, PropBank is annotated also with Intersec-
tive Levin class information and contains gold parse trees. These fea-
tures made PropBank very suitable for testing the effectiveness of our
Tree Kernel approach for ILC detection. We were able to measure the
accuracy of our machine learning algorithm in the presence of gold
predicate-argument structures, which gave us a performance upper
bound.

During the second step (i.e. annotating FrameNet with ILC), in
order to train ILC classifiers also on FrameNet we need gold Inter-
sective Levin class annotations. To achieve that we employed a semi-
automatic algorithm that mapped FrameNet frames to Levin classes,
thus assigning gold ILC to FrameNet. More details about FrameNet
and the mapping algorithm are presented in the next section.

3 LEVIN AND FRAMENET

One of the goals of the FrameNet project is to design a hierarchi-
cal linguistic ontology that can be used for automatic processing of
semantic information. This hierarchy contains an extensive semantic
analysis of verbs, nouns, adjectives and situations in which they are
used, called frames. The basic assumption on which the frames are
built is that each word evokes a particular situation with specific par-
ticipants [5]. The situations depict the entities involved and the roles
they play. The word that evokes a particularframe is calledtarget
word or predicate and can be an adjective, noun or verb. The par-
ticipant entities are defined using semantic roles and they are called
frame elements.

Predicates belonging to the same FrameNet frame were proven
[6] to have a coherent syntactic behavior that is also different from
predicates pertaining to other frames. This finding is consistent with
the assumption on which Levin’s verb classification is build. This
insight determined us to study the relation between FrameNet frames
and Levin classes.

The Levin classes were constructed based on regularities exhib-
ited at grammatical level and the resulting clusters were shown to
be semantically coherent. As opposed, the FrameNet frames were
build on semantic bases, by putting together verbs, nouns and ad-
jectives that evoke the same situations. Although different in con-
ception, the FrameNet verb clusters and VerbNet verb clusters have
common properties:

1. Different syntactic properties between distinct verb clusters (as
proven by the experiments in [6])

2. Shared sets of possible semantic roles for all verbs pertaining to
the same cluster.

Having these insights, we have assigned a correspondent VerbNet
class not to each verb predicate but rather to each frame. In doing
this we have applied the simplifying assumption that a frame has a
unique corresponding Levin class. Thus, we have created a one-to-
many mapping between the Levin classes and the frames.

The mapping algorithm consists of three steps: (a) we link the
frames and Intersective Levin verb classes that have the largest num-
ber of verbs in common and we create a set of pairs〈FN frame, VN
class〉 (see Table 1); (b) we refine the pairs obtained in the previous
step based on diathesis alternation criteria, i.e. the verbs pertaining
to the FN frame have to undergo the same diathesis alternation that
characterize the corresponding VN class and (c) we manually check
the resulting mapping.

INPUT
V N = {C|C is a V erbNet class}
V N Class C = {v|c is a verb of C}
FN = {F |F is a FrameNet frame}
FN frame F = {v|v is a verb of F}
OUTPUT
Pairs = {〈F, C〉 |F ∈ FN, C ∈ V N : F maps to C }
COMPUTE PAIRS:
Let Pairs = ∅
for each F ∈ FN

(I) compute C∗ = arg maxC∈V N |F ∩ C|
(II) if |F ∩ C∗| ≥ 3 then Pairs = Pairs ∪ 〈F, C∗〉

Table 1. Linking FrameNet frames and VerbNet classes.

During the second step of the mapping we make use of the prop-
erty (2) of the Levin classes and FN frames presented in this section.
According to this property, all verbs pertaining to one frame or Levin
class have the same participant roles. Thus, a first test of compatibil-
ity between a frame and a Levin class is that they share the same
participant roles. As FN is annotated with frame-specific semantic
roles, we manually mapped these roles into the VN set of thematic
roles. Given a frame, we assigned thematic roles to all frame ele-
ments that are associated with verbal predicates. For example the
Speaker, Addressee, MessageandTopicroles from theTelling frame
were respectively mapped into theAgent, Recipient, ThemeandTopic
theta roles.

After the role matching, the mapping algorithm checks both the
syntactic and semantic consistency by comparing the role frequency
distributions on different syntactic positions for the two candidates.
More details are given in [7]. We mention that the algorithm identifies
correctly the cases for which our simplifying assumption does not
hold, having an overall accuracy of 89.6%.

Having gold ILC annotation on FrameNet allows us to train In-
tersective Levin class classifiers also on this corpus. In this way,
we can extend the verb coverage to encompass both PropBank and
FrameNet.

In the next sections we describe our approach on ILC automatic
detection and also some of the literature work on this subject.



4 PREVIOUS WORK ON LEVIN CLASS
DETECTION

Levin’s verb classification is based on straightforward syntactic cri-
teria which makes it especially appealing for automation. As a conse-
quence, it was used in many different studies ranging from machine
translation [3] and information retrieval [16] to automatic acquisition
of lexical semantic information and creation of dictionaries [4].

Regarding automatic verb classification, most of the previous stud-
ies focused on type-based classification. We mention Merlo and
Stevenson [18, 21] who use grammatical features to classify verbs
into three classes: unergative, unaccusative and object-drop. These
classes comprise several Levin classes and were chosen because they
participate in similar alternations (i.e. transitive alternations) but they
assign different thematic roles to their arguments.

In their study, Merlo and Stevenson investigate to what extent
features extracted from the predicate argument structures are use-
ful for disambiguating among unergative, unaccusative and object-
drop. Some of the most successful features used were Causativity
and Transitivity. Causativity feature is a marker for verbs participat-
ing in causative alternations (e.g. the sentences of th example (b) of
Section 2) and measures how many times the same noun occurs as
subject and as object of the verb (i.e. the degree of overlap). Tran-
sitivity is a binary feature that marks whether the verb is used in a
transitive or intransitive form. We will show in the next section that
structural features capture both the causative and transitive markers.

Other studies use subcategorization information and selectional
restrictions to cluster verbs into Levin compatible classes [8]. The
resulting clusters are measured against Levin’s classification having
a 61% match. Although it is counterintuitive, the selectional prefer-
ences for the arguments in the subcategorization frames seem to have
a negative impact on performance.

The subcategorization feature is used also in Lapata and Brew’s
studies [14, 13] which focus on dative and benefactive alternations.
They view the choice for a class as being estimated by the joint
probabilityP (verb, syntacticframe, class) and they design a dis-
tributional model that uses the BNC corpus. The results obtained
are very promising considering that only subcategorization infor-
mation is used (74.6% accuracy for genuinely ambiguous verbs).
Also, Lapata and Brew incorporate their distributional model as prior
knowledge in a naive Bayes classifier for performing token-level dis-
ambiguation. Unfortunately, their results are reported per syntactic
frame which makes them hard to compare with ours.

Overall, the previous studies are restricted in scope by focusing
only on specific aspects or alternations involved in the Levin’s verb
classification. One novelty of our approach is the fact that we use
corpora that are annotated with Levin class information. Thus, we
are able to appreciate better to what extent our method is applicable
for Levin class disambiguation in general. Our analysis is conducted
on a number of 179 classes that had training examples in the corpora.

In the following section we will present the algorithm and the fea-
tures used by our model. We will show that structural features include
some of the best features developed in the literature like causativity,
transitivity and also, the very important subcategorization informa-
tion.

5 Tree Kernels and Feature Space

The main idea of tree kernels is the modeling of aKT (T1, T2) func-
tion which computes the number of common substructures between
two treesT1 andT2. Thus, we can use, as features, structures drawn

directly from the syntactic parse tree of the sentence.
The kernel that we employed in our experiments was devised in

[19]. We used a reduced version of the predicate-argument structure
(Figure 1) which contains also the headwords of the arguments, use-
ful for representing the selectional preferences. This feature is a vari-
ant of the SCF feature from [19], but in a reduced format (hereafter
called SCF-reduced). In the following figure we present an exam-
ple of the SCF-reduced feature constructed for the sentences of the
example (b) of Section 2.
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Figure 1. SCF-reduced of the sentences from the example (b) of Section 2

The trees in Figure 1 have respectively 17 and 10 substructures
from which 3 are shared (Figure 2).
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Figure 2. Common substructures of the sentences of Figure 1.

We note that the overlap between ”cup” used on the subject po-
sition and ”cup” used on the object position increases the similarity
measure between the two sentences of the example (b). Thus, the
Causativity feature from [18] is subsumed by the SCF-reduced fea-
ture. Other substructures contain the subcategorization frame with or
without the verb marked (Figure 3). As in general the subcategoriza-
tion frame embeds also the transitivity or intransitivity marker, we
conclude that both the Transitivity feature [18] and Subcategoriza-
tion feature [14, 8] are subsumed by SCF-reduced.
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Figure 3. Substructures embedding the Subcategorization feature.

The next section shows that SCF-reduced detects ILCs with high
accuracy and is very robust with respect to automatic parse trees and
different corpora.

6 EXPERIMENTS

The aim of this research is to show that the ILC feature is very ef-
fective for the FrameNet semantic role labeling (SRL) task. For this
purpose we carried out several tests.

During our first experiment set we trained (1) an ILC multiclas-
sifier from FN, (2) an ILC multiclassifier from PB and (3) a frame
multiclassifier from FN. We compared the results obtained when try-
ing to classify ILCs with the results obtained when classifying frame.
We show that ILCs are easier to detect than FN frames.
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PB #Train Instances 
PB #Test Instances 
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5 

2,945 
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20 
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2,742 

PB Results 75 33.33 96.3 97.24 100 88.89 92.96 
FN #Train Instances 
FN #Test Instances 

5,381 
1,343 

138 
35 
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40 

721 
184 

1,860 
1,343 

557 
111 

46,734 
11,650 

FN Results 96.36 72.73 95.73 92.43 94.43 78.23 92.63 
        

Table 2. Argument classifier F1s and the overall multiclassifier accuracy for ILC labeling.

 
 Body_part Crime Degree Agent Multiclassifier 
FN #Train Instances 
FN #Test Instances 

1,511 
356 

39 
5 

765 
187 

6,441 
1,643 

102,724 
25,615 

LF+Gold Frame 90.91 88.89 70.51 93.87 90.8 
LF+Gold ILC 90.80 88.89 71.52 92.01 88.23 
LF+Automatic Frame 84.87 88.89 70.10 87.73 85.64 
LF+Automatic ILC 85.08 88.89 69.62 87.74 84.45 
LF 79.76 75.00 64.17 80.82 80.99 

 

Table 3. Argument classifier F1s and the overall multiclassifier accuracy for FN semantic role labeling.

Our second set of experiments regards the automatic labeling of
FN semantic roles on FN corpus when using as features: gold frame,
gold ILC, automatically detected frame and automatically detected
ILC. We show that in all situations in which the ILC feature is used,
the accuracy loss, compared to the usage of the frame feature, is neg-
ligible. We thus show that the ILC can successfully replace the frame
feature for the task of semantic role labeling.

Another set of experiments regards the generalization property of
the ILC. We show the impact of this feature on SRL when very few
training data is available and its evolution when adding more and
more training examples. We again perform the experiments for: gold
frame, gold ILC, automatically detected frame and automatically de-
tected ILC.

Finally, we simulate the difficulty of free text by annotating PB
with FN semantic roles. We used PB because it is different from FN
from a domain point of view. This characteristic makes PB a complex
test bed for semantic role models trained on FN. In the following
section we present the results obtained for each of the experiments
mentioned above.

6.1 Experimental setup

The corpora available for the experiments were PB and FN. PB con-
tains about 54,900 sentences and gold parse trees. We used sections
from 02 to 22 (52,172 sentences) to train the ILC classifiers and sec-
tion 23 (2,742 sentences) for testing purposes.

For the experiments on FN corpus, we extracted 58,384 sentences
from the 319 frames that contain at least one verb annotation. There
are 128,339 argument instances of 454 semantic roles. Only verbs
are selected to be predicates in our evaluations. Moreover, as there
is no fixed split between training and testing, we randomly selected
20% of sentences for testing and 80% for training. The sentences
were processed using Charniak’s parser [1] to generate parse trees
automatically.

The classification models were implemented by
means of the SVM-light-TK software available at
http://ai-nlp.info.uniroma2.it/moschitti which
encodes tree kernels in the SVM-light software [9]. We used the

default parameters. The classification performance was evaluated
using theF1 measure for the single-argument classifiers and the
accuracy for the multiclassifiers.

6.2 Automatic VerbNet class vs. automatic
FrameNet frame detection

In these experiments, we classify the ILCs on PB and FN and the
frames on FN. For the training stage we use SVMs with Tree Kernels.

For ILC detection the results are depicted in Table 2. The first six
columns report theF1 measure of some verb class classifiers whereas
the last column shows the global multiclassifier accuracy. We note
the ILC results on PB are similar to those obtained for the ILCs on
FN. This suggests that the training corpus does not have a major
influence. Also, the SCF-based tree kernel seems to be robust with
respect to the quality of the parse trees. The performance decay is
very small on FN that uses automatic parse trees with respect to PB
that contains gold parse trees.

For frame detection on FN, we trained our classifier on 46,734
training instances and tested on 11,650 testing instances, obtaining
an accuracy of 91.11%. Consequently, the ILC detection on both PB
(92.96%) and FN (92.63%) is more accurate than the frame detec-
tion.

6.3 Automatic semantic role labeling on FrameNet

In the experiments involving semantic role labeling, we used SVMs
with polynomial kernels. We adopted the standard features devel-
oped for semantic role detection by Gildea and Jurafsky :Predicate,
Headword, Phrase Type, Governing Category, Position, Voice and
Path. Also, we considered some of the features designed by [20]:
First and Last Word/POS in Constituent, Subcategorization, Head
Word of Prepositional Phrasesand theSyntactic Framefeature from
[22]. For the rest of the paper, we will refer to these features as being
literature features (LF). The results obtained when using the litera-
ture features alone or in conjunction with the gold frame feature, gold
ILC, automatically detected frame feature and automatically detected
ILC are depicted in Table 3.



The first four columns report theF1 measure of some role clas-
sifiers whereas the last column shows the global multiclassifier ac-
curacy. The first row contains the number of training and testing in-
stances and each of the other rows contains the performance obtained
for different feature combinations. The results are reported for the la-
beling task as the argument-boundary detection task is not affected
by the frame-like features [6].

We note that automatic frame produces an accuracy very close to
the one obtained with automatic ILCs suggesting that these latter are
very good candidate for replacing the frame feature. Also, both auto-
matic features are very effective, decreasing the error rate of 20%.

To test the impact of the ILC feature on SRL with different amount
of training data, we additionally draw the learning curves with re-
spect to different features: LF, LF+ gold ILC , LF+automatic ILC
trained on PB and LF+automatic ILC trained on FN. As can be
noted, the automatic ILC information provided by the ILC classi-
fiers (trained on FN or PB) performs almost as good as the gold ILC
(Figure 4).
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Figure 4. Semantic role learning curve.

6.4 Annotating PB with FN semantic roles

To show that our approach can be suitable for semantic role free-text
annotation, we have automatically classified PB sentences with the
FN semantic-role classifiers. In order to measure the quality of the
annotation, we randomly selected 100 sentences and manually veri-
fied them. We measured the performance obtained with and without
the automatic ILC feature. The sentences contained 189 arguments
from which 35 were incorrect when ILC was used compared to 72
incorrect in the absence of this feature, i.e. an accuracy of 81% with
ILC versus 62% without it. This demonstrates the importance of the
ILC feature outside the scope of FrameNet where the frame feature
is not available.

7 CONCLUSIONS

In this paper, we pursue Levin’s thesis and we automatically clas-
sify verbs based on their predicate-argument structure and their se-
lectional preferences on different argument slots. We show that Tree
Kernels and structural features are more suitable for our goal com-
pared with other methods that use for example linear features. Also,
by comparing our structural features with previously developed and
linguistically motivated features we found a reasonably degree of
overlap. Additionally, we demonstrate that our approach is very ro-
bust and can be applied successfully on any type of parse trees (gold
or automatic) or corpora.

Regarding the impact of ILC feature on SRL, we have shown that
it can replace the frame feature without appreciable accuracy de-
cay. This is very important as (1) several frames are not covered by
enough training data and (2) thanks to our mapping algorithm we can
reuse the data from PropBank to extend the verb coverage.
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