
Information Processing and Management 47 (2011) 825–842
Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier .com/ locate/ infoproman
Linguistic kernels for answer re-ranking in question answering systems

Alessandro Moschitti, Silvia Quarteroni *

University of Trento, Via Sommarive 14, 38050 Povo, Trento, Italy

a r t i c l e i n f o
Article history:
Received 29 March 2009
Received in revised form 2 June 2010
Accepted 7 June 2010
Available online 20 July 2010

Keywords:
Question answering
Information Retrieval
Kernel methods
Predicate argument structures
0306-4573/$ - see front matter � 2010 Elsevier Ltd
doi:10.1016/j.ipm.2010.06.002

* Corresponding author.
E-mail addresses: alessandro.moschitti@disi.unit
a b s t r a c t

Answer selection is the most complex phase of a question answering (QA) system. To solve
this task, typical approaches use unsupervised methods such as computing the similarity
between query and answer, optionally exploiting advanced syntactic, semantic or logic
representations.

In this paper, we study supervised discriminative models that learn to select (rank)
answers using examples of question and answer pairs. The pair representation is implicitly
provided by kernel combinations applied to each of its members. To reduce the burden of
large amounts of manual annotation, we represent question and answer pairs by means of
powerful generalization methods, exploiting the application of structural kernels to syntac-
tic/semantic structures.

We experiment with support vector machines and string kernels, syntactic and shallow
semantic tree kernels applied to part-of-speech tag sequences, syntactic parse trees and
predicate argument structures on two datasets which we have compiled and made avail-
able. Our results on classification of correct and incorrect pairs show that our best model
improves the bag-of-words model by 63% on a TREC dataset. Moreover, such a binary clas-
sifier, used as a re-ranker, improves the mean reciprocal rank of our baseline QA system by
13%.

These findings demonstrate that our method automatically selects an appropriate repre-
sentation of question–answer relations.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Automatic question answering (QA) systems return concise answers – i.e. sentences or phrases – to questions in natural
language. On one hand, QA is interesting from an Information Retrieval (IR) viewpoint as it studies means to satisfy the user’s
information needs; on the other, the high linguistic complexity of QA systems suggests a need for more advanced natural
language techniques, that have been shown to be of limited use for more basic IR tasks, e.g. document retrieval (Allan, 2000).

As a matter of fact, the main source of complexity in QA lies in the question processing and answer extraction steps rather
than in document retrieval, a step usually conducted using off-the-shelf IR modules (Chen, Zhou, & Wang, 2006; Collins-
Thompson, Callan, Terra, & Clarke, 2004).

In question processing, useful information is gathered from the question to create a query; the latter is submitted to
the document retrieval module that provides the set of the most relevant documents. The latter are used by the answer
extractor to provide a ranked list of candidate answers. In the answer extraction phase, unsupervised methods are usually
applied: a similarity between query and answer (such that higher similarity results in higher rank), is computed using simple
bag-of-words (BOW) models or more advanced syntactic, semantic or logic representations, e.g. (Yang & Chua, 2003; Hovy,
. All rights reserved.

n.it (A. Moschitti), silvia.quarteroni@disi.unitn.it (S. Quarteroni).

http://dx.doi.org/10.1016/j.ipm.2010.06.002
mailto:alessandro.moschitti@disi.unitn.it
mailto:silvia.quarteroni@disi.unitn.it
http://dx.doi.org/10.1016/j.ipm.2010.06.002
http://www.sciencedirect.com/science/journal/03064573
http://www.elsevier.com/locate/infoproman


826 A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842
Hermjakob, & Lin, 2001). More recently, shallow semantic information has been successfully exploited for such an approach
in terms of predicate argument structures (PASs) (Shen & Lapata, 2007).

In contrast, supervised machine learning methods that learn to rank answers from examples of question and answer pairs
(Sasaki, 2005; Suzuki, Sasaki, & Maeda, 2002) rarely use representation more complex than BOW. This is a major drawback,
since different questions need different training data, and the only solution to overcome the burden of manual annotation is
to reduce it by generalizing such data in terms of syntactic/semantic structures. In previous work, this consideration led us to
defining supervised approaches to answer extraction using syntactic and shallow semantic structures. In particular, we pro-
posed two tree kernel functions, named shallow semantic tree kernel (SSTK) (Moschitti, Quarteroni, Basili, & Manandhar,
2007) and partial tree kernel (PTK) (Moschitti & Quarteroni, 2008), that exploit PASs in PropBank1 format for automatic
answering to description questions. The use of shallow semantics appears to be especially relevant in the case of non-factoid
questions, such as those requiring definitions, where the answer can be a whole sentence or paragraph containing only one
question word.

In this paper, we present a thorough study on the above ideas by focusing on the use of kernel functions to exploit syn-
tactic/semantic structures for relational learning from questions and answers. We start our study from simple linguistic lev-
els and gradually introduce more and more advanced language technology. In more detail, we: (i) model sequence kernels
for words and part-of-speech tags that capture basic lexical semantics and syntactic information, (ii) apply tree kernels to
encode deeper syntactic information and more structured shallow semantics and (iii) analyze the proposed shallow seman-
tic kernels in terms of both accuracy and efficiency. Finally, we carry out comparative experiments between the different
linguistic/kernel models on question/answer classification by measuring the impact of the corresponding classifiers on an-
swer re-ranking.

It is worth noting that, since finding a suitable question answering corpus for our study was difficult,2 we designed and
made available two different corpora, named WEB-QA and TREC-QA. Their main characteristic is that they relate to descrip-
tion questions from TREC 2001 (Voorhees, 2001), whose answers, retrieved from Web and TREC data, respectively, were
manually annotated by our group.

The extensive experiments carried out on such corpora show that the generalization ability of kernel functions, success-
fully used in previous approaches (Collins & Duffy, 2002; Kudo & Matsumoto, 2003; Cumby & Roth, 2003; Culotta & Soren-
sen, 2004; Kudo, Suzuki, & Isozaki, 2005; Toutanova, Markova, & Manning, 2004; Kazama & Torisawa, 2005; Zhang, Zhang, &
Su, 2006), is essential. Indeed, a unique result of our approach is that kernels applied to pairs of questions and answers are
effective for automatically learning their relations. This is a further step in automation with respect to previous work such as
(Echihabi & Marcu, 2003), that required human effort and intuition to design a structural representation of question–answer
pairs and use the latter to extract an effective feature vector representation.3

Our main findings are that (i) kernels based on PAS, POS-tag sequences and syntactic parse trees improve on the BOW
approach on both datasets: on TREC-QA, the improvement is high (about 63% in F1 score), making its application worth-
while; (ii) PTK for processing PASs is more efficient and effective than SSTK and can be practically used in answer re-ranking
systems; and (iii) our best question/answer classifier, used as a re-ranker, improves the mean reciprocal rank (MRR) of our
QA basic system by 13%, confirming its promising applicability. Such improvement is much larger on WEB-QA.

In the remainder of this paper, Section 2 presents our use of kernel functions for structural information and Section 3
introduces the data representations we use for question and answer pairs. Section 4 reports on our experiments with differ-
ent learning models and representations. Finally, Section 5 discusses our approach with respect to related work and our final
conclusions are drawn in Section 6.
2. Kernel methods for structured data

Kernel methods refer to a large class of learning algorithms based on inner product vector spaces, among which support
vector machines (SVMs) are well-known algorithms. The main idea behind SVMs is to learn a hyperplane
Hð~xÞ ¼ ~w �~xþ b ¼ 0, where~x is the representation of a classifying object o as a feature vector, while ~w 2 Rn (indicating that
~w belongs to a vector space of n dimensions built on real numbers) and b 2 R are parameters learnt from training examples
by applying the Structural Risk Minimization principle (Vapnik, 1995). Object o is mapped into ~x via a feature function
/ : O! Rn, where O is the set of objects; o is categorized in the target class only if Hð~xÞP 0.

By exploiting the ‘‘kernel trick”, the decision hyperplane can be rewritten as:
1 ww
2 For

(2003),
3 Ma
Hð~xÞ ¼
X

i¼1;...;l

yiai~xi

 !
�~xþ b ¼

X
i¼1;...;l

yiai~xi �~xþ b ¼
X

i¼1;...;l

yiai/ðoiÞ � /ðoÞ þ b;
where yi is equal to 1 for positive examples and to �1 for negative examples, ai 2 R (with ai P 0, oi " i 2 {1, . . . , l}) are the
training instances and the product K(oi,o) = h/(oi)�/(o)i is the kernel function associated with the mapping /.
w.cis.upenn.edu/ace.
supervised approaches we could use neither the Japanese corpus used in Sasaki (2005), Suzuki et al. (2002) nor the corpus used in Echihabi and Marcu
since they are not publicly available.

chine translation techniques were applied to make this task easier.

http://www.cis.upenn.edu/ace


A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842 827
Note that instead of applying the mapping /, we can directly use K(oi,o). Under Mercer’s conditions (Shawe-Taylor & Cris-
tianini, 2004), this allows to define abstract kernel functions generating implicit feature spaces. In turn, this alleviates the
feature extraction/design step and enables the use of potentially infinite feature spaces, since the scalar product K(�,�) is
implicitly evaluated.

In the remainder of this section, we extensively describe the following kernels: the string kernel (SK) proposed in Shawe-
Taylor and Cristianini (2004) to evaluate the number of subsequences between two sequences, the syntactic tree kernel
(STK) (Collins & Duffy, 2002), that computes the number of syntactic tree fragments, the shallow semantic tree kernel (SSTK)
(Moschitti et al., 2007), that considers fragments from PASs, and the partial tree kernel (PTK) (Moschitti, 2006), that provides
a yet more general representation of trees in terms of tree fragments.

2.1. String kernels

The string kernels that we work with count the number of substrings shared by two sequences containing gaps, i.e. some
of the characters of the original string are skipped. Gaps modify the weights associated with target substrings as shown in
the following. Let R be a finite alphabet: R� ¼

S1
n¼0R

n is the set of all possible strings. Given a string r 2 R*, jrj denotes the
length of r, that can be written as s1, . . . ,sjsj with si 2 R and r[i:j] selects the substring sisi+1, . . . ,sj�1sj from the ith to the jth
character. Now, u is a subsequence of r if there is a sequence of indices~I ¼ ði1; . . . ; ijujÞ, with 1 6 i1 < � � � < ijuj 6 jrj, such that
u ¼ si1 . . . sijuj or u ¼ r½~I� in short. Moreover, dð~IÞ is the distance between the first and last character of the subsequence u in r,
i.e. dð~IÞ ¼ ijuj � i1 þ 1. Finally, given r1,r2 2R*, r1r2 indicates their concatenation.

The set of all substrings of a text corpus forms a feature space denoted by F � R�. To map a string r into R1 space, we can
use the following functions:
/uðrÞ ¼
X

~I:u¼s½~I�

kdð~IÞ
for some k 6 1. These functions count the number of occurrences of u in the string r and assign them a weight kdð~IÞ propor-
tional to their length. Hence, the inner product of the feature vectors for two strings r1 and r2 returns the sum of all common
subsequences weighted according to their length and occurrence frequency:
SKðr1;r2Þ ¼
X
u2R�

/uðr1Þ � /uðr2Þ ¼
X
u2R�

X
~I1 :u¼r1 ½~I1 �

kdð~I1Þ
X

~I2 :u¼r2 ½~I2 �

kdð~I2Þ ¼
X
u2R�

X
~I1 :u¼r1 ½~I1 �

X
~I2 :u¼r2 ½~I2 �

kdð~I1Þþdð~I2Þ
It is worth noting that: (a) longer subsequences receive lower weights; (b) sequences of the original string with some char-
acters omitted, i.e. gaps, are valid substrings; (c) gaps determine the weighting function since d(.) counts the number of char-
acters in the substrings as well as the gaps that were skipped in the original string, and (d) symbols of a string can also be
whole words, as in the word sequence kernel (Cancedda, Gaussier, Goutte, & Renders, 2003).

2.2. Tree kernels

The main idea underlying tree kernels is to compute the number of common substructures between two trees T1 and T2

without explicitly considering the whole fragment space. Let F ¼ ff1; f2; . . . ; fjFjg be the set of tree fragments and vi(n) an
indicator function equal to 1 if the target fi is rooted at node n and equal to 0 otherwise. A tree kernel function over T1

and T2 is defined as
TKðT1; T2Þ ¼
X

n12NT1

X
n22NT2

Dðn1;n2Þ;
where NT1 and NT2 are the sets of nodes in T1 and T2, respectively, and
Dðn1;n2Þ ¼
XjFj
i¼1

viðn1Þviðn2Þ:
The D function is equal to the number of common fragments rooted in nodes n1 and n2 and thus depends on the fragment
type. Below, we report the algorithm to compute D for syntactic tree fragments (STFs) (Collins & Duffy, 2002), shallow
semantic tree fragments (SSTFs) (Moschitti et al., 2007), and partial tree fragments (PTFs) (Moschitti, 2006).

2.2.1. Syntactic tree kernel (STK)
A syntactic tree fragment (STF) is a set of nodes and edges from the original tree such that the fragment is still a tree, with

the further constraint that any node must be expanded with either all or none of its children. This is equivalent to stating that
the production rules contained in the STF cannot be partially applied.

To compute the number of common STFs rooted in n1 and n2, the syntactic tree kernel (STK) uses the following D function
(Collins & Duffy, 2002):



828 A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842
1. if the productions at n1 and n2 are different then D(n1,n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf children (i.e. they are pre-terminal symbols) then

D(n1,n2) = k;
3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-terminals then Dðn1;n2Þ ¼

k
Qlðn1Þ

j¼1 ð1þ Dðcn1 ðjÞ; cn2 ðjÞÞÞ

where l(n1) is the number of children of n1,cn(j) is the jth child of node n and k is a decay factor penalizing larger structures.
Fig. 1 shows a tree and 10 out of its 17 STFs: note that STFs satisfy the constraint that grammatical rules cannot be broken.

For example, [VP [VBZ NP]] is a STF which has two non-terminal symbols, VBZ and NP, as leaves while [VP [VBZ]] is not a STF.
The computational complexity of STK is OðjNT1 jjNT2 jÞ, although it is shown in Moschitti (2006), Moschitti (2006) that the
average running time is linear in the number of tree nodes.

2.2.2. Shallow semantic tree kernel (SSTK)
A shallow semantic tree fragment (SSTF) is almost identical to a STF, the difference being that the contribution of special

nodes labeled with null should be zero. This is necessary as the shallow semantic tree kernel (SSTK) (Moschitti et al., 2007) is
applied to special trees containing SLOT nodes that, when empty, have children labeled with null. Two steps are modified in
the algorithm:

0. if n1 (or n2) is a pre-terminal node and its child label is null, D(n1,n2) = 0;
3. Dðn1;n2Þ ¼

Qlðn1Þ
j¼1 ð1þ Dðcn1 ðjÞ; cn2 ðjÞÞÞ � 1,

The above steps do not change the computational complexity of the original algorithm, which is therefore OðjNT1 jjNT2 jÞ.

2.2.3. Partial tree kernel (PTK)
If we relax the production rule constraint over the STFs, we obtain a more general substructure type called partial tree

fragment (PTF), generated by the application of partial production rules such as [VP [VBZ [is]]] in Fig. 2. The D function
for the partial tree kernel (PTK) is the following. Given two nodes n1 and n2, STK is applied to all possible child subsequences
of the two nodes, i.e. the string kernel is applied to enumerate their substrings and the STK is applied on each of such child
substrings. More formally:

1. if the node labels of n1 and n2 are different then D(n1, fn2) = 0;
2. else
Dðn1;n2Þ ¼ 1þ
X

~I1 ;
~I2 ;lð~I1Þ¼lð~I2Þ

Ylð~I1Þ

j¼1

Dðcn1 ð~I1jÞ; cn2 ð~I2jÞÞ
where~I1 ¼ hh1;h2;h3; . . .i and~I2 ¼ hk1; k2; k3; . . .i are index sequences associated with the ordered child sequences cn1 of n1

and cn2 of n2, respectively,~I1j and~I2j point to the jth child in the corresponding sequence, and again, l(�) returns the sequence
length, i.e. the number of children. Furthermore, we add two decay factors: l for the depth of the tree and k for the length of
the child subsequences with respect to the original sequence, to account for gaps. It follows that
Dðn1;n2Þ ¼ l k2 þ
X

~I1 ;
~I2 ;lð~I1Þ¼lð~I2Þ

kdð~I1Þþdð~I2Þ
Ylð~I1Þ

j¼1

Dðcn1 ð~I1jÞ; cn2 ð~I2jÞÞ

0
@

1
A;
S

NP

NNP

Autism

VP

VBZ

is

NP

D

a

N

disease

VP

VBZ

is

NP

D

a

N

disease

VP

VBZ NP

D

a

N

disease

VP

VBZ

is

NP

D N

disease

VP

VBZ

is

NP

D N

VP

VBZ

is

NP

VP

VBZ NP

NP

D

a

N

disease

NP

NNP

Autism

NNP

Autism

VBZ

is

D

a

N

disease ...

Fig. 1. A tree for the sentence ‘‘Autism is a disease” (top left) with some of its syntactic tree fragments (STFs).



S

NP

NNP

Autism

VP

VBZ

is

NP

D

a

N

disease

VP

VBZ

is

NP

D

a

N

disease

VP

VBZ NP

D

a

N

disease

VP

VBZ

is

NP

D N

disease

VP

VBZ

is

NP

D N

S

NP

NNP

Autism

VP

NP

N

disease

S

VP

NP

N

disease

VP

VBZ

is

NP

N

disease

VP

VBZ

is

NP

VP

VBZ

is

NP

D

a

N

disease

NP

N

disease

NP

D

a

NP

NNP

Autism

NNP

Autism

VBZ

is

D

a

N

disease ...

Fig. 2. A tree for the sentence ‘‘Autism is a disease” (top left) with some of its partial tree fragments (PTFs).

A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842 829
where dð~I1Þ ¼~I1lð~I1Þ �
~I11 þ 1 and dð~I2Þ þ 1 ¼~I2lð~I2Þ �

~I21+1. This way, both larger trees and child subsequences with gaps are
penalized. An efficient algorithm for the computation of PTK is given in Moschitti (2006), where the worst case complexity
is O q3jNT1 jjNT2 j

� �
, where q is the maximum branching factor of the two trees. Note that the average q in natural language

parse trees is very small and the overall complexity can be reduced by avoiding the computation of node pairs with different
labels (Moschitti, 2006).

2.3. Kernel engineering

Kernel engineering can be carried out by combining basic kernels via additive or multiplicative operators or by designing
specific data objects (vectors, sequences and tree structures) for the target task. It is worth noting that kernels applied to new
structures produce new kernels. Indeed, let K(t1, t2) = /(t1)�/(t2) be a basic kernel, where t1 and t2 are two trees. If we map t1

and t2 into two new structures s1 and s2 with a mapping /M(�), we obtain:
Kðs1; s2Þ ¼ /ðs1Þ � /ðs2Þ ¼ /ð/Mðt1ÞÞ � /ð/Mðt2ÞÞ ¼ /0ðt1Þ � /0ðt2Þ ¼ K 0ðt1; t2Þ;
that is a noticeably different kernel induced by the mapping /
0
= / � /M. In this work, we use several such kernels, such as

PASPTK and POSSK, obtained by applying PTK and SK to predicate argument structures and sequences of Part of Speech Tags,
respectively.

3. Relational representations for question and answer pairs

Capturing the semantic relations between two text fragments is a complex task. In question answering, this task is carried
out during answer extraction, where unsupervised approaches measure the similarity of questions and answers (Yang &
Chua, 2003; Hovy et al., 2001; Wu, Zhang, Hu, & Kashioka, 2007).

A key aspect of our work is that we apply supervised methods to learn such relations. More explicitly, we train classifiers
for detecting whether an answer correctly responds to the corresponding question or not (the problem is formally defined in
Section 3.1). This is a very different problem from typical answer extraction in that not only the relatedness between the
target question and answer is taken into account, but also other question–answer training pairs are used. The similarity be-
tween pairs clearly depends on syntactic and semantic properties; thus, in addition to the usual bag-of-word approach
(BOW), we study methods to capture Q/A structures using string kernels over word and POS-tag sequences and tree kernels
over full syntactic parse trees (PTs) and shallow semantic trees (PASs). The following sections describe the rationale behind
our approach and the choice of such features.

3.1. Classification of paired texts

A Q/A classifier receives question–answer pairs hq,ai as input and judges whether the candidate answer a correctly re-
sponds to q. To design such a classifier, a set of examples of correct and incorrect pairs is needed. The learning algorithm
operates by comparing the question and answer contents in a separate fashion rather than just comparing a question with
its corresponding candidate answers. In a learning framework where kernel functions are deployed, given two pairs
p1 = hq1,a1i and p2 = hq2,a2i, a kernel function is defined as
Kðp1;p2Þ ¼ Ksðq1; q2Þ � Kaða1; a2Þ;
where Ks and Ka are kernel functions defined over questions and over answers, respectively, and � is a valid operation be-
tween kernels, e.g. sum or multiplication.



830 A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842
In Section 2, we described sequence and tree kernels, that can be applied to the sequential and tree representations of
questions and answers, respectively. In the following sections we describe several of such linguistically motivated
representations.

3.2. Representation via word and POS-tag sequences and trees

For a basic syntactic and semantic representation of both questions and answers, we adopt two different kernels: the Part
of Speech Sequence Kernel (POSSK) and the Word Sequence Kernel (WSK). The former is obtained by applying the string ker-
nel on the sequence of POS-tags of a question or answer. For example, given the sentence s0: What is autism?, the associated
POS sequence is WP AUX NN ? and possible subsequences extracted by POSSK are WP NN or WP AUX. Instead, WSK is applied
to word sequences of questions or answers; given s0, sample WSK substrings are: What is autism, What is, What autism, etc.

A more complete structure is the full parse tree (PT) of the sentence, that constitutes the input of the STK. For instance, the
STK accepts the following syntactic parse tree for s0:

3.3. Shallow semantic representation

Our semantic representation is motivated by the intuition – supported by computational linguistic evidence (Deschacht &
Moens, 2009) – that definitions are characterized by a latent semantic structure, thanks to which similar concepts result in
structurally similar formulations. Indeed, understanding whether a candidate answer is correct for a definition question
would imply knowing the correct definition and comparing the current candidate to the former. When such information
is unavailable (as in open domain QA) the learning algorithm must mimic the behavior of a human who does not know
the exact definition but checks whether such an answer is formulated as a ‘‘typical” definition and possibly whether answers
defining similar concepts are expressed in a similar way. A method to capture sentence structure is the use of predicate argu-
ment structures (Bilotti, Ogilvie, Callan, & Nyberg, 2007), described hereafter.

3.3.1. Predicate argument structures
Shallow approaches to semantic processing are making large strides in the direction of efficiently and effectively deriving

tacit semantic information from text. Large data resources, annotated with semantic information as in the FrameNet (John-
son & Fillmore, 2000) and ProbBank (Kingsbury & Palmer, 2002) projects, make it possible to design systems for the auto-
matic extraction of predicate argument structures (PASs) (Carreras & Màrquez, 2005). Such systems identify predicates
and their arguments in a sentence. For example, in the sentence, ‘John likes apples.’, the predicate is ‘likes’ whereas ‘John’
and ‘apples’, bear the semantic role labels of agent (A0) and theme (A1). The crucial property about semantic roles is that
regardless of the overt syntactic structure variation, the underlying predicates remain the same. For instance, given the sen-
tences ‘John found a bug in his code’ and ‘A bug was found in the code’, although ‘a bug’ is the object of the first sentence and
the subject of the second, it is the ‘theme’ in both sentences.

To represent PASs in the learning algorithm, we work with two types of trees: shallow semantic trees for SSTK and shal-
low semantic trees for PTK, both following PropBank definition, denoted by PASSSTK and PASPTK, respectively. These are auto-
matically generated by our system using the Semantic Role Labeling system described in Moschitti, Coppola, Giuglea, and
Basili (2005). As an example, let us consider sentence s1: ‘Autism is characterized by a broad spectrum of behavior that in-
cludes extreme inattention to surroundings and hypersensitivity to sound and other stimuli’, resulting in the PropBank anno-
tation a1: [A1 Autism] is [rel characterized] [A0 by a broad spectrum of behavior] [R�A0 that] [relincludes] [A1 extreme
inattention to surroundings and hypersensitivity to sound and other stimuli].

Such an annotation can be used to design a shallow semantic representation to be matched against other semantically
similar sentences, e.g. s2: ‘Panic disorder is characterized by unrealistic or excessive anxiety’, resulting in a2: [A1 Panic dis-
order] is [rel characterized] [A0 by unrealistic or excessive anxiety].

It can be observed that, although autism is a different disease from panic disorder, the structure of the two above defi-
nitions and the latent semantics they contain (inherent to behavior, disorder, anxiety) are similar. Indeed, s2 would appear
as a definition even to one who only knows what the definition of autism looks like.

The above annotation can be compactly represented by predicate argument structure (PAS) trees such as those in Fig. 3.
Here, we notice that the semantic similarity between sentences is explicitly visible in terms of common fragments extracted
by PTK from their respective PASs, as illustrated in Fig. 3c. An equivalent PAS representation (PASSSTK) compatible with SSTK
(see Section 2.2.2) was introduced in Moschitti et al. (2007) (see Fig. 4). Here, arguments follow a fixed ordering (i.e. rel, A0,
A1, A2, . . .) and a layer of SLOT nodes ‘‘artificially” allows SSTK to generate structures containing subsets of arguments.

3.3.2. PTK vs. SSTK applied to PAS
A comparison between SSTK and PTK suggests the following remarks: first, while PASPTK is semantically equivalent to

PASSSTK, PTK is able to extract a richer set of features which take gaps into account. This can be seen by comparing the first
two fragments of Fig. 3c and their equivalent in Fig. 4b.

Second, PASPTK does not need SLOT nodes to extract fragments containing argument subsets. This results in a visibly more
compact representation (compare Fig. 3b and Fig. 4a). Moreover, a more accurate computation of the matches between two
PASs is performed, since only nodes that are actually useful are represented.



PAS

A1

autism

rel

characterize

A0

spectrum

PAS

A0

behavior

R-A0

that

rel

characterize

A1

inattention

(a)

PAS

A1

disorder

rel

characterize

A0

anxiety

(b)

PAS

rel

characterize

PAS

A1 rel A0

PAS

A1 rel

characterize

PAS

rel

characterize

A0

rel

characterize

(c)

Fig. 3. Compact PASPTK structures of s1 (a) and s2 (b) and some fragments they have in common as produced by the PTK (c). Arguments are replaced with
their most important word (or semantic head) to reduce data sparseness.

PAS

SLOT

rel

characterize

SLOT

A0

anxiety

*

SLOT

A1

disorder

*

SLOT

null

. . .

(a)

PAS

SLOT

rel

characterize

SLOT

null

SLOT

null

. . .

PAS

SLOT

rel

SLOT

A0

SLOT

A1

. . .

(b)

Fig. 4. Compact PASSSTK of s2 (a) and some of its fragments produced by the SSTK (b).

A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842 831
Third, although the computational complexity of PTK is greater than the one of SSTK, the structures to which PTK is ap-
plied are much smaller than those input to the SSTK. This makes PTK more efficient than SSTK. We show in the experiment
section that the running time of PTK is much lower than that of SSTK (for both training and testing).

Next, another interesting difference between PTK and SSTK is that the latter requires an ordered sequence of arguments to
evaluate the number of argument subgroups (arguments are sorted before running the kernel). This implies a loss of the nat-
ural argument order. In contrast, PTK is based on subsequence kernels thus it naturally takes order into account; this is very
important as syntactic/semantic properties of predicates cannot be captured otherwise, e.g. passive and active forms have
the same argument order in PASSSTK.

Finally, PTK weighs predicate substructures based on their length; this also accounts for gaps, e.g. the sequence hA0, A1i is
more similar to hA0, A1, A-LOCi sequence than to hA0, A-LOC, A1i, which in turn produces a better match than hA0, A-LOC, A2,
A1i (cf. Section 2.1). This is another important property for modeling shallow semantic similarity.

3.4. YourQA, a baseline QA system

As mentioned earlier, our research focus is on non-factoid question answering, where the expected answer type mainly
consists of definitions or descriptions. Non-factoid answer types are among the most complex and interesting in the litera-
ture (Kazawa, Isozaki, & Maeda, 2001; Cui, Kan, & Chua, 2005) as finding them requires deeper linguistic processing than for
factoids.

Unfortunately, there has been limited interest this specific problem during official QA evaluation campaigns. TREC-10, the
2001 edition of the major QA evaluation campaign, remains to our knowledge the first and one of the few events where a
large number of description or definition questions was included in the test set to be addressed by participant systems (Voo-
rhees, 2001). In a question classification taxonomy designed to account for this edition, 138 questions were labeled as
‘‘description”.4 (Li & Roth, 2002). We use the answers to such questions as a baseline to test our learning models.
4 See l2r.cs.uiuc.edu/ cogcomp/Data/QA/QC/.



832 A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842
In order to experiment with classifiers and re-rankers, an ordered list of candidate answers to each question is needed
from an existing question answering system to obtain training instances for answer classifiers and evaluate their re-ranking
abilities. To this end, we used YourQA (Quarteroni & Manandhar, 2009), our Web-based question answering system, de-
signed to address both factoid and non-factoid questions and return answers alternatively from the Web or from a closed
corpus.

YourQA is organized according to three phases: question processing, document retrieval and answer extraction. During
the first phase, the query is classified according to a taxonomy of factoid or non-factoid answer types; the two top expected
answer types are estimated and the query is submitted to the underlying IR engine. In the document retrieval phase, the top
n documents found by the IR engine are retrieved and split into sentences. Finally, during answer extraction, a sentence-level
similarity metric combining lexical, syntactic and semantic criteria is applied to the query and to each retrieved document
sentence to identify candidate answer sentences; candidate answers are ordered by relevance to the query, while the IR en-
gine rank of the answer source document is used as a tie-breaking criterion.

In particular, based on the outcome of the question classifier, the answer extraction module determines whether the ex-
pected answer belongs to the factoid group, i.e. PERS, ORG, LOC, QTY, or TIME. If this is the case, the required factoid con-
tained in each candidate answer sentence is pinpointed down to the phrase or word level using relevant factoid QA
techniques, involving the use of Named Entity recognizers and the use of regular expressions. In the case of non-factoid ex-
pected answer types, other similarity criteria are adopted to compute the similarity between the candidate answers and the
original question; the final question–answer similarity metric sim(q,a) results from a weighted combination of four simular-
ity metrics, respectively based on bag-of-words (bow), n � grams (ng), syntactic chunks (chk), and head noun phrase-verb
phrase-prepositional phrase (NP-VP-PP) groups (hd):
5 Chu
the one
simðq; aÞ ¼ a	 bowðq; aÞ þ b	 ngðq; aÞ þ c	 chkðq; aÞ þ d	 hdðq; aÞ: ð1Þ
In particular, the bag-of-word similarity between the question q and a candidate answer a, bow(q,a), is the number of
matches between the question keywords qi, with i < jqj, and the candidate answer keywords aj, with j < jaj, normalized by

dividing by the number of question keywords, jqj: bowðq; aÞ ¼
P

i<jqj;j<jaj
matchðqi ;ajÞ
jqj . As in many cases the presence of question

keywords in a candidate answer is not a sufficient criterion to establish a strong similarity between the question and such

an answer, we resort to n-gram similarity, defining ngðq; aÞ ¼ jcommonNðq;aÞj
jngramsðqÞj , where commonN(q,a) is the number of shared n-

grams between q and a and ngrams(q) is the set of question n-grams. In the current version of YourQA, n = 2.
Furthermore, chunk similarity chk(q,a) is a function of the number of common sentence chunks5 between q and a, jcom-

monC(q,a)j.jcommonC(q,a)j is then divided by the total number of chunks in q; jchunksðqÞj : chkðq; aÞ ¼ jcommonCðq;aÞj
jchunksðqÞj , where com-

monC(q,a) is the number of shared chunks between q and a and chunks(q) is the set of question chunks. Finally, hd(q,a) is a
variation of chunk similarity, where the focus is on word groups composed by a noun phrase, a verb phrase and a prepositional
phrase (NP, VP and PP in short). Having identified the VPs in q and a that share the maximum number of tokens, named maxVPq

resp. maxVPa, we define hd(q,a) = l 	 HNP(q,a) + m 	 VP(q,a) + n 	 PP(q,a). Here, VP(q,a) is the number of tokens shared be-
tween maxVPq and maxVPa; HNP(q,a) is the number of common tokens between the head NPs associated with maxVPq and max-
VPa, respectively, and PP(q,a) is the number of common tokens between the PPs associated with maxVPq and maxVPa,
respectively; l, m and n are carefully chosen weights. The current version of YourQA uses l = m = 0.4, n = 0.2, while following
empirical observation of YourQA’s results, the a, b, c and d coefficients in (1) have been tuned to their current values of
a = 0.6, b = 0.2, c = d = 0.1.

It must be noted that while the sim(q,a) similarity metric in (1) takes as arguments a question q and one of its candidate
answers a – as done by the vast majority of QA systems – the classification and re-ranking model proposed in Section 3.1
takes question/answer pairs as arguments (or learning instances). More concretely, the classifiers process two pairs at a time,
hq1,a1i and hq2,a2i, and compare q1 with q2 and a1 with a2 according to different functions, finally producing a combined sim-
ilarity score. Such a comparison allows to determine whether an unknown question/answer pair contains a correct answer or
not by assessing its distance from another question/answer pair with a known label. In particular, an unlabeled pair hq2,a2i
will be processed so that rather than ‘‘guessing” correctness based on words or structures shared by q2 and a2, both q2 and a2

will be compared to their correspondent components q1 and a1 of the labeled pair hq1,a1i on the grounds of such words or
structures.

To exemplify this, if q1 is ‘‘What is autism?” and the candidate answers are a1 ‘‘Autism may be defined as a mental dis-
ease” vs a01 ‘‘Autism affects many people”, comparison with the correct pair formed by q2 ‘‘What is a golden parachute?” and
a2 ‘‘A golden parachute may be defined as a manager’s privilege” will induce the kernel method to prefer a1 to a01. Indeed, a1

has a similar wording and structure to a2, hence hq1,a1i will get a higher score than hq1; a
0
1i using the kernel method; in con-

trast, this would not be the case using a similarity score matching q1 to a1 resp. a01 as both a1 and a01 contain the q1 keyword
‘‘autism”.

This intuitively explains why even a bag-of-words kernel adjusting its weights on question/answer pairs has a better
chance to produce better results than a bag-of-words question/answer similarity (or a variation thereof as implemented
nks can be defined as groups of consecutive, semantically connected words in the sentence, which can be obtained using a shallow parser (in our case,
provided by the OpenNLP chunker at http://opennlp.sourceforge.net).

http://opennlp.sourceforge.net


A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842 833
by YourQA). This is experimentally proven in Sections 4.3 and 4.4. The above is even more true in the case of the tf*idf model
implemented by the underlying document retrieval engine, as the latter similarity criterion is document-wide, as described
in Section 4.4.

3.5. The YourQA corpora: WEB-QA and TREC-QA

In order to obtain our answer corpora, during the Document Retrieval phase, YourQA worked alternatively with two IR
engines: Google,6 to retrieve Web documents, and Lucene,7 to retrieve news articles from the latest corpus released for
the TREC competition, AQUAINT 6.8 The two corpora are henceforth named WEB-QA and TREC-QA, respectively.9 The
WEB-QA corpus was especially interesting to test the abilities of a fully Web-based open domain QA system, a particularly
challenging task. We also wanted to assess whether creating our relational data representations based on the use of ‘‘off-the-
shelf” parsers and semantic role labelers (trained on ‘‘clean” data) on Web data would yield effective learning algorithms or
not. However, the TREC-QA corpus was necessary to align with the methodology followed by traditional QA system evalu-
ation drawn from IR on a closed corpus.

The answers returned by YourQA are in the form of sentences with relevant words or phrases highlighted and surrounded
by their original passage. This choice is due to the fact that the system is intended to provide a context to the exact answer;
moreover, our focus on non-factoids made it reasonable to provide answers in the form of sentences (Quarteroni & Manan-
dhar, 2009). Each sentence of the top 20 paragraphs returned by YourQA was manually evaluated by two annotators based
on whether or not it contained a correct answer to the corresponding question. The inter-annotator agreement was judged
substantial (Cohen j = 0.635).

To simplify the classification task, we isolated for each paragraph the sentence with the maximal judgment and labeled it
as a positive instance if it answered the question, negative otherwise.10 For instance, given the question ‘What are inverte-
brates?’, the sentence ‘At least 99% of all animal species are invertebrates’ was labeled �1, while ‘Invertebrates are animals
without backbones’ was labeled +1. The resulting WEB-QA corpus contains 1309 sentences, 416 of which are positive; the
TREC-QA corpus contains 2256 sentences, 261 of which are positive.11 The difference in positive rate (31.8% and 11.6%,
respectively) is due to the fact that finding an answer to a question is simpler on the Web than on the smaller TREC corpus.
4. Experiments

The aim of our experiments is twofold: on one hand, we demonstrate that our supervised approach applying kernels to
pairs of questions and answers is effective for automatically learning their relation. On the other hand, we show that se-
quence, syntactic and shallow semantic tree kernels provide important linguistic information to describe the above-men-
tioned relations. As a general result, our models can successfully re-rank the output of a basic question answering system
such as YourQA.

In more detail, we test the kernel functions elaborated for question and answer representation against the WEB-QA and
TREC-QA corpora described in Section 3.5. We begin our illustration by discussing our experimental setup (Section 4.1).
Then, we carry out a comparative analysis in terms of accuracy and efficiency of two different kernels for predicate argument
structures: the partial tree kernel (PTK) and the shallow semantic tree kernel (SSTK), respectively introduced in Sections
2.2.3 and 2.2.2. Next, we focus on the accuracy of different classifiers on both datasets in order to select the most promising
combinations for complex QA (Section 4.3). Our results show that our POSSK jointly used with PASPTK and STK highly im-
proves on BOW. We finally discuss the impact of the above classifiers in re-ranking YourQA’s initial results (Section 4.4).

4.1. Experimental setup

To run our experiments, we implement the following functions:


 the BOW and POS linear kernels;

 the WSK and POSSK sequence kernels;

 the STK on syntactic parse trees, derived automatically via the Charniak parser (Charniak, 2000);

 the SSTK and PTK on Predicate Argument Structures, derived automatically via the Semantic Role Labeling system

described in Moschitti et al. (2005).
6
google.com.

7
lucene.apache.org.

8
trec.nist.gov/data/qa.

9 Available at: disi.unitn.it/ silviaq/resources.html.
10 Positive judgments ranged from 3 to 5 to reflect increasing conciseness and correctness of the answers, while negative ones ranged from 1 to 2. In our

experiments, these groups of judgments are further remapped to +1 resp. �1.
11 It can be noted that the number of instances in the WEB-QA and TREC-QA corpora do not amount to exactly 138 times 20 answer: indeed, this is due to the

fact that not only the IR engine does not always find 20 relevant documents for the query, but also that the QA system does not always select as many as 20
answer paragraphs due to the low similarity score the latter may achieve with respect to the query.



Fig. 5. Impact of PASPTK (PTK) and PASSSTK (SSTK) on answer classification.

834 A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842
Finally, we implement combinations of the above kernels in the SVM-light-TK toolkit,12 that supports the design of new
functions in SVM-light (Joachims, 1999).

Since answers often contain more than one PAS (see Fig. 3a), we sum PTK (or SSTK) applied to all pairs P1 	 P2, where P1

and P2 are the set of PASs of the first two answers. More formally, let Pt and Pt0 be the sets of PASs extracted from text frag-
ments t and t

0
by the PTK; the resulting kernel is
12 ava
13 Thi

exampl
positive

14 Pro
KallðPt ; Pt0 Þ ¼
X
p2Pt

X
p02Pt0

PTKðp;p0Þ:
Although different kernels can be used for questions and for answers, we use (and combine) the same sets of kernels on both
questions and answers; the only exception are PASPTK and PASSSTK, that are only evaluated on answers.

We train and test our classifiers and answer re-rankers on the two datasets described in Section 3.5. The accuracy of our
classifiers is evaluated in terms of F1 score, whereas the QA system performance is measured in terms of Mean Reciprocal
Rank (MRR). This is defined as: MRR ¼ 1

n

Pn
i¼1

1
ranki

, where n is the number of questions in the corpus and ranki is the rank of the
first correct answer to question i. We consider the top 5 available ranks returned by YourQA in MRR computation. Moreover,
each reported value in our figures refers to the average over 5 different samples using five-fold cross-validation.

4.2. PTK vs. SSTK: performance and efficiency

In a first set of experiments, we compare the performance of PTK with respect to SSTK for predicate argument structures.
We compute the classification accuracy of SVMs by using either the PASSSTK or PASPTK data representations alone on both the
WEB-QA and TREC-QA datasets. Fig. 5 shows the obtained F1 (average on five folds) according to different values of the cost-
factor parameter used for learning: higher values of the latter increase the cost of mistaking the positive examples, in turn
increasing classifier Recall.13 We note that while on WEB-QA the models are very close, PTK is slightly better than SSTK on
TREC-QA. The fact that both classifiers achieve much higher F1 on WEB-QA is not surprising, as this dataset contains many
more correct answers (balanced classification problems are generally easier to solve).

Another interesting test concerns kernel efficiency. SSTK runs on large structures containing as many slots as the number
of possible predicate argument types. This affects both memory occupancy and kernel computation speed. In contrast, PTK is
able to process the same information with much smaller structures. To test the above characteristics, we divide the training
data into nine bins of increasing size (with a step of 200 instances between two contiguous bins) and we measure the train-
ing and test time14 for each bin. Fig. 6 shows that in both the training and test phases PTK is much faster than SSTK. In training,
ilable at dit.unitn.it/moschitti/.
s parameter (-j option in SVM-light) multiplies the summation of the positive slack variables

P
in
þ
i , where ni is roughly the error in mistaking the

e xi. Since such summation is added to the objective functions of SVM optimization problem, an optimal solution tends to reduce the mistakes of
examples.

cessing time in seconds of a Mac-Book Pro 2.4 Ghz.



Fig. 6. Efficiency of PTK and SSTK.

A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842 835
PTK is 40 times faster, making the experimentation of SVMs with large datasets feasible. This is an interesting result since for
SSTK as well as for PTK we use the fast algorithms proposed in Moschitti (2006), Moschitti (2006), typically denoting a linear
average running time.

4.3. Results for question–answer classification

In these experiments, we test different kernels and some of their most promising combinations. Since the nature of the
applied kernels strongly depends on the data they operate on, we simplify our notation by only using the name of the rep-
resentation instead of the more appropriate name combination (representation and kernel). In other words, we use BOW,
POS and PT to indicate that a linear kernel is applied to bag-of-words and POS vectors and the syntactic tree kernel is applied
to parse tree (PT). In the other notations, i.e. POSSK, PASSSTK and PASPTK, the subscript indicates the applied kernel: this sug-
gests that SK is applied to POS sequences and that SSTK and PTK are applied to the PAS structures. The only exception is WSK,
indicating the Word Sequence Kernel, i.e. a string kernel applied to word sequences.

To produce kernel combinations, we use the sum between kernels15 since this yields the joint feature space of the individ-
ual kernels (Shawe-Taylor & Cristianini, 2004).

First, we compute the F1 of our answer classifiers for different values of the cost-factor parameter adjusting the ratio be-
tween Precision and Recall; this is in order to verify whether any difference between models is systematically observed
regardless of the classifier parameters (Section 4.3.1). Furthermore, we examine the differences between models for a fixed
value of the cost-factor parameter (estimated from a held-out set) to measure any significant difference (Section 4.3.2). Fi-
nally, to complete our analysis, we compute the Precision–Recall curves for a number of models on a fixed fold of our cross-
validation splits (Section 4.3.3).

4.3.1. F1 curves
Fig. 7 shows the F1-plots of several kernels16 according to different values of the above-mentioned cost-factor parameter.
First, we note that BOW achieves very high accuracy, comparable to the accuracy of PT; this is surprising when consid-

ering that at test time, instances of the training models (e.g. support vectors) are compared to different test examples since
questions cannot be shared between training and test set (indeed, sharing questions between test and training sets would be
an error from a machine learning viewpoint as we cannot expect new questions to be identical to those in the training set).
Thus, we would expect answer wordings to be different and of low contribution to generalize rules for answer classification.
However, error analysis reveals a number of common patterns in the answers due to typical Web page phrasings that indi-
cate if a retrieved passage is an incorrect answer, e.g. Learn more about X. Although the ability to detect these patterns is
15 All additive kernels are normalized to have a similarity score between 0 and 1, i.e. K0ðX1;X2Þ ¼ KðX1 ;X2 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðX1 ;X1 Þ	KðX2 ;X2 Þ
p .

16 In order to meet a trade-off between the readability of the plots and the representation of all interesting systems, we always give the priority to the top
accurate systems.



Fig. 7. Impact of different feature sets on the WEB-QA dataset.

836 A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842
beneficial for a QA system as it improves its overall accuracy, it is slightly misleading for the study that we are carrying out.
This further motivates our experiments with the TREC-QA dataset, which is cleaner from a linguistic viewpoint and also
more complex from a QA perspective as it contains fewer positive instances.

Fig. 7 also shows that the BOW+PT combination improves on both individual models; however, POS+PT produces a lower
F1 than PT alone, indicating that POS does not provide useful information for this dataset. Furthermore, WSK improves on
BOW and is further improved by WSK+PT, demonstrating that word sequences and parse trees are very relevant for this task.
Finally, both PASSSTK and PASPTK improve on previous models, yielding the highest result (PT+WSK+ PASPTK). These findings
are interesting as they suggest that the syntactic information provided by STK and the semantic information brought by WSK
and PASPTK (or even PASSSTK) considerably improves on BOW.

In summary, our results for WEB-QA strengthen the expectation that BOW may be outperformed by structural informa-
tion in the TREC-QA dataset, where the task is more complex and the data is less noisy. To this purpose, Fig. 8 shows the plots
Fig. 8. Impact of different feature sets on the TREC-QA dataset.



Table 1
F1 ± std. dev. of the question/answer classifier using several kernels on the WEB corpus.

WEB question/answer classification corpus

BOW POS POSSK WSK PT PASSSTK PASPTK

65.3 ± 2.9 56.8 ± 0.8 62.5 ± 2.3 65.7 ± 6.0 65.1 ± 3.9 52.9 ± 1.7 50.8 ± 1.2

BOW+POS BOW+PT POSSK+PT WSK+PT PT+PASSSTK PT+PASPTK

+WSK +WSK
63.7 ± 1.6 66.0 ± 2.7 65.3 ± 2.4 66.6 ± 3.0 68.0 ± 2.7 68.2 ± 4.3

A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842 837
of different classification models on the TREC-QA dataset. An initial glance suggests that the F1 of all models is much lower
than for the WEB-QA dataset. Indeed, BOW shows the lowest accuracy and also the accuracy of its combination with PT is
lower than the one of PT alone. Interestingly, this time POS seems helpful since its combination with PT improves on PT
alone; however, again, summing BOW to POS+PT produces a decrease. Moreover, SK is beneficial for exploiting POS informa-
tion as POSSK+PT improves on POS+PT, yet PAS adds further useful information as the best models are POSSK+PT+PASPTK and
POSSK+PT+PASSSTK.

In order to gain better numerical insights on our results, we provide further analysis in the following section, where we
compare the accuracy of different models at a fixed cost-factor parameter.

4.3.2. Pointwise estimation and significance of results
The plots representing F1 vs. the cost-factor parameter suggest that the value of such parameter maximizing F1 can be

reliably estimated. Thus, for each model, we selected the minimum cost-factor associated with maximum F1 value on a held-
out set.17 This provides a single performance index for each system, that can be used to compare the five different models
obtained via cross-validation using the paired t-test.

Table 1 reports the average F1 ± the standard deviation over five folds achieved by the different kernels on the WEB-QA
corpus. When examining our results, we note that:


 BOW achieves very high accuracy on the WEB dataset, comparable to the one produced by PT, i.e. 65.3 vs. 65.1;

 the BOW+PT combination reaches 66.0 accuracy, improving on both BOW and PT alone; however, BOW+POS pro-

duces a lower F1, i.e. 63.7, than PT+BOW, indicating that POS does not provide useful information for this dataset;

 WSK achieves 65.7 accuracy, thus improving on BOW; furthermore, WSK is enhanced by WSK+PT (66.6). This dem-

onstrates that word sequences and parse trees are very relevant for this task;

 finally, the highest performing combinations of features are PASSSTK+WSK+BOW and PASPTK+WSK+BOW, which

reach 68.2 accuracy, further improving on the already high performance of BOW as a standalone (65.3).

Despite the observed improvement on BOW in terms of F1 averaged over five folds, none of the results achieved on the
WEB-QA corpus have registered a sufficiently small p value to reach statistical significance in the t-test. Indeed, even the
most performing combinations of syntactic and shallow semantic information, exhibiting an improvement up to 3 points
in F1 on the BOW feature, are affected by the fact that the corpus contains a number of patterns indicating wrong answers
that – as stated earlier – can easily be captured by word-level features only. For this reason, we now focus on the results
obtained on the TREC-QA corpus, reported in Table 2. A comparative analysis with respect to Table 1 suggests that:


 as observed in the curves, we can immediately register that the F1 of all models is much lower than for the WEB-QA
dataset, due to the presence of fewer positive instances in the training corpus;


 BOW denotes the lowest accuracy (a F1 of 24.2), and also the accuracy of its combination with PT (30.2) is lower
than the accuracy of PT alone (33.1);


 Sequence Kernels are beneficial for exploiting POS information, as POSSK+PT reaches 36.4, improving on POS (99%
significance, p < 0.01) and PT.


 Finally, Predicate Argument Structures add further information, as the best model is POSSK+PT+PASPTK. The latter
improves on BOW from 24.2 to 39.1, i.e. by 63%; this result is 95% significant (p < 0.05).

Our first conclusion is that on this ‘‘cleaner” corpus, BOW does not prove very relevant to learn re-ranking functions from
examples; while it is useful to establish the initial ranking by measuring the similarity between question and answer, it is
almost irrelevant to capture typical rules that suggest whether a description is valid or not. Indeed, since there is no trace of
test questions in the training set, their words as well as those of candidate answers are different. Most crucially, since a ques-
tion with its answer set originates training pairs with a large word overlap, BOW tends to overfit.

Secondly, the results show that PT is important to detect typical description patterns, however POS sequences provide
additional information since they are less sparse than tree fragments. Such patterns improve on the bag of POS-tags feature
17 It turned out that a value of 10 is roughly the best for any kernel.



Table 2
F1 ± std. dev. of the question/answer classifier using several kernels on the TREC-QA corpus.

TREC question/answer classification corpus

BOW POS POSSK WSK PT PASSSTK PASPTK

24.2 ± 5.0 26.5 ± 7.9 31.6 ± 6.8 4.0 ± 4.2 33.1 ± 3.8 21.8 ± 3.7 23.6 ± 4.7

BOW+POS BOW+PT POSSK+PT WSK+PT PT+PASSSTK PT+PASPTK

+POSSK +POSSK

31.9 ± 7.8 30.2 ± 5.3 36.4 ± 9.3 23.7 ± 3.9 36.2 ± 7.1 39.1 ± 6.9

838 A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842
by about 4%. This is a relevant result considering that in standard text classification bigrams or trigrams are usually
ineffective.

Third, although POSSK+PT generates a very rich feature set, consisting of POS patterns provided by SK and tree fragments
generated by STK, PASPTK is still capable to improve on the POSSK+PT combination by about 3% in F1. This suggests that shal-
low semantics can be very useful to detect whether an answer is well formed and related to a question.

Furthermore, error analysis reveals that PAS can provide patterns like:


 A1(X) R-A1(that) rel(result) A1(Y) and

 A1(X) rel(characterize) A0(Y),

where X and Y need not necessarily be matched. Finally, the best model, POSSK+PT+PASPTK, improves on BOW by 63%; as
mentioned above, this result is significant at 95% according to the t-test. This is strong evidence showing that complex nat-
ural language tasks require advanced linguistic information that should be exploited by powerful algorithms such as SVMs,
and using effective feature engineering techniques such as kernel methods.

4.3.3. Precision/Recall curves
To better study the benefit of the proposed linguistic structures, we also report Precision/Recall curves. Fig. 9 displays the

curves of some interesting kernels for one of the five folds of the WEB-QA dataset. As expected, BOW shows the lowest
curves; moreover, WSK, able to exploit n-grams (with gaps), produces very high curves when summed to PT. In general,
all kernel combinations tend to achieve only slightly higher results than BOW. Again, the cause is the high contribution
of BOW, which prevents other models from clearly emerging.

The results on TREC-QA, reported in Fig. 10 (for one of the five dataset folds), are more interesting. Here, the contribution
of BOW remains very low and thus the difference in accuracy with the other linguistic models is more evident. In particular,
POSSK+PT+PASPTK, that encodes the most advanced syntactic and semantic information, shows a very high curve outperform-
ing all the others.
Fig. 9. Precision/Recall curves of some kernel combinations over one fold of the WEB dataset.



Fig. 10. Precision/Recall curves of some kernel combinations over one fold of the TREC dataset.

A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842 839
In summary, the Precision/Recall figures further corroborate our observations concerning classification accuracy and the
role of structural data representations in complex question answering.

4.4. Answer re-ranking

The obvious application of an answer classifier consists in re-ranking the initial answers extracted by a baseline question
answering system: indeed, re-ranking can be regarded as the real testbed of any QA classifier. We have been running a num-
ber of re-ranking tests by taking the top classifiers obtained on the WEB-QA and TREC-QA corpus, respectively, and using
their binary output to rearrange the answers returned by the YourQA system. Our re-ranking algorithm starts from the
top of the answer list and leaves the corresponding answer’s rank unchanged if the answer is classified as correct by the bin-
ary classifier; otherwise, the rank is pushed down, until a lower ranked incorrect answer is found.

In order to compare the above re-ranking strategy to a reasonable baseline, we first measure the Q/A classification ability
of YourQA and its underlying IR engine by examining the F1 and MRR of the answers corresponding to the top five docu-
ments returned by the IR engine and the top five answers as ranked by YourQA. In particular, the classification accuracy
of the above systems is computed by labeling each of the five retrieved answers as correct.

Our results, reported in the Classifier F1 row of Table 3, show that the accuracy of YourQA is slightly higher than the IR
accuracy. Indeed, in the WEB-QA dataset, the IR engine (Google) is outperformed by YourQA since its ranks are based on
whole documents, not on single passages. Hence, Google may rank a document containing several sparsely distributed ques-
tion words higher than documents with several words concentrated in one passage, which are more interesting. This is re-
flected by the fact that, as visible in the MRR rows of Table 3, the ranking deriving naturally from YourQA’s answer extractor
improves on the original IR ranking by gaining 7 points in MRR on the WEB-QA corpus (56.2 vs. 49.0). Furthermore, on the
TREC-QA corpus, YourQA almost doubles the IR engine (Lucene) MRR, taking it from 16.2 to 30.3. This result can be explained
Table 3
Classifier F1 and MRR@5 (±std. dev.) of the IR engine (Google resp. Lucene), YourQA, the BOW re-ranker and the best re-ranker on the WEB-QA resp. TREC-QA
datasets.

IR engine YourQA Re-ranker (BOW) Re-ranker (Best)

WEB-QA
Classifier F1 35.9 ± 4.0 36.8 ± 3.6 65.3 ± 2.9 68.6 ± 2.3
MRR 49.0 ± 3.8 56.2 ± 3.2 77.4 ± 2.7 81.1 ± 2.1

TREC-QA
Classifier F1 21.3 ± 1.0 22.9 ± 1.5 24.2 ± 3.1 39.1 ± 6.9
MRR 16.2 ± 3.4 30.3 ± 8.9 32.8 ± 7.7 34.2 ± 10.6



840 A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842
by the complexity of the answer extraction task, as fewer documents are relevant to the question in the TREC-QA corpus and
for such documents, the emphasis on Precision provided by the YourQA answer extractor yields an increase in answer
relevance.

By now considering the performance of our best Q/A classifiers (‘‘Re-ranker (Best)” column), learned in Section 4, we can
observe that the latter greatly outperform the F1 of YourQA, i.e. 68.6 vs. 36.8 (on WEB-QA) and 39.0 vs. 22.9 (on TREC-QA).
This suggests that more information is exploited by the re-ranking classifier. Indeed, when the re-ranking algorithm is ap-
plied, YourQA achieves an MRR of 81.1%, i.e. a 45% improvement, on WEB-QA. On the TREC-QA dataset, the IR engine is also
outperformed by YourQA and the re-ranker produces a further improvement by about 13%. Such a smaller difference com-
pared to the Web re-ranker depends on the lower classification accuracy of the re-ranker, due in turn to the higher complex-
ity of the TREC dataset.

It may be noted that having proven that re-ranking is effective in improving QA systems does not imply that structural
features are useful. To show this, we need to compare a re-ranker based on BOW against those based on linguistic structures.
The BOW result is reported in Table 3 (‘‘Re-ranker (BOW)” column). It shows that the F1 (Classifier F1 row) of the BOW clas-
sifier is lower than that of the ‘‘best” classifier in both the WEB-QA and TREC-QA cases: on the TREC-QA dataset, the F1 of the
BOW classifier is 24.2 ± 3.1 while it is 39.1 ± 6.9 for the ‘‘best” classifier. This translates into a slightly lower MRR (MRR rows)
obtained with the BOW re-ranker in comparison to the re-ranker using structural features. We can therefore conclude that
not only the simple fact of using an answer re-ranker is beneficial in terms of answer accuracy, but also that tree kernels
applied on structural features are yet more effective than simpler bag-of-word features in identifying correct answers to
complex questions.

4.4.1. Discussion
It should be noted that re-ranking approaches more elaborate than ours can be applied, such as a ‘‘true” re-ranking based

on pairs of instances (Collins & Duffy, 2002; Shen & Joshi, 2003). Although this should in principle produce better results, it
also has the drawback of doubling the number of structures required to represent such pairs of pairs. Since we have carried
out a study on about twenty-five different kernels, we preferred to keep our models simpler.

A second option to improve our methods while keeping the model complexity low would be the use of the classifier score
to establish the relative ranking between different answers classified as correct. One problem with this approach is that SVM
score, i.e. the margin of the classifying point, is not a probability. This means that the relative distance between two scores is
not a good indicator of the reliability of a classification over the other. For example, for a given question, a difference of 0.5
between the scores of two candidate answers may not indicate a high reliability for the higher-scored classification, whereas
for another question a difference of 0.005 may indicate very high reliability for the higher-scored classification.

This problem is very critical in our context since the rankers (i.e. the classifiers) may reach low F1, e.g. about 40% for TREC
dataset. This causes both a high variability and a limited reliability of results. Under such conditions, re-ranking should be
carefully carried out. The status quo, i.e. the initial ranking provided by the basic QA system, should only be changed when
there is strong indication of a misplaced answer (i.e. incorrect answer), as, for example, can be an exceeded classification
threshold. Thus, we argue that our heuristic approach of pushing answers down in the ranking when they are labeled as
incorrect is more conservative and has a higher chance to improve the basic QA.

A possible alternative would be the conversion of SVM scores into actual probabilities, however once again these would
not be reliable due to the scarcity of available training data. A more effective solution would be the adoption of meta-clas-
sifiers to decide whether the current scores/probabilities within a given context suggest a valuable change in the position of
the target answer. The above approaches are interesting research directions, albeit beyond the aim of this paper.
5. Related work

Early work on the use of syntax and semantics in Information Retrieval was carried out in Voorhees (1993), Voorhees
(1994), mano (1999) and in Strzalkowski et al. (1998), Strzalkowski, Carballo, Karlgren, Tapanainen, and Jarvinen (1999).
The results showed that the use of advanced linguistic information was not effective for document retrieval. In contrast,
question answering work shows that semantics and syntax are essential to retrieve punctual answers, e.g (Hickl et al.,
2006; Voorhees, 2004; Small et al., 2004). However, successful approaches in TREC-style systems were based on several
interconnected modules exploiting complex heuristics and fine tuning. The effective combination of such modules strongly
depended on manual setting, which was often not disclosed.

In our study, we avoid this problem by focusing on a single phase of question answering, namely answer extraction. The
latter can be seen as a typical text categorization task, i.e. the classification of pairs of text fragments constituted by question
and answer. Since some types of questions can be solved with relatively simple representations, i.e. without the use of syn-
tactic and semantic structures, we focus on the more complex task of processing description (often called definition) ques-
tions (Blair-Goldensohn, McKeown, & Schlaikjer, 2004; Chen et al., 2006; Shen & Lapata, 2007; Bilotti et al., 2007; Moschitti
et al., 2007; Surdeanu, Ciaramita, & Zaragoza, 2008).

In Chen et al. (2006), answer ranks were computed based on the probabilities of bigram language models generating can-
didate answers; language modeling was also applied to definitional QA in Cui et al. (2005) to learn soft pattern models based
on bigrams. Other related work, such as Sasaki (2005), Suzuki et al. (2002), was also very tied to bag-of-words features.



A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842 841
Our approach is different from the above in that we attempt to capture structural information, which has proven to be
very effective in our experiments, yielding a very high MRR. In contrast to Echihabi and Marcu (2003), our approach does
not require the creation of ad-hoc joint question–answer representations. In particular, we compare to previous work (Shen
& Lapata, 2007; Bilotti et al., 2007; Moschitti et al., 2007; Surdeanu et al., 2008) using predicate argument structures for re-
ranking candidate answer lists and reporting significant improvement. To our knowledge, our work in Moschitti et al. (2007)
was the first to use kernel methods for answer re-ranking. We used a syntactic tree kernel and a shallow semantic tree kernel
based on predicate argument structures for the design of answer re-rankers. However, as we only experimented with a ques-
tion answering corpus derived from Web documents and the reported improvement, although significant, did not justify the
adoption of computationally expensive approaches like SVMs and kernel methods. In this paper, developing with respect to
subsequent work (Moschitti & Quarteroni, 2008), we have experimented with many more kernel types and with both Web
and TREC documents and we could show that the potential improvement reachable by our approach is much higher (about
63% over BOW). Moreover, we have designed a faster kernel for the processing of semantic information.

In summary, the main property of our approach with respect to previous work adopting syntactic and semantic structures
is that we can define the latter without requiring a thorough manual linguistic analysis. We do not carry out feature engi-
neering since we simply let kernel functions generate a large feature set (tree fragments or substrings) that represents
semantic/syntactic information effectively. The feasibility of this approach is due to the SVM theory which makes the learn-
ing algorithm robust to many irrelevant features (often produced by NLP errors).

6. Conclusions

We have approached answer selection, the most complex phase of a QA system. To solve this task, typical approaches use
unsupervised methods that involve computing the similarity between query and answer in terms of lexical, syntactic,
semantic or logic representations. In contrast, we study supervised discriminative models that learn to select (rank) answers
from examples of question and answer pairs, where the representation of the pair is implicitly provided by kernel combina-
tions applied to each of its components. To reduce the burden of manual annotation of such pairs, we use kernel functions
applied to syntactic/semantic structures as powerful generalization methods. The combination of the generalization proper-
ties of such structures with the exponential space of substructures generated by kernel functions provides an advanced form
of back-off model in a discriminative setting, that we have proved to be effective.

In particular, we use POS-tag sequences, syntactic parse trees and predicate argument structures (PASs) along with se-
quence kernels and syntactic and shallow semantic tree kernels. Extensive experiments on two different corpora that we
have collected and made available show that: (i) on TREC data, the improvement on the bag-of-words feature (BOW) is very
high (about 63% in F1 score) confirming that our kernels/structures provide the right level of generalization; (ii) the partial
tree kernel (PTK) for processing PASs is efficient and effective and can be practically used to design answer re-ranking mod-
els; and (iii) our best question/answer classifier, used as a re-ranker, significantly improves the QA system MRR, confirming
its promising applicability.

Regarding PAS, deeper analysis reveals that PTK can learn definition patterns such as: A1(X) R-A1(that) rel(result)
A1(Y) (e.g. ‘German measles, that result in red marks on the skin, are a common disease’) and:

A1(X) rel(characterize) A0(Y) (e.g. ‘Autism is characterized by the inability to relate to other people’).
We believe that these are strong arguments in favor of the exploitation of advanced linguistic information by using pow-

erful discriminative models such as SVMs and effective feature engineering techniques such as kernel methods in challeng-
ing natural language tasks.

In the future, we would like to experiment with our model on larger and different datasets and compare with (or better
re-rank) more advanced QA systems. Moreover, an interesting open problem is how to jointly exploit the set of PASs of a
sentence/paragraph in a more effective and compositional semantics-driven approach.

References

Allan, J. (2000). Natural language processing for information retrieval. In NAACL/ANLP (tutorial notes).
Bilotti, M., Ogilvie, P., Callan, J., Nyberg, E. (2007). Structured retrieval for question answering. In Proceedings of ACM SIGIR.
Blair-Goldensohn, S., McKeown, K. R., & Schlaikjer, A. H. (2004). Answering definitional questions: A hybrid approach. AAAI Press.
Cancedda, N., Gaussier, E., Goutte, C., & Renders, J. M. (2003). Word sequence kernels. Journal of Machine Learning Research, 1533-7928, 3, 1059–1082.
Carreras, X., Màrquez, L. (2005). Introduction to the CoNLL shared task: SRL. In Proceedings of CoNLL.
Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of NAACL.
Chen, Y., Zhou, M., Wang, S. (2006). Reranking answers from definitional QA using language models. In Proceedings of ACL.
Collins, M., Duffy, N. (2002). New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In Proceedings of

ACL.
Collins-Thompson, K., Callan, J., Terra, E., Clarke, C. L. (2004). The effect of document retrieval quality on factoid QA performance. In Proceedings of SIGIR.
Cui, H., Kan, M., & Chua, T. (2005). Generic soft pattern models for definitional QA. In Proceedings of SIGIR. Salvador, Brazil: ACM.
Culotta, A., Sorensen, (2004). Dependency tree kernels for relation extraction. In Proceedings of ACL04, Barcelona, Spain (pp. 423–429).
Cumby, C., Roth, D. (2003). Kernel methods for relational learning. In Proceedings of ICML, Washington, DC, USA (pp. 107–114).
Deschacht, K., Moens, M. -F. (2009). Using the latent words language model for semi-supervised semantic role labeling. In Proceedings of EMNLP.
Echihabi, A., Marcu, D. (2003). A noisy-channel approach to question answering. In Proceedings of ACL.
Hickl, A., Williams, J., Bensley, J., Roberts, K., Shi, Y., Rink, B. (2006). Question answering with LCC CHAUCER at TREC 2006. In Proceedings of TREC.
Hovy, E., Hermjakob, U., Lin, C. (2001). The use of external knowledge of factoid QA. In Proceedings of TREC, Gaithersburg, MD, USA.
Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, A. Smola (Eds.), Advances in kernel methods.



842 A. Moschitti, S. Quarteroni / Information Processing and Management 47 (2011) 825–842
Johnson, C. R., Fillmore, C. J. (2000). The FrameNet tagset for frame-semantic and syntactic coding of predicate-argument structures. In Proceedings of ANLP-
NAACL (pp. 56–62).

Kazama, J., Torisawa, K. (2005). Speeding up training with tree kernels for node relation labeling. In Proceedings of EMNLP, Toronto, Canada (pp. 137–144).
Kazawa, H., Isozaki, H., Maeda, E. (2001). NTT question answering system in TREC 2001. In Proceedings of TREC.
Kingsbury, P., Palmer, M. (2002). From treebank to PropBank. In Proceedings of LREC.
Kudo, T., Matsumoto, Y. (2003). Fast methods for kernel-based text analysis. In E. Hinrichs, D. Roth (Eds.), Proceedings of ACL (pp. 24–31).
Kudo, T., Suzuki, J., Isozaki, H. (2005). Boosting-based parse re-ranking with subtree features. In Proceedings of ACL, Ann Arbor, MI, USA.
Li, X., Roth, D. (2002). Learning question classifiers. In Proceedings of ACL.
Moschitti, A. (2006). Efficient convolution kernels for dependency and constituent syntactic trees. In Proceedings of ECML.
Moschitti, A. (2006). Making tree kernels practical for natural language learning. In Proceedings of EACL2006.
Moschitti, A., Quarteroni, S. (2008). Kernels on linguistic structures for answer extraction. In Proceedings of ACL, Columbus, OH, USA.
Moschitti, A., Coppola, B., Giuglea, A., Basili, R. (2005). Hierarchical semantic role labeling. In Proceedings of the CoNLL 2005 shared task.
Moschitti, A., Quarteroni, S., Basili, R., Manandhar, S. (2007). Exploiting syntactic and shallow semantic kernels for question/answer classification. In

Proceedings of ACL, Prague, Czech Republic.
Quarteroni, S., & Manandhar, S. (2009). Designing an interactive open domain question answering system. Natural Language Engineering, 15(1), 73–95.
Sasaki, Y. (2005). Question answering as question-biased term extraction: A new approach toward multilingual QA. In Proceedings of ACL (pp. 215–222).
Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge University Press.
Shen, L., Joshi, A. K. (2003). An SVM-based voting algorithm with application to parse reranking. In Proceedings of CoNLL HLT-NAACL 2003 (pp. 9–16).
Shen, D., Lapata, M. (2007). Using semantic roles to improve question answering. In Proceedings of EMNLP-CoNLL.
Small, S., Strzalkowski, T., Liu, T., Ryan, S., Salkin, R., Shimizu, N. et al. (2004). HITIQA: Towards analytical question answering. In Proceedings of COLING.
Smeaton, A. F. (1999). Using NLP or NLP resources for information retrieval tasks. In T. Strzalkowski (Ed.), Natural language information retrieval (pp. 99–111).

Dordrecht, NL: Kluwer Academic Publishers.
Strzalkowski, T., Stein, G. C., Wise, G. B., Carballo, J. P., Tapanainen, P. T., Jarvinen, A. et al. (1998). Natural language information retrieval: TREC-7 report. In

Proceedings of TREC (pp. 164–173).
Strzalkowski, T., Carballo, J. P., Karlgren, J., Tapanainen, A. H. P., Jarvinen, T. (1999). Natural language information retrieval: TREC-8 report. In Proceedings of

TREC.
Surdeanu, M., Ciaramita, M., Zaragoza, H. (2008). Learning to rank answers on large online QA collections. In Proceedings of ACL-HLT, Columbus, Ohio.
Suzuki, J., Sasaki, Y., Maeda, E. (2002). SVM answer selection for open-domain question answering. In Proceedings of coling (pp. 974–980).
Toutanova, K., Markova, P., Manning, C. (2004). The leaf path projection view of parse trees: Exploring string kernels for HPSG parse selection. In Proceedings

of EMNLP, Barcelona, Spain.
Vapnik, V. (1995). The nature of statistical learning theory. Springer.
Voorhees, E. M. (1993). Using WordNet to disambiguate word senses for text retrieval. In R. Korfhage, E. M. Rasmussen, & P. Willett (Eds.), Proceedings of

ACM-SIGIR. 0-89791-605-0 (pp. 171–180). ACM.
Voorhees, E. M. (1994). Query expansion using lexical–semantic relations. In W. B. Croft & C. J. van Rijsbergen (Eds.), Proceedings of ACM-SIGIR. 3-540-19889-

X (pp. 61–69). ACM/Springer.
Voorhees, E. M. (2001). Overview of the TREC 2001 question answering track. In Proceedings of TREC.
Voorhees, E. M. (2004). Overview of the TREC 2004 question answering track. In Proceedings of TREC 2004.
Wu, Y., Zhang, R., Hu, X., Kashioka, H. (2007). Learning unsupervised SVM classifier for answer selection in web question answering. In Proceedings of

EMNLP-CoNLL.
Yang, H., Chua, T. (2003). QUALIFIER: Question answering by lexical fabric and external resources. In Proceedings of EACL (pp. 363–370).
Zhang, M., Zhang, J., Su, J. (2006). Exploring syntactic features for relation extraction using a convolution tree kernel. In Proceedings of NAACL, New York City,

USA (pp. 288–295).


	Linguistic kernels for answer re-ranking in question answering systems
	Introduction
	Kernel methods for structured data
	String kernels
	Tree kernels
	Syntactic tree kernel (STK)
	Shallow semantic tree kernel (SSTK)
	Partial tree kernel (PTK)

	Kernel engineering

	Relational representations for question and answer pairs
	Classification of paired texts
	Representation via word and POS-tag sequences and trees
	Shallow semantic representation
	Predicate argument structures
	PTK vs. SSTK applied to PAS

	YourQA, a baseline QA system
	The YourQA corpora: WEB-QA and TREC-QA

	Experiments
	Experimental setup
	PTK vs. SSTK: performance and efficiency
	Results for question–answer classification
	F1 curves
	Pointwise estimation and significance of results
	Precision/Recall curves

	Answer re-ranking
	Discussion


	Related work
	Conclusions
	References


