
Exploiting Structure and Semantics for
Expressive Text Kernels

Stephan Bloehdorn
Institute AIFB

Knowledge Management Research Group
University of Karlsruhe

D-76128 Karlsruhe, Germany
bloehdorn@aifb.uni-karlsruhe.de

Alessandro Moschitti
Department of Information

and Communication Technology
University of Trento

I-38050 Povo di Trento, Italy
moschitti@dit.unitn.it

ABSTRACT
Several problems in text categorization are too hard to be
solved by standard bag-of-words representations. Work in
kernel-based learning has approached this problem by (i)
considering information about the syntactic structure of the
input or by (ii) incorporating knowledge about the seman-
tic similarity of term features. In this paper, we propose
a generalized framework consisting of a family of kernels
that jointly incorporates syntax and semantics. We show
that both components can be flexibly adapted and tuned
towards the particular application domain. We demonstrate
the power of this approach in a series of experiments on two
diverse datasets, each of which presents a non-standard text
categorization problem: one for the classification of natu-
ral language questions from a TREC question answering
dataset and the other for the automated assignment of ICT-
9 categories to short textual fragments of medical diagnoses.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.3.1
[Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval –
Information Filtering

General Terms
Algorithms, Theory, Experimentation

Keywords
machine learning, text categorization, kernel methods, tree
kernels, syntactic parsing, lexical semantics

1. INTRODUCTION
Text Categorization (TC) systems [17], which aim to auto-
matically classify textual documents, are a major applica-
tion domain of modern machine learning techniques. These
are applied to documents represented by term vectors (i.e.

bag-of-words representation), which is still the most popular
choice in text mining tasks.

According to these models, the input documents are en-
coded as vectors whose dimensions correspond to the terms
in the overall training corpus. The inner product (or the
cosine) between two such vectors is used as kernel hence
making the similarity of two documents dependant only on
the amount of terms they share. This approach has an ap-
pealing simplicity and has produced good results in cases
where sufficient training data is available.

However, one of the main shortcomings of this kind of repre-
sentation is that it does not encode the syntactic structure
of the input text and provides a too much approximated
lexical semantics. As a consequence, the resulting mod-
els either cannot take advantage of complex patterns, e.g.
verbal phrases with identical (or similar) verbs or are not
sufficiently robust with respect to variations in the used ter-
minology.

Several modifications to this rather flat representation have
aimed at incorporating syntactic information (e.g. n-gram
models, part-of-speech tags of terms, and so on.) or knowl-
edge about semantic dependencies (e.g. latent semantic in-
dexing). In particular, there has been increased interest in
incorporating such a-priori knowledge within Kernel-based
learning algorithms like Support Vector Machines (SVMs)
[11] by means of a specific choice of the employed kernel
function [6].

For the case of syntactic representations, Tree Kernels [5, 21,
16] have been proposed as a powerful framework to exploit
parse trees of the input texts. For the case of lexical seman-
tics, Semantic Kernels are methods that exploit background
information from semantic networks such as WordNet [19,
14, 2] or from statistical models of term co-occurrence [7]
to make different, though semantically similar, terms con-
tribute to the overall similarity of the input tokens. While
both approaches seem intuitive and powerful, natural lan-
guage draws from both, syntax and semantics. Therefore,
finding principled techniques for approaching both exten-
sions at the same time within a unified framework appears
to be a promising research line.

In this paper, we present a generalization of the original
Tree Kernel function [5] (cf. section 2) which directly in-

corporates semantic background information. Based on our
own preliminary results presented in [3], we introduce a fam-
ily of kernels which we call Semantic Syntactic Tree Kernels
(SSTKs) (cf. section 3). The new kernels build upon lin-
guistic structure and background knowledge about the se-
mantic dependencies of terms at the same time.

Technically, the proposed kernels introduce two new com-
ponents, namely an embedded semantic term kernel and a
leaf weighting component, to improve the matching of tree
fragments containing terminal nodes (cf. section 3.1).

We show that both building blocks of the new kernel, namely
syntax and semantics, can be flexibly adapted and tuned
towards the particular application domain. Regarding the
semantic components, we proposed two models for the de-
sign of semantic term kernels, one based on taxonomic back-
ground knowledge (cf. section 3.3) and one based on latent
semantics (cf. 3.4).

We demonstrate the power of the new class of kernels in an
extensive set of experiments on two diverse datasets, each of
which presents a hard text categorization problem (cf. sec-
tion 4). In the first experiment, we deal with the problem of
classifying natural language questions from a TREC ques-
tion answering dataset (cf. section 4.2) while in the second
experiment, we aim at the automated assignment of ICT-9
categories to short textual fragments of medical diagnoses
(CMC corpus, cf. section 4.3).

Our experiments on question classification show that the
new models remarkably outperform both, bag-of-words ker-
nels and the original tree kernels while on the CMC corpus,
the plain tree kernel representation alone is capable of an
impressive improvement of the accuracy. Results and re-
lated work are summarized in a concluding discussion (cf.
section 5) including an overview on envisioned future work.

2. BACKGROUND
In this section, we shortly review the technical background
for our contribution. We briefly review the basic concepts
of SVMs and Kernel Methods and in particular tree kernels
for syntactic structures.

2.1 SVMs and Kernel Methods
Support Vector Machines (SVMs) [20] are state-of-the-art
learning methods based on the principle of linear classifica-
tion. The good generalization capabilities of SVMs based
on the maximum margin principle are theoretically well
grounded in statistical learning theory and SVMs have em-
pirically proved to produce highly effective classifiers.

Another distinguishing feature of SVMs is their capability
of naturally incorporating domain-specific notions of item
similarity by means of a corresponding kernel function.

Formally, any function κ that for all x, z ∈ X satisfies
κ(x, z) = 〈φ(x), φ(z)〉, is a valid kernel, whereby X is the
input domain under consideration and φ is a suitable map-
ping from X to a feature (Hilbert-) space F . The choice of
a particular kernel function thus implies an implicit map-
ping to a feature space different from the input space X

which is (hopefully) well suited to capture the geometry of
the classification problem.

Kernels can be designed by either choosing an explicit map-
ping function φ and incorporating it into an inner product
or by directly defining the kernel function κ while making
sure that it complies with the requirement of being a pos-
itive semi-definite function. Several closure properties aid
the construction of valid kernels such as closure under sum,
product, multiplication by a positive scalar and combination
with well-known kernel modifiers.

In particular, a given kernel κ can be normalized us-
ing the cosine normalization modifier given by κ′(x, y) =

(κ(x, y)) / (
√

κ(x, x)
√

κ(y, y)) to produce kernel evaluations
(i.e. similarity measures) normalized to absolute values be-
tween 0 and 1. The reader is referred to the rich literature
for further information on SVMs and kernel methods, e.g.
[18] for a comprehensive introduction.

2.2 Tree Kernels for Syntactic Structures
Let us introduce some notations. We define a tree as a
connected directed graph with no cycles. Trees are denoted
as T1, T2, . . .; tree nodes are denoted as n1, n2, . . .; and the
set of nodes in tree Ti are denoted as NTi . We denote the
set of all substructures (fragments) that occur in a given set
of trees as {f1, f2, . . .} = F .

As the structures we will work with are parse trees, each
node with its children is associated with a grammar produc-
tion rule. The labels of the leaf nodes of the parse trees
correspond to terms, i.e. terminal symbols, whereas the
preterminal symbols are the parents of leaves. As an ex-
ample Figure 1 shows a parse tree of the sentence fragment
‘‘Examination indicates bacterial pneumonia.’’ with
some of its substructures.

Tree Kernels have been designed based on the idea of repre-
senting trees in terms of all their substructures (fragments).
The job of the kernel function is then to efficiently count the
number of tree substructures that are common to both ar-
gument trees. Note that the number of such fragments of a
single tree can be obtained by evaluating the kernel function
between the tree with itself.

Definition 1. Given two trees T1 and T2 we define the
(Subset-) Tree Kernel [5] as:

κT (T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2)

where ∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2), and where Ii(n) is an
indicator function which determines whether fragment fi is
rooted in node n.

Consequently, the value of ∆ is equal to the number of com-
mon fragments rooted at nodes n1 and n2. Obviously, the
naive enumeration over all tree fragments is computation-
ally problematic as the number of substructures that need
to be considered grows exponentially in the number of nodes
of the input trees. However, as noted in previous work on
tree kernels [5], we can efficiently compute ∆ as follows:

Figure 1: Simplified parse tree of the sentence “Examination indicates bacterial pneumonia.” with examples
for some of its fragments. For subset trees, fragments are not required to include all possible productions up
to the leaves of the subtree.

1. if the productions at n1 and n2 are different then
∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the same, and n1

and n2 only have leaf children (i.e. the argument nodes
are pre-terminals symbols) then ∆(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1

and n2 are not pre-terminals then

∆(n1, n2) =

nc(n1)∏
j=1

(1 + ∆(chj
n1 , chj

n2)).

where nc(n1) is the number of children of n1 and chj
n is the

j-th child of node n. Note that, since the productions are
the same, nc(n1) = nc(n2). Of course, the kernel can again
be normalized using the cosine normalization modifier.

Additionally, a decay factor λ can be added by modifying
steps (2) and (3) as follows:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ
∏nc(n1)

j=1 (1 + ∆(chj
n1 , chj

n2)).

The role of the decay factor is to penalize larger tree struc-
tures by giving them less weight in the overall summation.

3. DESIGNING SEMANTIC SYNTACTIC
TREE KERNELS

The Tree Kernel introduced in the previous section re-
lies on the intuition of counting all common substructures
of two trees. However, if two trees have similar sub-
structures that employ different though related terminol-
ogy at the leaves, they will not be matched. From a se-
mantic point of view, this is an evident drawback. For
example, ‘‘indicates bacterial pneumonia’’ should be

more related to ‘‘indicates viral infection’’ than to
‘‘indicates cystic fibrosis’’ due to the higher simi-
larity of the terminal nodes pneumonia vs. infection and
bacterial vs. viral. We will now look at some techniques
to simulate such an effect.

3.1 Semantic Smoothing for Tree Kernels
Together with the standard bag-of-words representation for
text documents, recent research work in the direction of
Semantic Kernels has looked at ways to allow for partial
matches between vector components [19, 18, 1, 2]. These
kernels typically compute a smoothed function of the type

K′ = ~d′1Q~d2 where ~d′1 and ~d2 are the feature vectors associ-
ated with the documents d1 and d2 whereas Q is a positive
semi-definite smoothing matrix that encodes the similarity
of terms.

In analogy with this kind of smoothing kernels, we are now
interested in also counting partial matches between tree frag-
ments within tree kernels. A partial match occurs when
two fragments differ only by their terminal symbols, e.g. [N

[pneumonia]] and [N [infection]]. In this case the match
should give a contribution smaller than 1, depending on the
semantic similarity of the respective terminal nodes. To en-
sure the validity of the overall kernel, this similarity needs
to be a valid kernel on the terms itself and will be denoted
by κS – we will look at ways to design such functions in
sections 3.3 and 3.4. For this purpose, we first define the
similarity of two such tree fragments.

Definition 2. For two tree fragments f1, f2 ∈ F , we define
the Tree Fragment Similarity Kernel as:

κF (f1, f2) = comp(f1, f2)

nt(f1)∏
t=1

κS(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 differs from f2

only in the terminal nodes and is 0 otherwise, nt(fi) is the

number of terminal nodes and fi(t) is the t-th terminal sym-
bol of fi (numbered from left to right).

Note that, as the tree fragments need to be compatible, they
have the same number of terminal symbols at compatible po-
sitions. Conceptually, this means that the similarity of two
tree fragments is above zero only if the tree fragments have
an identical structure. The fragment similarity is evaluated
as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is max-
imal if all pairs have a similarity score of 1. We now define
the overall tree kernel as the sum over the evaluations of κF
over all pairs of tree fragments in the argument trees. Tech-
nically, this means changing the summation in the second
formula of definition 1 as suggested by the following

Definition 3. Given two trees T1 and T2 we define the
Semantic Syntactic Tree Kernel as:

κT (T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2)

where ∆(n1, n2) =
∑|F|

i=1

∑|F|
j=1 Ii(n1)Ij(n2)κF (fi, fj).

The naive evaluation of this kernel would require even more
computation and memory than for the naive computation
of the standard kernel as also all compatible pairs of tree
fragments would need to be considered in the summation.
Luckily, this enhanced kernel can again be evaluated in a
far more efficient manner by exploiting the same recursion
structure as the standard tree kernel by modifying the com-
putation of ∆ as follows:

1. if n1 and n2 are pre-terminals and label(n1) =
label(n2) then ∆(n1, n2) = λ κS(ch1

n1 , ch1
n2),

2. if n1 and n2 are not pre-terminals and the productions
at n1 and n2 are different then ∆(n1, n2) = 0;

3. if n1 and n2 are not pre-terminals and the productions
at n1 and n2 are the same then:

∆(n1, n2) =

nc(n1)∏
j=1

(1 + ∆(chj
n1 , chj

n2)).

Hereby, label(ni) is the label of node ni and κS is a valid
term similarity kernel. Note that since n1 and n2 are pre-
terminals of a parse tree they can have only one child (i.e.
ch1

n1 and ch1
n2) and such children are words.

Beside the novelty of taking into account tree fragments that
are not identical it should be noted that in contrast to the
application of lexical semantic similarities to simple term
vectors in semantic smoothing kernels, the lexical seman-
tic similarity is now constrained in the syntactic structures,
which limit errors/noise due to incorrect (or not provided)
word sense disambiguation.

3.2 Tuning Leaf Contribution
We have remarked that the parameter λ is well suited to
downweight the contribution of larger tree structures. On
the other hand, we want to allow fragments with many
matching/similar leaves to contribute more to the overall
kernel than fragments without leaves. For this purpose, we
introduce an additional parameter, α in the computation of
the ∆ function by modifying step (1) of the above compu-
tation (i.e. leaf matching) as follows:

1. if n1 and n2 are pre-terminals and label(n1) =
label(n2) then ∆(n1, n2) = α λ κS(ch1

n1 , ch1
n2),

While α could of course be used to further downweight the
contribution of the leaves, we will typically select a value
α > 1 to allow for a stronger contribution.

3.3 Taxonomic Term Kernels
Up to now, we have regarded the term similarity kernel as a
kind of “black-box” that hopefully produces accurate kernel
values that correlate with the perceived similarity of the par-
ticipating terms. In this section, we look at a way, initially
proposed in [2] to encode such kernels by means of taxo-
nomic background knowledge structures, e.g. WordNet.

The formal description of semantic kernels requires the
introduction of some definitions. We denote terms as
t1, t2, . . . ∈ T and concepts as c1, c2, . . . ∈ C; we also some-
times use the somewhat informal disambiguation operator
c(·) to map terms to concept representations.

Semantic Networks can be regarded as directed graphs se-
mantically linking concepts by means of taxonomic relations
(e.g. [cat] is-a [mammal]). Research in Computational Lin-
guistics has led to a variety of well-known measures of se-
mantic similarity in semantic networks. Such measures typ-
ically make use of several notions:

(i) The distance (d) of two concepts c1 and c2, is the num-
ber of superconcept edges between c1 and c2, where su-
perconcepts are a subset of more important concepts,
e.g. higher level concepts. In our study we consider
all possible concepts, i.e. all WordNet synsets.

(ii) The depth (dep) of a concept refers to the distance of
the concept to the unique root node (if the structure
is not a perfect tree structure, we use the minimal
depth).

(iii) The lowest super ordinate (lso) of two concepts refers
to the concept with maximal depth that subsumes
them both.

(iv) The probability P (c) of encountering a concept c which
can be estimated from corpus statistics. When proba-
bilities are used, the measures follow the trail of infor-
mation theory in quantifying the information concept
(IC) of an observation as the negative log likelihood.
We point the interested reader to [4] for a detailed and
recent survey of the field.

In our work, we have looked at the following measures of
term similarity:

Definition 4. Wu & Palmer:

simWUP (c1, c2) =

2 dep(lso(c1, c2))

d(c1, lso(c1, c2)) + d(c2, lso(c1, c2)) + 2 dep(lso(c1, c2))

Definition 5. Resnik (full-ic):

simRES(c1, c2) = − log P (lso(c1, c2))

Definition 6. Lin:

simLIN (c1, c2) =
2 log P (lso(c1, c2))

log P (c1) + log P (c2)

While some of these measures can be regarded as valid ker-
nels themselves [14], we investigate a different approach.
This idea, recently investigated in [2], is based on the obser-
vation that the more two concepts are similar the more they
share common superconcepts. We thus model the similarity
of two terms as a dot product of their respective supercon-
cept vectors (i.e. vectors of all WordNet synsets).

Definition 7. The Superconcept Kernel κS for two con-
cepts ci, cj ∈ C is given by κS(ci, cj) = 〈SC(ci), SC(cj)〉,
whereby SC(·) is a function C → R|C| that maps each con-
cept to a real vector whose dimensions correspond to super-
concepts present in the employed semantic network and the
respective entries are determined by a particular weighting
scheme.

κS is a valid kernel since it is defined explicitly in terms
of a dot product computation. So far, however, we have
left the details of the function SC(·) that maps concepts to
its superconcepts unspecified. Based on the term similarity
measures introduced above, we have investigated the use
of different weighting schemes for the representation of the
superconcepts motivated by the following considerations:

(i) the weight a superconcept SC(c̄)j receives in the vec-
torial description of concept c̄ should be influenced by
its distance from c̄ and

(ii) the weight a superconcept SC(c̄)j receives in the vec-
torial description of concept c̄ should be influenced by
its overall depth in the semantic network.

In summary, we have investigated four different weighting
schemes:

full No weighting, i.e. SC(c̄)j = 1 for all superconcepts cj

of c̄ and SC(c̄)j = 0 otherwise.

full-ic Weighting using information content of SC(c̄)j , i.e.
SC(c̄)j = simRES(c̄, cj).

lin Weighting using the Lin similarity measure, i.e.
SC(c̄)j = simLIN (c̄, cj).

wup Weighting using the Wu&Palmer similarity measure,
i.e. SC(c̄)j = simWUP (c̄, cj).

The superconcept kernel κS can normalized to [0, 1] in the
usual way using the cosine normalization modifier.

3.4 Latent Semantic Term Kernels
The taxonomy kernel that has been described in the previ-
ous section appears to be an accurate indicator of similar-
ity of terms. However, it requires the prior existence of a
taxonomic background knowledge structure and the compu-
tation of the respective measures. As an alternative, work
in the direction of latent semantic indexing (LSI) [10] inves-
tigated means for calculating term similarities by means of
co-occurrence analysis of terms in documents and vice versa.
We now shortly review the main technique of LSI.

Given a term-by-document matrix M , the singular value
decomposition of M is given by M = UΣV ′ where Σ is a
diagonal matrix with the same dimensionality as D contain-
ing the singular values in decreasing arrangement and U,V
are orthogonal matrices. The columns of U are the singular
vectors of the feature space corresponding to the respective
singular value. A projection onto the first k dimensions is
given by Uk = IkU , where Ik is the identity matrix with all
but the first k diagonal elements zero.

Definition 8. We can thus define the latent semantic sim-
ilarity kernel [7] of terms ti and tj as κLSI

S = 〈U i
k(U j

k)′〉
whereby U i

k is the i-th (row) vector of the truncated matrix
Uk.

Again, the kernel κS can be normalized to [0, 1] in the usual
way using the cosine normalization modifier.

4. EXPERIMENTS
In an extensive set of experiments we aimed at showing that
our approach is effective for IR and text mining applications
and at investigating how particular design choices affect per-
formance. For this purpose, we ran experiments on two di-
verse datasets, each of which constitutes a comparatively
“hard” text categorization problem, i.e. a categorization
problem where the simple bag-of-words paradigm does not
perform sufficiently well. The first experiment (cf. section
4.2) was conducted on a TREC question classification corpus
while the second experiment (cf. section 4.3) was conducted
on a corpus of short clinical free texts.

4.1 Experimental Setup
We have implemented the kernels introduced in section 3.1
within the SVM-light-TK software1 which encodes tree ker-
nel functions in SVM-light [12]. In all experiments, we either

1http://ai-nlp.info.uniroma2.it/moschitti/

http://ai-nlp.info.uniroma2.it/moschitti/

λ = 0.05 λ = 0.01 λ = 0.005 λ = 0.001
µF1 A µF1 A µF1 A µF1 A

linear (BOW) 81.5 89.2 81.5 89.2 81.5 89.2 81.5 89.2
α = 1 default (string match) 89.8 90.8 89.7 91.2 89.7 91.2 89.7 91.4

taxo-full 91.0 92.6 90.6 92.6 90.6 92.6 90.7 92.6
taxo-full-ic 91.0 92.6 90.9 92.2 90.9 92.2 90.9 92.2
taxo-lin 90.9 92.2 91.2 92.4 91.2 92.4 91.3 92.4
taxo-wupalmer 91.0 92.6 91.2 92.6 91.2 92.6 91.3 92.6
gvsm 89.5 90.8 89.5 91.2 89.5 91.0 89.5 90.8
lsi-100 88.9 90.8 89.5 90.4 89.6 90.4 89.5 90.4
lsi-50 89.3 91.4 89.8 91.8 89.9 91.8 89.9 91.8

α = 2 default (string match) 89.7 91.4 89.8 91.6 89.9 91.4 90.0 91.4
taxo-full 91.2 93.2 91.5 93.0 91.6 93.0 91.6 93.0
taxo-full-ic 91.1 92.8 91.3 92.6 91.2 92.6 91.2 92.6
taxo-lin 91.1 92.4 91.4 92.6 91.2 92.6 91.5 92.6
taxo-wupalmer 91.6 93.6 91.5 93.0 91.4 92.8 91.4 92.8
gvsm 89.7 91.2 89.5 91.4 89.5 91.4 89.6 91.4
lsi-100 88.9 91.2 90.0 91.0 90.0 90.8 90.0 91.0
lsi-50 89.8 91.8 89.9 92.0 90.0 92.2 90.1 92.2

Table 1: Evaluation of different kernels on the question classification dataset for different values of α, different
values of λ and different semantic smoothing kernels. Evaluation results for the linear kernel based on the
bag-of-words representation are included as baseline (obviously, the settings of λ don’t apply here). For each
combination, we report micro-averaged F-measure (µF1) and accuracy (A). All numbers are percentages. The
best accuracy for each class of kernels is highlighted.

used the noun hierarchy of WordNet2 as the underlying se-
mantic network for calculating topological term similarity
kernels3 or standard LSI for LSI-based term similarity ker-
nels. Kernel similarities that were undefined because of a
missing mapping to a noun synset or because they were not
included in the term-document matrix for LSI (e.g. stop-
words) were implicitly assumed to take the default values
(i.e. zero for distinct and one identical terms respectively).

4.2 Question Classification
In the first set of experiment, we evaluate different types of
kernels on a dataset from the Question Classification (QC)
domain. The long tradition of Question Answering in TREC
has produced a large question set used by several researchers
which can be exploited for experiments on Question Classi-
fication.

Question Classification [13] aims at detecting the type of
a question, e.g. whether it asks for a person or for an or-
ganization which is critical to locate and extract the right
answers in question answering systems. According to [13],
we can define question classification “to be the task that,
given a question, maps it to one of k classes, which provide
a semantic constraint on the sought-after answer”.

A major challenge of Question Classification compared to
standard Text Classification settings is that questions typ-
ically contain extremely few words which make this setting

2http://wordnet.princeton.edu/
3For word sense disambiguation, we used a simplifying as-
sumption in mapping each term to its most frequent noun
sense (if it exists).
Note that this approach implies an inherent word sense dis-
ambiguation side effect, likely to have a negative impact on
the results. The results can also be seen as a pessimistic
estimate.

a typical victim of data sparseness. Previous work has thus
shown that Semantic Smoothing Kernels are capable of im-
proving the effectiveness in QC tasks. On the other hand,
questions have a specific syntactic structure and plain tree
kernels have shown to be effective as well.

We consider the same dataset and classification problem as
introduced in [13, 23]. The dataset consists of free text ques-
tions and is freely available4. It is divided into 5,500 ques-
tions5 for training and 500 questions from TREC 10 for test-
ing. Each of these questions is labeled with exactly one class
of the coarse grained classification scheme (see [23]) consist-
ing of the following 6 classes: Abbreviations, Descriptions
(e.g. definition and manner), Entity (e.g. animal, body and
color), Human (e.g. group and individual), Location (e.g.
city and country) and Numeric (e.g. code and date). In
these experiments, we used the same experimental setup as
used in [23] as it contains the most comprehensive compar-
ison of experiments on the QC corpus introduced above.

We compared the linear kernel based on bag-of-words6, the
original tree kernel and a set of semantic syntactic tree kernel
configurations as introduced in Section 3 with different term
similarities (i.e. normalized taxonomic and latent semantic
kernels, where the LSA matrix is obtained on the question
dataset).

The question parse trees were obtained by running Char-

4http://l2r.cs.uiuc.edu/∼cogcomp/Data/QA/QC/
5Selected from the 4500 English questions published by USC
(Hovy et al., 2001), 500 questions annotated for rare classes
and the 894 questions from TREC 8 and TREC 9.
6To allow for a fair comparison, we used a modified prepro-
cessing which does not remove any stopwords as function
words like “What” or “Who” are highly informative for the
question classification task.

http://wordnet.princeton.edu/
http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/

linear kernel (BOW) tree kernel, λ = 0.01 tree kernel, LSI50 ,λ = 0.01
class P R F1 P R F1 P R F1

786-2 91.82 92.86 92.34 96.73 100.00 98.34 96.38 100.00 98.16
780-6 84.06 84.67 84.36 97.84 99.27 98.55 97.84 99.27 98.55
599-0 81.03 83.19 82.10 91.67 97.35 94.42 93.28 98.23 95.69
593-70 92.31 93.20 92.75 98.10 100.00 99.04 98.10 100.00 99.04
591 87.01 84.81 85.90 100.00 97.47 98.72 100.00 97.47 98.72
486 81.94 84.29 83.10 98.55 97.14 97.84 98.55 97.14 97.84
596-54 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
786-07 89.58 100.00 94.50 100.00 100.00 100.00 100.00 100.00 100.00
593-89 77.50 72.09 74.70 100.00 97.67 98.82 100.00 97.67 98.82
599-7 91.67 94.29 92.96 100.00 100.00 100.00 100.00 100.00 100.00
788-30 93.55 85.29 89.23 100.00 97.06 98.51 100.00 94.12 96.97
786-50 86.49 94.12 90.14 97.14 100.00 98.55 97.14 100.00 98.55
493-90 82.35 60.87 70.00 100.00 91.30 95.45 100.00 91.30 95.45
V13-02 27.78 22.73 25.00 100.00 63.64 77.78 100.00 59.09 74.28
795-5 100.00 88.24 93.75 100.00 100.00 100.00 100.00 100.00 100.00
518-0 45.45 31.25 37.04 100.00 100.00 100.00 100.00 100.00 100.00
753-3 66.67 37.50 48.00 100.00 93.75 96.77 100.00 93.75 96.77
277-00 93.33 93.33 93.33 100.00 100.00 100.00 100.00 100.00 100.00
741-90 45.45 33.33 38.46 100.00 80.00 88.89 100.00 86.67 92.86
759-89 90.91 90.91 90.91 100.00 100.00 100.00 100.00 100.00 100.00
Macro-av. 80.44 76.35 78.34 99.00 95.73 97.34 99.06 95.74 97.37

Table 2: Evaluation of different kernels on 20 classes of the CMC dataset. For each class we report precision
(P), recall (R) and F-measure (F1). All numbers are percentages.

niak’s parser 7. We trained binary classifiers on each of the
6 classes. We preliminary selected the best cost-factor (pa-
rameter j) on the validation set and then experimented with
different λ values. In all experiments, we used c = 1 as soft-
margin parameter. The binary classifiers are then combined
in a multiclassification scheme, which always selects the sin-
gle class for which the test instance produces the highest
margin score of the binary SVMs.

For all cases, we report the micro-averaged F1, i.e. the har-
monic mean of micro-averaged precision and recall, and the
multi-classifier accuracy (since only one class should be as-
signed to a question).

Table 1 reports the results of the experiments8. The first col-
umn indicates the value of α (see section 3.2). The second
column shows the type of term similarity kernel used to-
gether with the tree kernel function, where string matching
means that the original tree kernel is used. The remaining
columns report the micro-averaged F1 and the multiclassifi-
cation accuracy.

While the variation of the λ parameter seems to have a minor
importance, the improvement of the tree kernels seems to
be largely consistent. We can note that default tree kernels
can achieve up to 91.6% of multiclassification accuracy (for
α = 2).

The above values can be improved considerably when we
employ term similarity kernels. For the case of LSI-50, i.e.

7ftp://ftp.cs.brown.edu/pub/nlparser/
8Note that our results for the bag-of-words kernel differ
slightly from literature results, e.g. 90.0% of [23] which we
suspect to be due to a different preprocessing

by truncating the U matrix at k = 50 components (see sec-
tion 3.4), we can note a slight improvement of up to 92.2%.

If we use the generalized vector space model (GVSM) de-
fined in [7], i.e. when all the U components are selected,
or LSI-100, i.e. k = 100, the results are similar or slightly
worse than the default tree kernels.

For the case of taxonomy-driven term similarity kernels, the
addition of semantic information always improves perfor-
mance whereby the improvement appears to be the highest
for the “Full” and “Wu-Palmer” schemes. In particular, the
tree kernel based on the “Wu-Palmer” similarity, α = 2 and
λ = 0.05 achieves the highest multiclassification accuracy,
i.e. 93.6%. This is a great result as it improves (1) previous
work on question classification using tree kernels, i.e. 90%
in [23] and (2) the results obtained in [13], i.e. 92.5%, using
many features and semantic resources manually annotated
for such question dataset.

Regarding the α parameter, in general, we have noted that
other values do not improve the results any further.

4.3 Classifying Clinical Free Text
In the second experiment, we worked on a dataset released
by the Center of Computational Medicine in 20079. The
dataset consists of 978 data items composed of two text fields
in which medical doctors report on (i) the clinical history of
a patient and (ii) the impression gained after radiological ex-
amination of the patient. In this context, the categorization
task is to automate the assignment of diseases according to
the ICD-9-CM classification scheme to the data instances.

9http://www.computationalmedicine.org/challenge

ftp://ftp.cs.brown.edu/pub/nlparser/
http://www.computationalmedicine.org/challenge

Each of the data items is assigned to one up to three codes
out of a pool of 45 ICD-9-CM codes. We performed binary
classification experiments on the 20 largest categories.

As there is no official test data set with target values re-
leased yet, we computed leave-one-out estimates of the per-
formance of three different kernels:

(i) the simple bag of words kernel (with terms indexed
separately on the history and impression parts),

(ii) the combination of bow and (normalized) tree forest
kernels for each of the history and impression text snip-
pets and

(iii) the same but with the contribution of an term similar-
ity kernel based on LSI with k = 5010.

The forest kernel is defined over multiple parse trees coming
from different sentences describing the history of a patient
and the impression from the radiological examination. More
formally, it is defined as follows:

Kall(S1, S2) =
∑

T1∈P1

∑
T2∈P2

KT (T1, T2), (1)

where S1 and S2 are the set of sentences of two instances
(each instance both includes history and impression), P1 and
P2 are the corresponding sets of parse trees and KT is the
semantic syntactic tree kernel defined by Eq. 1.

Table 2 gives a detailed account of the results for all cate-
gories. We note that the plain tree kernels give an impressive
improvement over the bag-of-words results, both in terms of
precision and recall. In several cases it is possible to achieve
precision and recall values of 100.00%. Consequently, the
additional improvement achieved by the semantic smooth-
ing is marginal.

5. DISCUSSION AND CONCLUSION
Lexical semantic kernels were initially introduced in [19] us-
ing inverted path length as a similarity measure and sub-
sequently revisited in [7, 1], each time based on different
design principles. Semantic kernels based on superconcept
representations were investigated in [14] and [2]. As an al-
ternative, [7] have put Semantic Kernels into the context of
Latent Semantic Indexing.

Tree Kernels were firstly introduced in [5] and experimented
with the Voted Perceptron for the parse-tree re-ranking task.
The combination with the original PCFG model improved
the syntactic parsing. In [22], two kernels over syntactic
shallow parser structures were devised for the extraction of
linguistic relations, e.g. person-affiliation. To measure the
similarity between two nodes, the Contiguous String Ker-
nel and the Sparse String Kernel were used. In [8] such

10As the corpus is to small for a meaningful computation of
the LSI term similarities, we relied on a different medical
corpus, namely the 1987 portion of the Ohsumed dataset
for this experiment.

kernels were slightly generalized by providing a matching
function for the node pairs. The time complexity for their
computation limited the experiments on a data set of just
200 news items. In [9], a feature description language was
used to extract structural features from the syntactic shal-
low parse trees associated with named entities. The experi-
ments on named entity categorization showed that too many
irrelevant tree fragments may cause overfitting. In [15] Tree
Kernels were firstly proposed for semantic role classification.
The combination between such kernel and a polynomial ker-
nel of standard features improved the state-of-the-art.

In this paper, we have investigated how the syntactic struc-
tures of natural language texts can be exploited simultane-
ously with semantic background knowledge on term simi-
larity. For this purpose, we have proposed a new family
of kernels called Semantic Syntactic Tree Kernels (SSTKs)
that is based on Tree and Semantic Smoothing Kernels. We
have motivated this class of kernels by counting all compati-
ble tree fragments of two parse trees weighted by their joint
terminology. To our knowledge, no other work has so far
combined the syntactic and semantic properties of natural
language in such a principled way.

We conducted a series of experiments on the TREC ques-
tion classification data. Our new Syntactic Semantic Tree
Kernel improves the state-of-the-art in Question Classifica-
tion, which makes it a prototype of a possible future full-
fledged natural language kernel. Our results indicate that
the newly proposed Semantic Syntactic Tree Kernels out-
perform the conventional linear/semantic kernels as well as
tree kernels improving the state of the art in Question Clas-
sification. For the case of CMC experiments, tree kernels
appear to be highly successful compared to BOW, such that
an additional improvement based on an LSI term kernel is
hardly noticeable. For future work, we envision to use se-
mantic smoothing in combination with different tree kernel
paradigms such the variant proposed in [21, 16].

6. REFERENCES
[1] R. Basili, M. Cammisa, and A. Moschitti. Effective

use of WordNet semantics via kernel-based learning.
In Proceedings of the Ninth Conference on
Computational Natural Language Learning
(CoNLL-2005), pages 1–8, Ann Arbor, Michigan, June
2005. Association for Computational Linguistics.

[2] S. Bloehdorn, R. Basili, M. Cammisa, and
A. Moschitti. Semantic kernels for text classification
based on topological measures of feature similarity. In
Proceedings of the 6th IEEE International Conference
on Data Mining (ICDM 06), Hong Kong, 18-22
December 2006, DEC 2006.

[3] S. Bloehdorn and A. Moschitti. Combined syntactic
and semantic kernels for text classification. In
G. Amati, C. Carpineto, and G. Romano, editors,
Advances in Information Retrieval - Proceedings of the
29th European Conference on Information Retrieval
(ECIR 2007), Rome, Italy, volume 4425 of Lecture
Notes in Computer Science, pages 307–318. Springer,
APR 2007.

[4] A. Budanitsky and G. Hirst. Evaluating
wordnet-based measures of lexical semantic
relatedness. Computational Linguistics, 32(1):13–47,

March 2006.

[5] M. Collins and N. Duffy. Convolution kernels for
natural language. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14: Neural, pages
625–632. MIT Press, 2001.

[6] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press, March
2000.

[7] N. Cristianini, J. Shawe-Taylor, and H. Lodhi. Latent
Semantic Kernels. Journal of Intelligent Information
Systems, 18(2-3):127–152, 2002.

[8] A. Culotta and J. Sorensen. Dependency tree kernels
for relation extraction. In Proceedings of ACL’04,
2004.

[9] C. Cumby and D. Roth. Kernel methods for relational
learning. In Proceedings of the Twentieth International
Conference (ICML 2003), 2003.

[10] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by Latent
Semantic Analysis. Journal of the Society for
Information Science, 41(6):391–407, 1990.

[11] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
C. Nédellec and C. Rouveirol, editors, Proceedings of
ECML-98, 10th European Conference on Machine
Learning, number 1398, pages 137–142, Chemnitz,
DE, 1998. Springer Verlag, Heidelberg, DE.

[12] T. Joachims. Making large-scale svm learning
practical. In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1999.

[13] X. Li and D. Roth. Learning question classifiers. In
Proceedings of the 19th International Conference on
Computational Linguistics (COLING’02), 2002.

[14] D. Mavroeidis, G. Tsatsaronis, M. Vazirgiannis,
M. Theobald, and G. Weikum. Word sense
disambiguation for exploiting hierarchical thesauri in
text classification. In A. Jorge, L. Torgo, P. Brazdil,
R. Camacho, and J. Gama, editors, Knowledge
Discovery in Databases: Proceedings of the 9th
European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD 2005),
Porto, Portugal, October 3-7, 2005, pages 181–192.
Springer, 2005.

[15] A. Moschitti. A study on convolution kernels for
shallow semantic parsing. In proceedings of ACL, 2004.

[16] A. Moschitti. Efficient convolution kernels for
dependency and constituent syntactic trees. In
Proceedings of the 17th European Conference on
Machine Learning, Berlin, Germany, 2006, 2006.

[17] F. Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1–47,
2002.

[18] J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press,
June 2004.

[19] G. Siolas and F. d’Alche Buc. Support vector
machines based on a semantic kernel for text
categorization. In IEEE-INNS-ENNS International
Joint Conference on Neural Networks (IJCNN),

volume 5, pages 205–209, 2000.

[20] V. Vapnik, S. E. Golowich, and A. J. Smola. Support
vector method for function approximation, regression
estimation and signal processing. In NIPS, pages
281–287, 1996.

[21] S. V. N. Vishwanathan and A. J. Smola. Fast kernels
for string and tree matching. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural
Information Processing Systems 15 (Neural, pages
569–576. MIT Press, 2003.

[22] D. Zelenko, C. Aone, and A. Richardella. Kernel
methods for relation extraction. Journal of Machine
Learning Research, 2003.

[23] D. Zhang and W. S. Lee. Question classification using
support vector machines. In SIGIR ’03: Proceedings of
the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval,
pages 26–32, New York, NY, USA, 2003. ACM Press.

