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Abstract. We argue that automatic classification of web service interface
description into a predefined set of categories can considerably speed up
the task of finding compatible web services. This can greatly improve to es-
tablish automatic connection between networked systems. To carry out the
classification, we show that techniques derived from automatic document
classification can be successfully applied. We describe how the standard doc-
ument classification techniques need to be adapted for our task, and finally
present the results of a number of experiments in classification of web service
interface descriptions.

1 Introduction

Systems interoperability is becoming more and more important given the large
increase of both types and use of connecting devices, e.g., smart phones, laptop,
tablets, and so on. This fact, along with the large variety of services that can be
offered to the user, highly increases the communication complexity. In this perspec-
tive, automated solutions for establishing interoperability between the networked
systems appear to be the only viable approach to achieve the required level of flex-
ibility and scalability. Unfortunately, traditional solutions to determine compatibil-
ity between systems are rather expensive in terms of computational cost, especially
when, these are applied to systems in unrelated domains. Indeed, a compatibility
assessment requires in-depth analyses considering the interface and conversational
protocol of the two target connecting systems.

One way to speed up the assessment above is to apply machine learning methods
to automatically classify the high-level functionality of a system based on its inter-
face description. This allows for restricting the scope of compatibility checks and
consequently providing an overall performance gain when conducting matchmaking
between systems.

In this paper, we describe how the interface description classifiers are imple-
mented by applying machine learning: inducing the classification function from a
set of examples. We describe how the standard document classification techniques
need to be changed in order to be adapted to work with interface descriptions: most
importantly, the feature extraction function needs to process the semi-structured
data that is available in files written in the Web Services Description Language
(WSDL)5.

5 http://www.w3.org/TR/wsdl



We carried out a number of experiments that evaluate the effect of several design
parameters in the implementation of the categorization system, such as the design
of the feature extraction function and the choice of machine learning method.

In the reminder of this paper, Section 2 describes the target of the automated
classifiers, i.e., the web services description files, Section 3 describes the machine
learning methods we apply, i.e., automated text categorization, specialized for the
target task, Section 4 presents our experiments on the classification of description
files, and, finally, Section 5 derives the conclusions.

2 Web Service Interface Descriptions and the WSDL
Format

Web services normally expose a description of their programmatic interface (API)
using the standard WSDL (Web Service Description Language®) format. This de-
scription details all the operations which can be performed by the web service, and
data types (in XML Schema’) that are inputs or outputs of the operations. WSDL
also permits the inclusion of human-readable documentation and has some sup-
port for specifying the semantics of operations (and data) through the ontological
annotations supported in SA-WSDL8. There is however no structured support for
specifying what the service does at a high level, i.e. the abstract category to which
the service belongs.

In the CONNECT project we define a language for specifying these categories by
reference to ontology concepts [2] in order to facilitate the identification of services
with similar, compatible functionality. Services in the same category are expected to
have similar functionality, which may be provided to the environment, or required
from it, and which allows the services to be composed and interact. However, legacy
services do not make use of the explicit CONNECT description language. Without
information about the high-level functionality of services, it is necessary to employ
time-consuming syntactic and behavioural analyses that determine compatibility as
a very fine-grained level of detail. Since CONNECT aims to overcome interoperability
issues at runtime, computationally expensive procedures must be avoided. Service
categories provide a cheap means to determine approximate compatibility, before
applying more detailed checks where necessary. Consequently we need a means to
determine the high-level functionality of a service given only the WSDL description.

Figure 2 shows a partial WSDL description for a weather service, taken from the
web. It lists a number of operations with names such as “ GetWeatherByZipCode”
and “ GetWeatherByPlaceName”. Each operation refers to messages which in turn
determine the input and output data of the operation (defined elsewhere in the file).
Each operation also includes a short piece of documentation, although this latter
part is not always present. It is however obvious that this service has functionality
related to the weather, and when presented with a taxonomy of categories a human
would likely be able to assign this service to one of them: this is the process we seek
to automate.

3 Applying Document Classification Techniques for
Classification of Web Interface Descriptions

In order to build automatic classifiers of web service interfaces, we will build on the
considerable amount of research that has been carried out on the topic of automat-
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<wsdl:portType name="WeatherForecastSoap">
<wsdl:operation name="GetWeatherByZipCode">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a valid Zip Code (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByZipCodeSoapIn" />
<wsdl:output message="tns:GetWeatherByZipCodeSoapOut" />
</wsdl:operation>
<wsdl:operation name="GetWeatherByPlaceName">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a place name (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByPlaceNameSoapIn" />
<wsdl:output message="tns:GetWeatherByPlaceNameSoapQOut" />
</wsdl:operation>
</wsdl:portType>
<wsdl:portType name="WeatherForecastHttpGet">
<wsdl:operation name="GetWeatherByZipCode">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a valid Zip Code (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByZipCodeHttpGetIn" />
<wsdl:output message="tns:GetWeatherByZipCodeHttpGetOut" />
</wsdl:operation>
<wsdl:operation name="GetWeatherByPlaceName">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a place name (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByPlaceNameHttpGetIn" />
<wsdl:output message="tns:GetWeatherByPlaceNameHttpGetOut" />
</wsdl:operation>
</wsdl:portType>
<wsdl:portType name="WeatherForecastHttpPost">
<wsdl:operation name="GetWeatherByZipCode">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a valid Zip Code (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByZipCodeHttpPostIn" />
<wsdl:output message="tns:GetWeatherByZipCodeHttpPostOut" />
</wsdl:operation>
<wsdl:operation name="GetWeatherByPlaceName">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a place name (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByPlaceNameHttpPostIn" />
<wsdl:output message="tns:GetWeatherByPlaceNameHttpPostOut" />
</wsdl:operation>
</wsdl:portType>

Fig. 1. WSDL fragment for a weather service.



ically assigning a category tag to a given text document. This is a task with many
practical applications in the real world [1].

We give an introduction to the topic of automatic classification of text docu-
ments, and describe how machine learning techniques are typically applied to solve
this task. We then show how these techniques can be adapted at very little effort
for the task of interface description classification. The most significant change from
standard document classification methods is that the feature extractor — the func-
tion that determines the attributes used to distinguish the categories — needs to be
tailored for the specifics of web service interface descriptions.

3.1 An Introduction to Automatic Classification of Documents

The complexity of the category systems may vary depending on the application.
The simplest would be a binary classification such as spam filtering. Slightly more
complex category system can be seen in tasks such as sentiment classification of
reviews [13], where the task of the classifier would be to predict the number of stars
assigned by the reviewer. The largest category systems are typically hierarchically
organized, such as the categories used in well-known Reuters dataset [9], and we may
well imagine even more advanced categories such as the structured classifications
used in library science [14].

3.2 Machine Learning for Automatic Document Classification

The task of categorizing documents is usually tackled by applying classifiers that
have been automatically induced by estimation on a collection of document. We
refer to the process of automatically inducing a classification function from data
as machine learning, and the collection of documents on which the estimation is
carried out is called the training set [10].

We may divide the set of machine learning methods into two broad categories:
supervised learning, where each document in the training set is associated with a
document category assigned by a human and the task of the machine learner is to
induce a function that produces similar labelings, and unsupervised learning, where
the documents are not labeled a priori and the machine learning method must take
responsibility for finding a meaningful division into categories. This paper focuses
on the former method, which has generally been much more successful in most
studies.

There are a very large variety of methods to carry out supervised machine learn-
ing of classifiers. For classification of documents the most popular learning methods
are based on the idea of associating classes of documents with regions in a wvector
space. Training a classifier becomes equivalent to describing the decision surface, the
boundary between the regions in the space. In most cases this is described using
a linear function, so the decision surface becomes a hyperplane. Methods for in-
ducing the linear separator include the well-known perceptron algorithm [15]. The
most notable recent advance in machine learning by inducing linear separator is
the support vector machine (SVM) [3], which has been very successfully applied to
the task of document classification [8]. The support vector classification approach
is based on finding the maximal separation between the classes — the mazimal mar-
gin. In case the classes are not fully separable, soft margins are introduced, which
permit a small number of violations of the separation constraint. Figure 2 shows an
illustration of a soft-margin support vector machine. Note that this is much simpler
than in realistic document classification, where the documents may be represented
as points in a vector space of millions of dimensions rather than just two.

In addition to the simple task of assigning a category label to a document, sim-
ilar machine learning techniques can also be applied in very complex categorization
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Fig. 2. Example of the decision boundary (dashed line) and the margins in a soft-margin
support vector machine. There are two violations of the margin constraints.

tasks. An important type of such categorization tasks are those requiring a classi-
fication of a pair of documents, for instance determining whether a text is a good
answer to a given question [11].

3.3 Extraction of Features

In order to be able to assign objects into categories, an automatic classifier needs
to determine the salient properties of those objects. This process is called feature
extraction. A good feature extractor should extract exactly those features that make
it easy to distinguish the categories. As it has been noted repeatedly, designing
feature extractors is an art more than a science, and requires a good understanding
of the classification task.

For the task of document classification, the most common feature extraction
method is called the bag-of-words representation [16]. In this method, a document
is converted into a point in a vector space; every word in the vocabulary is associated
with a dimension of the vector space, allowing the document to be mapped into the
vector space simply by computing the occurrence frequencies of each word. The
bag-of-words representation is considered the standard representation underlying
most document classification approaches, and attempts to incorporate more complex
structural information have mostly been unsuccessful for the task of categorization
of single documents [12].

3.4 Feature Extraction in Web Service Interface Descriptions

WSDL documents generally contain a significant amount of text, and this text
can be directly processed using standard a bag-of-words representation method.
However, the most informative part of the WSDL interface descriptions normally



consists of structured data: names of methods, objects, parameters. These elements
are represented as a tree-structured XML structure. It should be noted that very
little textual documentation may be available if the identifiers are informatively
named and their purpose obvious.

This means that the various semi-structured identifiers that are part of the
WSDL interface description XML documents should be added to the bag-of-words
feature representation. Most importantly, the representation should include the
names of the method and input parameters defined by the interface. The inclu-
sion of identifiers will be important since: (1) the textual content of the identifiers
is often highly informative of the functionality provided by the respective meth-
ods; and (2) the free text documentation is not mandatory and may not always be
present.

To extract useful word tokens from the identifiers, we split them into pieces based
on the presence of underscores or CamelCase. All tokens were then normalized to
lowercase. For instance, consider the following piece of WSDL code.

<wsdl:message name="GetWeatherByZipCodeSoapIn">
<wsdl:part name="parameters"
element="tns:GetWeatherByZipCode" />
</wsdl:message>
<wsdl:message name="GetWeatherByZipCodeSoapOut">
<wsdl:part name="parameters"
element="tns:GetWeatherByZipCodeResponse" />
</wsdl:message>

In this example, we split the CamelCased identifier GetWeatherByZipCode into
the tokens get, weather, by, zip, and code, so the complete bag-of-words vec-
tor for the example will be [get:4, weather:4, by:4, zip:4, code:4, soap:2,
in:1, out:1, response:1].

4 Experiments

We carried out a large number of experiments to find the best way to implement
the categorizer of web service interface descriptions.

As described in Sec. 3.2, we implemented the classifiers by automatically in-
ducing them from labeled data. For this purpose, we used a collection of WSDL
documents® [7]. We selected the 10 most frequent categories, in total 397 docu-
ments.

To train the classifiers, we used support vector machines that we trained using
the LIBLINEAR machine learning software [6].

The following subsections describe the experiments. All results have been ob-
tained using a 10-fold cross-validation procedure: split the data into 10 pieces; form
10 different training sets by excluding each piece; train 10 classifiers; evaluate on
each piece and combine the result.

4.1 Classification Results

To evaluate the performance of the classifiers, we computed a number of different
evaluation meaures. The first one is the overall classification accuracy, which is

% http://www.andreas-hess.info/projects/annotator/ws2003.html



Category Number of instances

COUNTRYINFO 64
MONEY 54
CONVERTER 49
FINDER 46
COMMUNICATION 45
WEB 39
DEVELOPERS 37
NEws 30
BUSINESS 23
MATHEMATICS 10
Total 397

Table 1. Statistics for the data collection.

defined as the proportion of correctly classified interface descriptions. Our best
implementation correctly classified 236 out of 397 descriptions, giving us an accuracy
of 59.4%.

In addition to the overall accuracy, we evaluated the classification performance
on individual categories. Here, we used the precision and recall measures. For a
category C, we define the precision is defined as the number the classifier correctly
predicted C' divided by the number of times it predicted C at all. Conversely, we
define the recall as the number of correctly predicted C' divided by the number of C'
in the dataset. Finally, it is very common to present the harmonic mean of precision
and recall, which is referred to as the F-measure.

In most situations, there is a tradeoff relationship between the precision and
recall measures: if we often predict C, then we would also find many C' (higher recall)
but also overgenerate (lower precision). By varying a class sensitivity parameter
when training, we can tune the precision/recall tradeoff, and plot the relationship
in a graph. Figure 3 shows such plots for the four largest classes of interfaces:
COUNTRYINFO, MONEY, CONVERTER and FINDER. In this kind of plot, overall
prediction quality for a class is determined by how close the plot is to the upper
right corner. In our case, we see that the overall prediction quality for the four
classes tends to be correlated with the size of the class: COUNTRYINFO class is the
class for which the plot is closest to the upper right corner.

In addition to the classwise precision and recall evaluations, we computed the
macro precision and recall, which are precision and recall values averaged over all
classes. In this macro evaluation, our classifier achieved a precision of 58.0, a recall
of 52.8, and an F-measure of 55.3.

4.2 The Effect of the Design of the Feature Extractor

The challenge in interface description classification compared to traditional docu-
ment classification is the feature design problem, and in particular the problem of
making use of the WSDL structure.

As a baseline, we used traditional bag-of-word feature extractors that are nor-
mally used in document classification. We applied the baseline feature extractors to
the text available in the documents: the code documentation and the comments.

As an alternative to the raw text, we extracted features from the structured
text, i.e. the identifiers used in the WSDL code. As discussed in Sec. 3.4, we used an
identifier splitting heuristic based on the presence of CamelCase. However, we also
tried out an identifier-based feature representation that did not split the identifiers.

Finally, we used a feature representation that combined the BOW and WSDL
identifier features. Here, we evaluated two different representations. In the first
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Representation Accuracy Macro precision Macro recall Macro F-measure
BOW (doc. only) 24.9 39.5 28.4 33.0
BOW (doc. and comments) 25.2 36.1 27.8 31.5
WSDL Identifiers 41.6 33.7 32.8 33.2
WSDL Identifiers, CC splitting  58.2 54.8 51.6 53.2
BOW + Indentifiers (separate)  57.9 55.1 51.1 53.0
BOW + Indentifiers (mixed) 59.4 58.0 52.8 55.3

Table 2. Evaluation of feature extraction methods.

approach we used two separate vector spaces for the two types of features. In the
second one, there was only one vector space, so for instance if the word withdraw
would appear in the documentation or in an identifier, this would result in the same
feature being enabled.

To see the effect of the feature extraction design choices, we carried out an
evaluation of several different feature extractors. The result of this experiment is
shown in Table 2. We show the overall classification performance using accuracy
and macro precision/recall/ F-measure.

The experiment shows very clearly that purely text-based feature representations
are not sufficient for achieving a good classification performance. It is crucial to
extract features from the WSDL identifiers, and they need to be split in order to be
useful. The best representation was the mixed combination of BOW and identifier
features; the combination by separate vector spaces seems to lead to feature sparsity,
which is very problematic when using small training sets.



Learning method Accuracy Macro precision Macro recall Macro F-measure

Binarized L2-SVM  59.4 58.0 52.8 55.3
Binarized L1-SVM  58.9 55.3 49.5 52.3
Multiclass SVM 59.4 55.0 52.9 53.9
Logistic regression ~ 49.9 47.1 39.3 42.9
Perceptron 51.1 51.0 45.6 48.1
Passive—aggressive  58.4 53.3 51.4 52.4

Table 3. Evaluation of machine learning methods.

4.3 The Choice of Machine Learning Algorithm

In addition to the feature extraction mechanism, another crucial parameter when
building a classifier is the selection of a machine learning algorithm for training.
We evaluated a wide range of learning algorithms. Our primary approach was sup-
port vector machines (SVMs) since this algorithm has been very successful in text
categorization [8].

We used several variations of the SVM learning algorithm. The original SVM
formulation [3] was restricted to two-class classification. This means that if we
want to apply SVMs to classification problems with more than two classes, we
must apply a tranformation of the problem — a binarization. The most common
binarization method is called one-versus-all: create one SVM for each class, and
select the highest-scoring class at test time. We tried two binarized SVM variants:
Lo-loss and Li-loss SVMs; Ls-loss is the standard formulation and Li-loss is a
newer variant that typically uses much smaller feature sets [17]. In addition to the
binarized SVM variants, we used a recent SVM formulation that can solve multiclass
problems directly [5].

Apart from the SVMs, we evaluated classifiers trained using the logistic regres-
sion, perceptron [15], and passive-aggressive [4] learning methods. All SVMs, as
well as the logistic regression classifiers, were implemented using LIBLINEAR. The
perceptron and passive—aggressive classifiers were based on our own implementa-
tions.

Table 3 shows the result of the machine learning method comparison. We no-
tice that all SVM variants outperform the other learning algorithms. The best-
performing SVM is the most commonly used variant: the Lo-loss SVM with stan-
dard binarization.

4.4 Generating Multiple Hypotheses

The purpose of a categorizer of web services is to reduce the time it takes to decide
whether we can automatically connect two different web services. While we would
certainly like to have a classifier that perfecly predicts the correct class, this is
of course not realistic; however, if a classifier that is allowed to make multiple
predictions, the probability of the correct class being found is much higher. Such a
classifier would also save considerable connection time.

We measured the performance of a classifier that is allowed to output k different
category labels. In this evaluation, a prediction is counted as correct if the set of
guesses contains the correct answer. The relationship between the & value and the
performance is shown in Table 4. We see that even with a small &, we can get very
high classification performance.



k Accuracy Macro precision Macro recall Macro F-measure

1 594 58.0 52.8 55.3
2 715 71.0 65.6 68.2
3 793 79.1 75.0 77.0
4 851 85.1 81.3 83.2
5 87.7 88.0 83.9 85.9

Table 4. Classification performance when predicting k possible hypotheses.

5 Conclusion

There is a considerable need for automatic composition of web services. The CON-
NECT project addresses, in particular, interoperability issues arising from the need
to compose heterogeneous systems at runtime. The first step in composing such sys-
tems is determining whether, and to what degree, the systems are compatible. At
the highest level of abstraction, systems in the same domain category, e.g. weather,
have the potential to interact.

Automatic classification of web service interface descriptions is a technique that
can speed up the service matching procedure considerably by allowing us to avoid
expensive behavioral analyses that encumber the runtime composition of services.

We described how methods derived from automatic document classification
based on machine learning can be used to build categorizers of web service interface
descriptions.

We carried out a number of experiments in automatic categorization of inter-
face descriptions, to determine the best way to implement an automatic system
to carry out this kind of categorization. We evaluated the effect of the choice of
machine learning method, and we saw that support vector machines gave the best
performance.

Most importantly, we evaluated how the performance is influenced by the design
of the feature extraction component of the classifier. We saw very clearly that stan-
dard document classification methods are not directly applicable: such an approach
leads to very low performance. Instead, we need to use a feature representation
that is tailored to the task of interface description classification by using the spe-
cific structure of the WSDL code, in particular its identifiers.

We saw that a classifier that predicts a number of possible alternatives (not
just one) achieves very high performance levels. We believe that an approach using
multiple hypothesis can also be useful for service matching.
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