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Abstract. One of the aims of modern Bioinformatics is to discover the
molecular mechanisms that rule the protein operation. This would al-
low us to understand the complex processes involved in living systems
and possibly correct dysfunctions. The first step in this direction is the
identification of the functional sites of proteins.

In this paper, we propose new kernels for the automatic protein active
site classification. In particular, we devise innovative attribute-value and
tree substructure representations to model biological and spatial informa-
tion of proteins in Support Vector Machines. We experimented with such
models and the Protein Data Bank adequately pre-processed to make ex-
plicit the active site information. Our results show that structural kernels
used in combination with polynomial kernels can be effectively applied
to discriminate an active site from other regions of a protein. Such find-
ing is very important since it firstly shows a successful identification of
catalytic sites for a very large family of proteins belonging to a broad
class of enzymes.

1 Introduction

Recent research in Bioinformatics has been devoted to the production and un-
derstanding of genomic data. The availability of the human genome sequence has
shown how small our knowledge about the relation between molecular structures
and their functions is. There are about 10,000 genes encoding approximately the
same number of well characterized proteins, but apparently, the number of pro-
tein functions seems to be higher. Current methods rarely allow us to recognize
all the functions that a protein can carry out.

From a biological point of view, it is clear the importance of understanding
the molecular mechanisms which rule the correct operation of a protein or, in
case of pathologies, which lead to an altered or null protein function. Through the
knowledge of these mechanisms it is possible to eventually correct dysfunctions.



Such research is quite complex to carry out as a protein function is the result
of a combination of several factors. One important step in this direction is the
study of the relation between molecular structures and their functions, which in
turn depends on the discovering of the protein active sites. As there is a large
number of synthesized proteins which have no associated function yet, automatic
approaches for active site detection are critical.

Currently, the general strategy used to identify a protein active site involves
the expertise of researchers and biologists accumulated in years of study on the
target protein. This manual approach is conducted essentially using homology
based strategies, i.e. inferring the function of a new protein based on a close
similarity to already annotated proteins [1]. Sometimes proteins with the same
overall tertiary structure can have different active sites, i.e. different functions
and proteins with different overall tertiary structure can show the same function
and similar active sites. In these cases homology based approaches are inade-
quate. In general, there is no automated approach to protein active site detec-
tion, although it is evident its usefulness to restrict the number of candidate
sites and also to automatically learn rules characterizing an active site [2].

In this paper we define the problem of determining protein active sites in
terms of a classification problem. We modeled protein active site based on both
attribute/value and structural representations [3]. The former representation is a
set of standard linear features whereas the latter is constituted by tree structures
extracted from graphs associated with proteins or their candidate sites. The
graph nodes (or vertices) represent amino acids (or better residues) and edges
represent distances in the three-dimensional space between these residues.

We applied these representations to SVMs using polynomial kernels, tree ker-
nels and some combinations of them. To experimentally evaluate our approach,
we created a data set, using the protein structures retrieved from the Protein
Data Bank (PDB) [4] maintained by the Research Collaboratory for Structural
Bioinformatics (RCBS) at http://www.rcbs.org. The combined kernels show the
highest F} measure, i.e. 68%, in the detection of active sites. This is an important
and promising result considering that the baseline based on a random selection
of active sites has an upperbound of only 2%.

In the remainder of this article Section 2 describes the faced problem. Section
3 describes the proposed linear and structural features. Section 4 describes the
experimental evaluation and reports the results of the classification experiments.
Finally, in Section 5, we summarize the results of the previous sections and
propose other interesting future research lines.

2 Definition of the Protein Active Site Classification Task

In this section we formally define the task of protein active site classification:
first, we give the protein active site definition then we provide a formal descrip-
tion of our computational model.



2.1 Protein Active Site Definition

An active site in a protein is a topological region which defines the protein func-
tion, in other words it is a functional domain in the protein three-dimensional
structure (see also [2]). In a cell there are many types of proteins which carry out
different functions. The enzymes are those proteins able to accelerate chemical
processes inside a cell. This type of proteins are distinguished from structural
and supplying proteins for their catalytical action on the large part of molecules
constituting the living world. We limit our research to a particular class of en-
zymes, the hydrolases.

Hydrolases are maybe the most studied and known type of enzymes. They
catalyze hydrolysis reactions, generically consisting in the cleavage of a biochem-
ical compound thanks to the addition of a water molecule (H20). The character-
istic of some hydrolases to catalyze reactions in the presence of a water molecule
motivates our model: as a hydrolase active site, we choose a sphere in a three-
dimensional space centered in the coordinates of the oxygen atom of a water
molecule. This sphere includes a portion of the protein within its volume, which
is a number of amino acids which could reciprocally interact with other amino
acids in the surrounding space, or with water molecules. In this first analysis, we
consider a sphere with a radius of 8 A, which is the maximum distance needed
for the water-residue interaction.

Figure 1(a), shows the active site of 1A20 protein structure and its repre-
sentation according to our model. The protein residues are colored in light gray
whereas the particular catalytic residues are in dark gray. The center of the
sphere is the black colored oxygen atom of a water molecule.
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Fig. 1. (a) A sphere (positive example). (b) Distances.

2.2 The Computational Model

We defined the functional site identification as a classification problem, where the
objects we want to classify are protein active sites. We represent the portion of



the protein contained in a spherical three-dimensional region with a completely
connected graph. Each vertex of this graph is a residue and each edge represents
the distance in the three-dimensional space between a pair of vertices.

Every amino acid is represented by two points in the three-dimensional space:
the first represents an amino acid main-chain (the a-carbon atom of the amino
acid, Ca) and the second represents an amino acid side-chain (the centroid be-
tween the coordinates of the atoms belonging to the amino acid side-chain, SC)
(see figure 1(b)). The same kind of approximation has been described in [5] be-
cause it seems to provide a good balance between fuzziness and specificity in
these kind of applications.

In figure 1(b) the three-dimensional SC-SC distances and Ca-Co distances
are indicated between the represented chain of three residues.

An object (modeled by a graph centered on a water molecule) can be classified
as being an active site or not with a binary classifier. Thus, we consider as a
positive example, a graph whose set of vertices includes all the catalytic amino
acids and as a negative example a graph which contains no catalytic amino acid.
Moreover, to reduce the task complexity, we extract, from the initial completely
connected graph, some spanning substructures which preserve the edges within
the maximum interaction distance of 5 A between the side-chains of the residues.

The next section shows how the above representation model can be used along
with Support Vector Machines to design an automatic active site classifier.

3 Automatic Classification of Active Sites

Previous section has shown that the active site representation is based on graphs.
To design the computational model of these latter, we have two possibilities: (1)
we extract scalar features able to capture the most important properties of the
graph and (2) we can use graph based kernels [6] in kernel-based machines such
as Support Vector Machines [7]. Point (2) often leads to high computational
complexity. We approached such problem by extracting a tree forest from the
target graph and applying efficient tree kernels [8].

3.1 Tree Kernels

Tree-kernel functions are viable alternative to attribute/value representations
of tree structures. Such functions implicitly define a feature space based on
all possible tree substructures. Given two trees 77 and Tb, the kernel function
evaluates the number of common fragments.

More formally, let 7 = {fi, f2,..., fiz} be a tree fragment space, the in-
dicator function I;(n) is equal to 1 if the target f; is rooted at node n and
equal to 0 otherwise. A tree-kernel function over ¢; and to is K(t1,t2) =
ZmeNtl anGNtQ A(ny,ng), where Ny, and Ny, are the sets of the ¢;’s and

t2’s nodes, respectively. In turn A(ny,ng) = le]::|1 /\l(fi)Ii(nl)L;(ng), where 0 <
A <1 and I(f;) is the height of the subtree f;. Thus \(/*) assigns a lower weight



to larger fragments. When A = 1, A is equal to the number of common fragments
rooted at nodes n; and ns.

The A function depends on the type fragments that we consider as a basic
features. For example, in [9], the SubSet Trees (SSTs) are proposed. These are
any portion p of the initial tree T subject to the constraint that for each node
n € p either n has no children or it has all children described in T'. The evaluation
of A computing such fragment space can be carried out in O(| Ny, | X |N,|).

In figure 2 all the subtrees of a given tree are represented while in figure 3
there are some of the fragments in the SST structure space for the same given
tree.
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Fig. 2. A tree with its SubTrees.
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Fig. 3. A tree with some of its SubSet Trees.

A more general form of fragments has been given in [8]. In this case any
portion p of T, namely Partial Trees (PT), is considered and an efficient evalua-
tion is provided. Note that the SST space is less rich, i.e. it is a subspace of the
PT set. Nevertheless, the SST-based kernel can provide higher accuracy since
its parameterization is simpler and it usually contains less irrelevant fragments
than the PT kernel. In figure 4 some of the partial trees of a given tree are repre-
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Fig. 4. A tree with some of its Partial Trees.

sented. Note that ST C SST C PT, if we consider ST, SST and PT respectively
as the sets of all subtress, all subset trees and all the partial trees of a given tree.
To compute the PT space, we need to define a different A function as follows:

— if the node labels of ny and nsy are different then A(ny,ns) = 0;

— else
1(J1)
A(ni,ng) =1+ > T Alen[T1), cny[T2:)) (1)
J1,J2,l(J1)=I(J2) i=1
where J1 = (Ji1,J12,J13,..) and Ja = (Ja1, Jag, Jo3,..) are index sequences

associated with the ordered child sequences ¢, of n; and ¢, of na, respectively,
J1: and Jo; point to the i-th child in the corresponding sequence, and I(-) returns
the sequence length.

Furthermore, we add two decay factors: p for the height of the tree and A for
the length of the child sequences. It follows that

1(J1)

A(ny,n2) = M(V + > NTOFATD) T A e, [T, e, [J%])) :
J1,J2,l(J1)=U(J2) i=1
(2)

where d(J1) = Jyyg,) — J11 and d(J2) = Jog,) — J21. In this way, we pe-
nalize both larger trees and subtrees built on child subsequences that contain
gaps. Moreover, to have a similarity score between 0 and 1, we also apply a

normalization in the kernel space, K'(T1,T2) = \/K(TK;T;’T;)(T .
1,11)X 2,42

Equation 2 is a more general one, the kernel can be applied to PTs. Also
note that if we only consider the contribution of the longest child sequence from
node pairs that have the same children, we implement the SST kernel. For the
ST computation we also need to remove the A\? term from Eq. 2.

3.2 Scalar Features

Scalar features refer to typical chemical values of the molecules described in the
target graph. We defined 5 different types of such features (see Table 1):



The first class (C1) encodes chemical and physical properties of the graph.
This class represents properties such as hydrophobicity, polarity, polarizability
and Van der Waals volume of the amino acids composing the sphere. The encod-
ing is the same used in [10] where the features were used to classify the function
of proteins.

The second class (C2) encodes the amino acid composition of a spherical
region. There is a feature associated with every labeled vertex (amino acid) in
the graph, weighted with the inverse of the distance from the oxygen atom of
the water molecule which is the center of the sphere. This group of features
emphasizes the importance of the interaction distance of a residue with respect
to a water molecule.

The third class (C3) represents charge or neutrality of a spherical region.
This is measured by counting the number of positively or negatively charged
amino acids.

Another group of linear features (C5) encodes the quantity of water in a
sphere. This is measured by counting the number of water molecules within the
sphere radius. This group of features is motivated by the fact that biologists
observed that an active site is usually located in a hydrophobic core of the
protein while on the surface the quantity of water is higher and the residues
exposed to the solvent are not hydrophobic.

Finally, the last class of linear features (C6) is the one which measures the
atomic density of the sphere calculated as the total number of atoms in the
sphere.

Linear Features Description

1st Class|Physical and chemical properties (amino acid attributes)
2nd Class|Amino acidic Composition
3rd Class|Charge/Neutrality
5th Class|Water molecule quantity
6th Class|Atomic density

Structural Features Description
4th Class|Tree substructures from tertiary structure

Table 1. Representation: feature classes

It should be noted that (a) the last two classes of linear features are made
discrete using a different number of value intervals. A feature is associated with
an example if the measured value of a certain property falls in the correspon-
dent range. (b) These features are often used to describe protein structures in
similar tasks of Bioinformatics [10] and to develop software for protein structure
prediction like Modeler 7v7.

3.3 Structural Features

We designed a class of structural features to encode the three-dimensional struc-
ture (tertiary structure) or better, the spatial configuration characterizing a



spherical region, i.e. the set of amino acids composing it with their 3D distances.
As previously mentioned this representation results in a completely connected
graph since every vertex is connected to any other vertex in the sphere graph
through an edge labeled with the 3D distance of the pair.

Starting from this completely connected graph, we extract some tree sub-
structures using heuristics: we fix the maximum interaction distance to 5 A
between the side-chains of the residues and we use the minimum spanning tree
algorithm to extract tree structures from the graph.

Such heuristics are motivated by the observation that to perform the cat-
alytic function it is necessary that the side-chains of the catalytic residues can
interact with each other and with the substrate. The maximum interaction dis-
tance between atoms in different residue side-chains is usually of about 3-4 A.
We chose a cut-off distance of 5 A to take into consideration our approximation
in the representation of residues (figure 1(b)).

The applied cut-off possibly leads to the separation in disconnected com-
ponents of the initial graph. From each of these components, using the Prim
algorithm [11], we extract the spanning tree which minimizes the interaction
distances d, between the side-chains of the residues = and y. Note that as
some graphs contain more than one connected component, the Prim algorithm
is applied to each of them, therefore the final output is a tree forest.

Fig. 5. Graphical representation of a tree of a sphere.

We add the water molecule (center of the sphere) as root node to the obtained
spanning tree. In figure 5, we show a tree which can represent the spherical region
in figure 1(a). In bold within the boxes, we highlight the nodes which represent
catalytic amino acids.

The tree substructures generated for each example constitute the features
analyzed by our tree kernel function. If two examples are described by two tree
forests, we can use as a kernel function the summation of the tree kernels applied
to all possible pairs coming from such forests.

4 Experiments

In the next subsections, we describe our classification experiments carried out
on the data set that we generated from the Protein Data Bank.



(a) (b)

Linear|Precision|Recall| F; Precision|Recall|F; +Std.Dev.
C1 5.5%| 66.7%|10.2% L 62.3% | 55.4% | 56.2% +6.8
C2 55.9%| 63.3%(59.4% SST_F 66.2% | 31.8% [39.9% +13.7
C3 20%| 3.3%| 5.7%| |L+SSTF| 82.9% |58.6% |68.3% +14.5
Ch 2.2%|  30%| 4.1%

Co6 5.5%| 13.3%| 7.8%

Table 2. (a) Linear feature performance. (b) Combined kernel performance.

4.1 Experimental Set-up

The evaluations were carried out using the SVM-light-TK software [12] (avail-
able at http://ai-nlp.info.uniroma?2.it /moschitti/) which encodes tree kernels in
SVM-light [13]. We applied polynomial kernels to the linear features and tree
kernels to the structural features.

More precisely, we used the SST and the PT kernels described in [8] on a
simple tree, i.e. the main tertiary structure3, or on a tree forest (see Section 3.3).
The former kernels are indicated with SST_T and PT_T whereas the latter are
called SST_F and PT_F. The kernel for tree forest is simply the summation of
all possible pairs of trees contained in two examples.

We experimented with our models and the protein structures downloaded
from the Protein Data Bank (PDB). We adequately pre-processed PDB files to
obtain all the information of interest for this task. In particular, we created a
data set of 14,688 examples from 48 hydrolases from the PDB structures. The
data set is composed of 171 positive examples and 14,571 negative examples,
which means a 1%5 ratio between positive and negative examples.

The results were evaluated by applying a 5-fold cross validation* on this data
set measuring the performance with the F; measure®. A noticeable attention was
devoted to parameterization (cost factor, decay factor, etc.)

4.2 Experiment Results

Table 1(a) reports the results on the 5 types of linear features using the poly-
nomial kernel (degree 3). These results are only indicative as we did not run a
cross validation procedure. We note that most linear features cannot discrimi-
nate between active and non-active site. Only, the second class, which encodes
the structural information, shows a meaningful F;. The general low results of
linear features is caused by the remarkable complexity of the task as suggested
by the F} upperbound of the random selection, i.e. ~ 1.6%.

In order to boost the classification performance, we experimented with the
structural kernels. Table 1(b) summarizes the cross validation results: Row 2

3 The most relevant tree structure in the forest, that is, the tree which contains at
least a catalytic amino acid and the two nearest residue side-chains of the sphere

4 We separated the data set into five parts, each one composed of examples belonging
to a set of nine or ten protein structures randomly assigned to this set.

5 Fy assigns equal importance to Precision P and Recall R i.e. [} = 2;12




L+TK|Precision|Recall|Fi £Std.Dev.
SSTF| 829% |58.6% [68.3% +14.5
SST_T| 79.7% |51.7% |62.3% +10.4
PT_T 80.4% |41.2% | 54.4% +9.1

Table 3. Tree kernel impact

reports the outcome with polynomial kernels on all the linear features (L), Row
3 shows the outcomes of the SST kernels on the tree forest (SST-F) and Row
4 illustrates the performance of the polynomial kernel summed to the SST ker-
nel on the tree forest (L+SST_F). The + sign precedes the standard deviation
evaluated on the 5 folds.

It is worth to note that the F; obtained with the linear features (56.24%)
improves by 12 absolute points if we use the combined model (L+SST_F), i.e.
68%.

We also experimented with the PT kernel. The results of the cross validation
experiments are summarized in Table 3: Row 2 reports the results with polyno-
mial kernel plus SST_F (applied to linear features and a forest structure), Row
3 reports the cross validation results of polynomial kernel plus SST_T (applied
to linear features and a tree structure) and finally Row 4 illustrates the perfor-
mance of the additive combination of polynomial with the PT kernel (PT_T)
(on linear features and a tree structure).

The results show that the highest F; measure can be achieved with the SST_F
but quite similar performance can be obtained representing examples with only
a tree structure in the forest, i.e. SST_T.

In contrast to our expectations the PT kernel, which may be considered the
most appropriate for this task, shows the lowest Fi. A plausible explanation of
such low F} is the higher complex parameterization needed by the PT kernel.

Overall, the very good Fi of our best model suggests that our classification
system can be a useful tool to help biology researchers in the study of protein
functions.

5 Related Work

Literature work demonstrates the importance of protein structures and theirs
active sites for the discovering of protein functions. Hereafter we report some of
the related work.

In [3], novel Recurrent Neural Networks for the detection of Protein sec-
ondary structures are proposed. These models exploit non-casual bidirectional
dynamics to capture up-stream and down-stream information. In [5] we can see
the first general approach to structure searches based on active site rather than
exclusively on fold similarity. The authors showed that three-dimensional signa-
ture consisting of only a few functionally important residues can be diagnostic
of membership in superfamily of enzymes which can represent a first step in the



inference of some functional properties. This membership, results not only from
fold similarity but also from the disposition of residues involved in a conserved
function. It could be interesting to get a potential active site of a protein start-
ing from its structure rather than get only an active site template from a known
protein as the authors do in such work. In [14] a kernel-based approach is used
to predict signal peptides and their cleavage sites from the primary sequence of
proteins. In [15] the task of catalytic residue prediction is solved using 26 differ-
ent classifiers from WEKA package. The authors show that the best performing
algorithm is a Support Vector Machine. In this work structural properties are
captured with linear features.

Many other approaches have been employed in different application areas
of bioinformatics (functional genomics, protein bioinformatics, etc.) with suc-
cess. Learning methods have been applied to face other biological tasks such as
translation initiation site recognition in DNA genes [16], promoter region-based
classification of genes [17], protein classification, protein-protein interaction [18],
functional classification from microarray expression data [19], [20], [21], [22]. In
such work SVMs and kernel methods (see [6] for a survey of kernels for structured
data) are used as the main learning algorithm.

6 Conclusions

In this paper, we have studied the problem of the identification of protein func-
tional sites. We have defined a novel computational representation based on
biological and spatial considerations and several classes of linear and structural
features.

The experiments with SVMs using polynomial and tree kernels and their
combinations show that the highest F}, i.e. 68%, is achieved with the combined
model. Such finding is very important since it firstly shows the successful iden-
tification of catalytic sites of a very large family of catalytic proteins belonging
to a broad class of enzymes. Moreover, our work highlights the importance of
structural information in the detection of protein active sites. This result mo-
tivates the need of structural representations which we efficiently modeled by
means of tree kernels.
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