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What is Statistical Learning?

= Statistical Methods — Algorithms that learn
relations in the data from examples

= Simple relations are expressed by pairs of
variables: (x.,¥,), (X5, Vo)s+--, {(X,,V,)

= Learning f such that evaluate y” given a new value
X', i.e. (X, f(X))y = (X, y)




You have already tackled the learning problem




Linear Regression
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Machine Learning Problems

= Overfitting

= How dealing with millions of variables instead of
only two?

= How dealing with real world objects instead of real
values?




Objectives: defining a well defined
statistical framework

s What can we learn and how can we decide if our
learning 1s effective?

= Efficient learning with many parameters
= Trade-off (generalization/and training set error)

= How to represent real world objects




Objectives: defining a well defined
statistical framework

s What can we learn and how can we decide if our
learning 1s effective?




PAC Learning Definition (1)

s Let ¢ be the function (1.e. a concept) we want to learn

= Let & be the learned concept and x an instance (e.g. a
person)

m error(h) = Prob [c(x) < > h(x)]
= [t would be useful 1f we could find:
m Prierror(h) >¢) <0

Given a target error €, the probability to make a larger

error 1s less O




Definizione di PAC Learning (2)

This methodology is called Probably Approximately
Correct Learning

The smaller € and 0 are the better the learning is

Problem:

¥ Given € and O, determine the size m of the training-set.

¥ Such size may be independent of the learning algorithm

Let us do it for a simple learning problem




Lower Bound on training-set size

= Let us reconsider a first general bound:
¥ his bad: error(h) > ¢
¥ P(f(x)=h(x)) for m examples i1s lower than (1- €)™

r Multiplying by the number of bad hypotheses we calculate
the probability of selecting a bad hypothesis

v P(bad hypothesis) < N-(1- €)" <o
v P(bad hypothesis) < N-(e¥)"= N-e " <

~ m >(1/¢) (In(1/8)+In(N))

This 1s a general lower bound




Example

= Suppose we want to learn a boolean function 1n »
variable

= The maximum number of different functions are2>
=m > (1/¢) (In(1/0 )+ln(22n))=
=(1/¢) (In(1/0)+2"In(2))




Some Numbers

n | epsilon | delta | m

5 | 0.1 | 0.1 | 245

5 | 0.1 | 0.01 | 268

5 | 0.01 | 0.1 | 2450

5 | 0.01 | 0.01 | 2680

10 | 0.1 | 0.1 | 7123
10 | 0.1 | 0.01 | 7146
10 | 0.01 | 0.1 | 71230
10 | 0.01 | 0.01 | 71460




Linear Classifier (1)

= The equation of a hyperplane 1s
f(X)=xw+b=0, xweR"bbENR
= X is the vector representing the classifying example

= Wis the gradient to the hyperplane

s The classification function is
h(x) = sign( f(x)) 2.2 @




Linear classifiers (2)

= Linear Functions are the simplest ones from an
analytical point of view.

= The basic 1dea 1s to select a hypothesis with null error
on the training-set.

= To learn a linear function a simple neural network of

only one neuron 1s enough (Perceptron)




An animal neuron

synapse 4




The Perceptron

p(¥) = sgn( zwl. X X, +b)




Useful Concepts

s Functional Margin of an example with respect to a
hyperplane: V;, =), (W- X, +b)
n The distribution of functional margins of a hyperplane

with respect to a training set S 1s the distribution of the

margins of the examples in S wrt the hyperplane (W,).

n The functional margin of a hyperplane 1s the minimum
margin of the distribution




Notations (con’td)

= If we normalize the hyperplane equation, i.e.
w b

] , we obtain the geometric margin
[wll [l w]

s The geometric margin measure the Euclidean distance between
the target point and the hyperplane.

n The training set Margin is the maximum geometric (functional)

margin among all hyperplanes which separates the examples in
S.

= The hyperplane associated with the above quantity is called
maximal margin hyperplane




Basic Concepts

—_—

. X W
s From cos(x,w)=— —
| x| -]l wl]
s It follows that
~ Yl XTW W
| x| cos(x,w) =——=Xx"—
| w] | w]

= Norm of X times the cosine between X and W, i.e. the
projection of X on w




Geometric Margin
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Geometric margins of 2 points and hyperplane
margin
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Maximal margin vs other margins




Perceptron training on a data set
(on-line algorthm)

w, < 0;b, < 0;k < O;R < max__, Il %, |l
Repeat
fori= 1tom
ify.(w, X, +b,) <0 then
Wi =W + 1y,
b, =b +nyR’
k=k+1
endif
endfor
until no error 1s found

return k,(w,,b,)






















Novikoft’s Theorem

Let S be a non-trivial training-set and let

R =max || x, ||

i=1,.m

Let us suppose there is a vector w ,||w ||=1 and
y,-(<W*,XZ-> +b)=y, i=1,.m,

with y > (. Then the maximum number of errors of the perceptron

1S:
2
R 2R
t=_9
(7’)




Observations

= The theorem states that independently of the margin size, 1f data 1s
linearly separable the perceptron algorithm finds the solution in a

finite amount of steps.
s This number 1s inversely proportional to the square of the margin.

= The bound 1s invariant with respect to the scale of the patterns (i.e.

only the relative distances count).

= The learning rate 1s not essential for the convergence.




Dual Representation

m The decision function can be rewritten as:

h(x) =sgn(w- X +b) =sgn( E ay;X; xX+b)=
j=l..m

sgn( E a;y.X; x+Db)

i=l..m

= as well as the updating function

if y.( 2 a,yX;'x;+b)=<0then o, =, +1
j=l..m
s The learning rate " only affects the re-scaling of the hyperplane,
it does not affect the algorithm, so we can fix 17 =1.




First properties of SVMs

m DUALITY 1s the first feature of Support Vector Machines
s SVMs are learning machines using the following function:

f(x)=sgn(w-x+b)=sgn( E a;y.X; x+Db)

j=l..m

= Note that data appears only as scalar product (for both
testing and learning phases)

= The Matrix G=(% -%,)" is called Gram matrix

1T, j=1




Limits of Linear Classifiers

= Data must be linearly separable
= Noise (almost all classifier types)

= Data must be in vectorial format




Solutions

s Multi-Layers Neural Network: back-propagation learning
algorithm.

s SVMs: kernel methods.

The learning algorithm 1s decoupled by the application
domain which 1s encoded by a kernel function




