
Natural Language Processing and 
Information Retrieval 

 Alessandro Moschitti 
Department of information and communication technology  

University of Trento  
Email: moschitti@dit.unitn.it 

Statistical Learning Theory: 
 Linear Classifiers 

 
 



Outline 


   Computational Learning theory 

   Introduction to Statistical Learning 

   Perceptron Learning 

   Margins 



What is Statistical Learning? 


   Statistical Methods – Algorithms that learn 

relations in the data from examples 


   Simple relations are expressed by pairs of 

variables: 〈x1,y1〉, 〈x2,y2〉,…, 〈xn,yn〉 


   Learning f such that evaluate y* given a new value 

x*, i.e. 〈x*, f(x*)〉 = 〈x*, y*〉 



You have already tackled the learning problem 
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Machine Learning Problems 


   Overfitting 


   How dealing with millions of variables instead of 

only two? 


   How dealing with real world objects instead of real 

values? 



Objectives: defining a well defined 
statistical framework 
 

   What can we learn and how can we decide if our 

learning is effective? 


   Efficient learning with many parameters 


   Trade-off (generalization/and training set error) 


   How to represent real world objects 
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PAC Learning Definition (1) 


   Let c be the function (i.e. a concept) we want to learn 


   Let h be the learned concept and x an instance (e.g. a 
person) 


   error(h) = Prob [c(x) < > h(x)]  


   It would be useful if we could find:  


   Pr(error(h) > ε ) < δ 


   Given a target error ε, the probability to make a larger 
error is less δ 



Definizione di PAC Learning (2) 


   This methodology is called Probably Approximately 
Correct Learning 


   The smaller ε and δ  are the better the learning is 


   Problem: 

   Given ε and δ, determine the size m of the training-set.  

   Such size may be independent of  the learning algorithm 


   Let us do it for a simple learning problem 



Lower Bound on training-set size 


   Let us reconsider a first general bound: 

   h is bad: error(h) > ε  

   P(f(x)=h(x)) for m examples is lower than (1- ε)m 


   Multiplying by the number of bad hypotheses we calculate 
the probability of selecting a bad hypothesis 


   P(bad hypothesis) < N⋅ (1- ε)m <δ 

   P(bad hypothesis) < N⋅ (e-ε)m = N⋅ e-εm <δ 

⇒  m >(1/ε) (ln(1/δ )+ln(N)) 

This is a general lower bound 

 



Example 


   Suppose we want to learn a boolean function in n 
variable 


   The maximum number of different functions are  

⇒ m > (1/ ε ) (ln(1/δ )+ln(     ))= 

  = (1/ ε ) (ln(1/δ )+2nln(2)) 
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Some Numbers 

 n   | epsilon | delta | m  

 ===========================  

 5   | 0.1     | 0.1   |245  

 5   | 0.1     | 0.01  |268  

 5   | 0.01    | 0.1   |2450  

 5   | 0.01    | 0.01  |2680  

 ---------------------------  

 10  | 0.1     | 0.1   |7123  

 10  | 0.1     | 0.01  |7146  

 10  | 0.01    | 0.1   |71230  

 10  | 0.01    | 0.01  |71460  

 ========================== = 

 



Linear Classifier (1) 
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   The equation of a hyperplane is 


      is the vector representing the classifying example 

      is the gradient to the hyperplane 

   The classification function is 
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Linear classifiers (2) 


   Linear Functions are the simplest ones from an 
analytical point of view. 


   The basic idea is to select a hypothesis with null error 
on the training-set. 


   To learn a linear function a simple neural network of 
only one neuron is enough (Perceptron) 



An animal neuron 



The Perceptron 
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Useful Concepts 


   Functional Margin of an example with respect to a 
hyperplane: 


   The distribution of functional margins of a hyperplane 
with respect to a training set S is the distribution of the 
margins of the examples in S wrt the hyperplane           .  


   The functional margin of a hyperplane is the minimum 
margin of the distribution 
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Notations (con’td) 


   If we normalize the hyperplane equation, i.e. 

                               ,  we obtain the geometric margin 


   The geometric margin measure the Euclidean distance between 
the target point and the hyperplane. 


   The training set Margin is the maximum geometric (functional) 
margin among all hyperplanes which separates the examples in 
S. 


   The hyperplane associated with the above quantity is called 
maximal margin hyperplane 
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Basic Concepts 
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   Norm of     times the cosine between      and     , i.e. the 
projection of     on 
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Geometric Margin 



     

     
     

              Geometric Margin                          Hyperplane Margin 
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Geometric margins of 2 points and hyperplane 
margin 



Maximal margin vs other margins 



Perceptron training on a data set 
(on-line algorthm) 
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Novikoff’s Theorem 
 
Let S be a non-trivial training-set and let 
 
 
Let us suppose there is a vector           and 
 
      
with γ > 0. Then the maximum number of errors of the perceptron 
is: 
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Observations 


   The theorem states that independently of the margin size, if data is 
linearly separable the perceptron algorithm finds the solution in a 
finite amount of steps. 


   This number is inversely proportional to the square of the margin. 


   The bound is invariant with respect to the scale of the patterns (i.e. 
only the relative distances count). 


   The learning rate is not essential for the convergence. 



     
     

Dual Representation 

 The decision function can be rewritten as: 


 as well as the updating function  


 The learning rate      only affects the re-scaling of the hyperplane, 
it does not affect the algorithm, so we can fix 1.! =
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 DUALITY is the first feature of Support Vector Machines 

 SVMs are learning machines using the following function: 


 Note that data appears only as scalar product (for both 
testing and learning phases) 


 The Matrix                        is called Gram matrix 

First properties of SVMs 
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 Data must be linearly separable 

 Noise (almost all classifier types) 


 Data must be in vectorial format 

Limits of Linear Classifiers 



     

     
     


   Multi-Layers Neural Network: back-propagation learning 
algorithm. 


   SVMs: kernel methods. 
    The learning algorithm is decoupled by the application 

domain which is encoded by a kernel function 

Solutions 


