UIMA: Unstructured Information
Management Architecture

Alessandro Moschitti

Department of Computer Science and Information
Engineering
University of Trento
Email: moschitti@disi.unitn.it

Motivations

= Nowadays, natural language processing systems
are becoming more and more complex

= Many linguistic processors:

» Tokenizers, Sentence Splitter, Topic Categorization,
Pos-Tagging, Syntactic Parsing, Shallow Semantic
Parsing, Coreference Resolution, Relation
Extraction, Textual Entailment, Semantic Role
Labeling, Opinion Miners, Disambiguation Module,
Named Entity Recognition and Normalization...

Motivations

= Many formalisms paradigms, e.g., just for
syntactic parsing
» Shallow and full syntactic parsers
» Rule-based vs. machine learning based

» Constituency, Dependency, Combinatory
Categorical Grammar, Tree-adjoining grammar and
SO on

» Many implementation: Charniak, Stanford,
Berkeley,..

= How to combine the different methods in a
pipeline to build the desired NLP system?

She S

UIMA

= UIMA supports the development, composition and

deployment of multi-modal analytics
» for the analysis of unstructured information and
e its integration with search technologies

= Apache UIMA includes
» APIs and tools for creating analysis components, e.qg.

o tokenizers, summarizers, categorizers, parsers, named-entity
detectors etc.

o Tutorial examples are provided with Apache UIMA

She S

UIMA: General Purpose IE Pipeline

Analytics bridge the
Unstructured & Structured worlds

A

Structured
Unstructured Information
Information

A _-:-‘-\::\.-\-‘__h‘-"':'

\
Indices

Text, Chat, }
Email, Audio, ® Identify Semantic Entities, Induce Structure — DBs
Video ,_{H%) ® Chats, Phone Calls, Transfers
& S ® People, Places, Org, Events KBS
- _ :7 ® Times, Topics, Opinions, Relationships
High-Value ® Threats, Plots, etc.
Most Current Content Explicit Structure
BUT ... Explicit Semantics
Buried in Huge Volumes Efficient Search
Lots of Noise, Implicit Semantics Focused Content

Inefficient Search

The Architecture, the Framework
and the SDK

= UIMA is a software architecture:

» component interfaces, data representations, design
patterns

» creates, describes, discovers, composes and
deploys multi-modal analysis capabilities

= The UIMA framework provides a run-time
environment

» developers can plug in their components
» these compose UIM applications

i

The Architecture, the Framework
and the SDK

= The framework is not specific to any IDE or
platform
» Apache hosts a Java and (soon) a C++
implementation of the UIMA Framework
= The UIMA Software Development Kit (SDK)
» includes the UIMA framework
» tools and utilities for using UIMA
» tools supporting an Eclipse-based (http://

www.eclipse.org/) development environment

Analysis Engines, Annotators &
Results

= UIMA basic building blocks are called Analysis
Engines (AEs)
» analyze a document and infer and record of
descriptive attributes

r these refer to generally as analysis results (meta-
data)

= Multi-modal analysis: text, audio and video

S S

Primitives of UIMA: begin-end

Key
Fred C_enter Annotations
(Entity) S Image Document
* 3 . 'l__
#') .,
.l
ye &
- L
Center Micros Person: P3 A .
(Entity) (Annotation) TR
Person: P1 Organization: O1 Person: P2
(Annotation) (Annotation) (Annotation)
Text Document: D102
W W
Fred Center is the CEO of Center Micros. He is a graduate of State University and excels at golf.

enoted by span 141

101 ... 141
3) The Persap denoted b 101 to 112 and the P
o (A3 PR BHES TR 1 G2 ecBApera0a thaltiotes s Person

i

Primitives of UIMA:
Type Annotators

= Basic component types for analysis algorithms
running inside AEs

= UIMA framework provides the necessary
methods for taking annotators and creating
analysis engines

= AEs add the necessary APIs and infrastructure

for the composition and deployment of
annotators within the UIMA framework.

i

Representing Analysis Results in
the CAS

= Annotators represent and share their results with
the Common Analysis Structure (CAS)

= The CAS is an object-based data structure:

» represents objects, properties and values

» Object types may be related to each other in a
single-inheritance hierarchy.

r logically (if not physically) contains the document
being analyzed.

» analytics store results in terms of an object model

within the CAS

Example

s For the statement

(2) The span from position 101 to 112 in document D102
denotes a Person

= AE creates a Person object in the CAS and links

it to the span of text where the person was
mentioned in the document.

= Any type system can be defined in CAS

r annotation in the document
» entity as non annotation type

She S

Multiple Views within a CAS

= UIMA supports multiple views of a document

» for example, the audio and the closed captioned
views of a single speech stream

» the tagged and detagged views of an HTML
document

= AEs analyze one or more views of a document,

which includes
» a specific subject of analysis (Sofa)
» metadata indexed by that view
» The CAS holds Views and the analysis results

S S

Interacting with the CAS and
External Resources

= Main interfaces: CAS and the UIMA Context

= UIMA provides an efficient implementation of the

CAS with multiple programming interfaces
» read and write analysis results.

» methods for indexed iterators to the different objects
in the CAS, e.g.,

o a specialized iterator to all Person objects associated with a
particular view

i

JCAS: Java CAS

= JCAS provides a natural interface to CAS objects

In Java

» Each type declared in the type system appears as a
Java class, e.g.

» Person type as a Person class in Java

She S

UIMA Context:

= It's the framework's resource manager interface
= Allows for accessing external resources

= Can ensure that different annotators working
together in an aggregate flow may share the
same instance of an external file or remote
resource accessed via its URL

She S

Component Descriptors

= Every UIMA component requires:
1. the declarative part and
2. the code part

= Component Descriptor is the declarative part

» contains metadata describing the component, its
identity, structure and behavior

r it is represented in XML

= [he code part implements the algorithm, e.g.,
¥ a Java program

r the code may be already provided in reusable
subcomponents

Component Descriptors (cont’d)

= Aid in component discovery, reuse, composition
and development tooling

= Compose an aggregate engine by pointing to
other components

= The UIMA SDK provides tools for easily creating
and maintaining the component descriptors
r relieve the developer from editing XML directly

S S

Component Descriptors (cont’d)

= Contain standard metadata:

» name, author, version, and a reference to the class
that implements the component

= ldentify the type system the component uses:
» the required types from the input CAS
» and the types it plans to produce in an output CAS

= For example, an AE that detects person types:
¥ may require tokenization and deep parse

S S

Component Descriptors (cont’d)

= The description refers to a type system:

» Input requirements and output types

» a declarative description of the component's
behavior

¥ used in component discovery and composition
based on desired results

» UIMA analysis engines provide an interface for
accessing the component metadata represented in
their descriptors

S S

Aggregate Analysis Engines (AAE)

= A simple AE contains a single annotator

= AEs can contain other AEs organized in a
workflow: AAE

= Annotators can be organized in a workflow of

component engines and may be orchestrated to
perform more complex tasks

S S

An example of AAE

Aggregate Analysis Engine: MyNamedEnitityDetector CAS Annotations
-Tokens

Language Tokenizer Part of Speech| | Shallow Parser| | Named Entity -Parts of Speech

|dentifier = 5| Annotator |5 5| Annotator i -Names
-Organizations

-Places

Interesting aspects of AAE

= Users of MyNE do not need to know the internal

structure
» only need its name and its published input
requirements and output types
= AAE are declared in an AAE descriptors

¥ components they contain
» flow specification: defines the execution order
r sub AE are called delegate analysis engines

S S

Flow Controller

= Users can define it and include it as part of an
aggregate AE by referring to it in the aggregate
AE's descriptor

= Determines the order in which delegate AEs that
will process the CAS

= Can access to the CAS and any external needed

resources

r dynamically at run-time, it can make multi-step

decisions and it can consider any sort of flow
specification

Flow Parallelization

= UIMA framework will run all delegate AEs,
ensuring that each one gets access to the CAS in

the sequence produced by the flow controller

» tightly-coupled (running in the same process)

r loosely-coupled (running in separate processes or
even on different machines).

= UIMA supports a number of remote protocols for

loose coupling:

¥ SOAP (which stands for Simple Object Access
Protocol, a standard Web Services communications .

% protocol)

More on Flow Control

= UIMA can deploy AEs as remote services by
using an adapter layer activated by a declaration
In the component's descriptor

= Two built-in flow implementations:

» a linear flow between components

» conditional branching based on the document
attributes/data

= User-provided flow controllers

» create multiple AEs and provide their own logic to
combine the AEs in arbitrarily complex flows

Example of Interaction with an
analysis engine

UIMA Primitive Analysis Engine
A Component 2 reads/writes analysis data
P .
= Descriptor CAS Annotator Class UIMA
3 E <—> (e.g. Tokenizer) |<—>| Context
I Cc 1 ?
C 1 N ;I')
R process(CAS, Result Spec.) v :
| - Vv v
0 Annotator Class — 1
N 3 (e.g. Tokenizer) Controller
— 1
getMetaData() process(CAS, Result Spec.)
Legend

Developer APPLICATION

UIMA Framework

Collection Processing

= Collection Processing Engine (CPE) is an
aggregate component

» specifies a “source to sink” flow from a Collection
Reader

» process it through a set of analysis engines and
r set of CAS Consumers
= Collection Processing Manager reads CPE

descriptor, and deploys and runs the specified
CPE

S S

Steps of a Collection Processing

1. Connect to a physical source
Acquire a document from the source

Initialize a CAS with the document to be analyzed

2
3
4. Send the CAS to a selected analysis engine
5. Process the resulting CAS

6. Go back to 2 until the collection is processed
14

Do any final processing required after all the
documents in the collection have been analyzed

i

Collection Processing

Collection Processing Engine

Aggregate Analysis Engine
Ontologies
oo h{ \ Analysis Engine CAS Consumer)
i B) — CAS Consumer »
= Collection Hr MIEIEEs
Text, Chat, e ‘ ‘ CAS Consumer :)
Email, Audio,
Vid ' ' DB
ideo Ej:-))‘r cAS cAS Analysis Engine oAS | 5
e “‘f}“j Flow Annotator Knowledge
@@'J Controller Bases

Collection Processing Engine

Legend

Developer |
UIMA Framework

A
P
P
L
(I: CPE
A Descriptor
T —
| a
O CPE
N Components

UIMA

moO

<AWOHOPXrm

Source \

Collection Processing Engine

Collection Analysis CAS
—> Reader —* Engines —* Consumers

Collection Processing Manager

* Distributed Workflow Management
+ CAS Management, Batching

+ Statistics Collection

* Error Handling

* Resource Pooling
* Failure Recovery

I

APPLICATION

Basic Search Engine
Implementation

= A Collection Reader reads documents from the
file system and initializes CASs with their content

s AE annotates tokens and sentences in the CASs
= CAS Consumer populates a search engine index

= A search engine query processor use the token
iIndex to provide basic key-word search.

?/\ ¥V
E‘J ",-.v ..-.\ 1 -
L
7 ot e f
ma 9 A
Ny G
a1 a: 6

Semantic Search Engine

= Supposed to have the AE for NER

= The CAS Consumer will, e.qg.,

» add person and organizations to the CASs by the
NER

» feed these into the semantic search engine's index
= [he semantic search engine that is available
from http://www.alphaworks.ibm.com/tech/uima

supports a query language called XML
Fragments

S S

Semantic Search Engine (cont’d)

= Queries with meta-data:
» <organization> center </organization>

s Queries with relations:

» <ceo_of> <person> center </person> <organization>
center </organization> <ceo_of>

Multimodal Processing in UIMA

entities
Text Sofa Text Sofa
lattice lattice
Audio Sofa Audio Sofa Audio Sofa

Segment Transcribe . Collection
Audio Audio Named-l?ntlty Indexing Search
— > intoText > Detection ——>1 o dio T
in text and text Index

= Several Sofas associated with multiple CAS views

= Components written in multiple-view mode
» analyze CAS according to different Sofas

She S

