Natural Language Processing and Information Retrieval

Indexing and Vector Space Models

Alessandro Moschitti

Department of Computer Science and Information

Engineering

University of Trento

Email: moschitti@disi.unitn.it

Last lecture

- Dictionary data structures
- Tolerant retrieval
 - Wildcards
 - Spell correction
 - Soundex
 - Spelling Cheking
 - Edit Distance

What we skipped

- IIR Book
 - Lecture 4: about index construction also in distributed environment
 - Lecture 5: index compression

This lecture; IIR Sections 6.2-6.4.3

- Ranked retrieval
- Scoring documents
- Term frequency
- Collection statistics
- Weighting schemes
- Vector space scoring

Ranked retrieval

- So far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink $650" \rightarrow 200,000$ hits
- Query 2: "standard user dlink 650 no card found": 0
 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval has normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set,
 large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user

Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/ document pair
- Let's start with a one-term query
- If the query term does not occur in the document:
 score should be 0
- The more frequent the query term in the document,
 the higher the score (should be)
- We will look at a number of alternatives for this.

Take 1: Jaccard coefficient

- Recall from last lecture: A commonly used measure of overlap of two sets A and B
- jaccard(A,B) = $|A \cap B| / |A \cup B|$
- jaccard(A,A) = 1
- jaccard(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- Query: ides of march
- Document 1: caesar died in march
- Document 2: the long march

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length
- Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$
- Instead of |A ∩ B|/|A U B| (Jaccard) for length normalization.

Recall (Lecture 1): Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - **Each** document is a count vector in \mathbb{N}^{v} : a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0
			-			Larger territory a

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than
 John have the same vectors
- This is called the <u>bag of words</u> model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

NB: frequency = count in IR

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, \text{ etc.}$
- Score for a document-query pair: sum over terms t in both q and d:
- score = $\sum_{t \in q \cap d} (1 + \log t f_{t,d})$
- The score is 0 if none of the query terms is present in the document.

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- → For frequent terms, we want high positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - \blacksquare df, is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of tby $idf_t = log_{10} (N/df_t)$
 - We use $\log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

Will turn out the base of the log is immaterial.

idf example, suppose N = 1 million

term	df_t	idf_t
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

$$idf_t = log_{10} (N/df_t)$$

There is one idf value for each term *t* in a collection.

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = \log(1 + \mathbf{tf}_{t,d}) \times \log_{10}(N/\mathbf{df}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Score for a document given a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - **...**

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}|V|$

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions
 when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you' re-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

The Euclidean distance between \overrightarrow{q} and $\overrightarrow{d_2}$ is large even though the distribution of terms in the query **d** and the distribution of terms in the document \overrightarrow{d}_2 are very similar.

Use angle instead of distance

- Thought experiment: take a document *d* and append it to itself. Call this document *d'*.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.

 Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines

But how – and why – should we be computing cosines?

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L₂ norm: $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$
- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

cosine(query,document)

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

qi is the tf-idf weight of term *i* in the query *di* is the tf-idf weight of term *i* in the document

 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine similarity illustrated

RICH

Cosine similarity amongst 3 documents

How similar are

the novels

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

After length normalization

term	SaS	PaP	WH		
affection	3.06	2.76	2.30		
jealous	2.00	1.85	2.04		
gossip	1.30	0	1.78		
wuthering	0	0	2.58		

term	SaS	PaP	WH		
affection	0.789	0.832	0.524		
jealous	0.515	0.555	0.465		
gossip	0.335	0	0.405		
wuthering	0	0	0.588		

$$0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94$$

$$cos(SaS,WH) \approx 0.79$$

$$cos(PaP,WH) \approx 0.69$$

Computing cosine scores

```
CosineScore(q)
  1 float Scores[N] = 0
 2 float Length[N]
  3 for each query term t
    do calculate w<sub>t,q</sub> and fetch postings list for t
         for each pair(d, \mathsf{tf}_{t,d}) in postings list
         do Scores[d] + = w_{t,d} \times w_{t,a}
  7 Read the array Length
  8 for each d
     do Scores[d] = Scores[d]/Length[d]
10 return Top K components of Scores[]
```


tf-idf weighting has many variants

Term frequency		Document frequency		Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$max\{0, log \tfrac{N - \mathrm{df}_{\boldsymbol{t}}}{\mathrm{df}_{\boldsymbol{t}}}\}$	u (pivoted unique)	$\sqrt{w_1+w_2++w_M}$ $1/u$	
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$					

Columns headed 'n' are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
- Document: logarithmic tf (l as first character), no idf and cosine normalization
- Query: logarithmic tf (l in leftmost column), idf (t in second column), no normalization ...

tf-idf example: Inc.ltc

Document: car insurance auto insurance Query: best car insurance

Term	Query					Document				Prod	
	tf- raw	tf-wt	df	idf	wt	n'liz e	tf-raw	tf-wt	wt	n'liz e	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is *N*, the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

End Lesson

The Vector Space Model

VSM: formal definition

- VSM (Salton89')
 - Features are dimensions of a Vector Space.
 - Documents and Queries are vectors of feature weights.
 - ${\color{red} {\bf L}}$ A set of documents is retrieved based on $\,d\cdot\vec{q}\,$
 - where d, \vec{q} are the vectors representing documents and query and th is

Feature Vectors

 Each example is associated with a vector of n feature (e.g. unique words)

$$\vec{x} = (0, ..., 1, ..., 0, ..., 0, ..., 1, ..., 0, ..., 0, ..., 1, ..., 0, ..., 1)$$
 acquisition buy market sell stocks

■ The dot product $\vec{X} \cdot \vec{Z}$ This provides a sort of similarity

Feature Selection

- Some words, i.e. features, may be irrelevant
- For example, "function words" as: "the", "on", "those"...
- Two benefits:
 - efficiency
 - Sometime the accuracy
- Sort features by relevance and select the *m*-best

Document weighting: an example

- N, the overall number of documents,
- N_f, the number of documents that contain the feature f
- $lackbox{0.5}{\bullet} o_f^{d'}$ the occurrences of the features f in the document d
- The weight *f* in a document is:

$$\omega_f^d = \left(\log \frac{N}{N_f}\right) \times o_f^d = IDF(f) \times o_f^d$$

The weight can be normalized:

$$\omega_f^{d} = \frac{\omega_f^d}{\sqrt{\sum_{t \in d} (\omega_t^d)^2}}$$

Relevance Feeback and query expansion: the Rocchio's formula

- ω_f^d , the weight of f in d
 - Several weighting schemes (e.g. TF * IDF, Salton 91')
- \vec{q}_f , the profile weights of f in C_i :

$$\vec{q}_f = \max \left\{ 0, \ \frac{\beta}{|T|} \sum_{d \in T} \omega_f^d - \frac{\gamma}{|T|} \sum_{d \in \overline{T}} \omega_f^d \right\}$$

lacksquare T_i , the training documents in q

Similarity estimation between query and documents

Given the document and the category representation

$$\vec{d} = \langle \omega_{f_1}^d, ..., \omega_{f_n}^d \rangle, \quad \vec{q} = \langle \Omega_{f_1}, ..., \Omega_{f_n} \rangle$$

It can be defined the following similarity function (cosine measure

$$S_{d,i} = \cos(\vec{d}, \vec{q}) = \frac{\vec{d} \cdot \vec{q}}{\|\vec{d}\| \times \|\vec{q}\|} = \frac{\sum_{f} \omega_f^d \times \Omega_f^i}{\|\vec{d}\| \times \|\vec{q}\|}$$

• d is assigned to \vec{q} if $\vec{d} \cdot \vec{q} > \sigma$

Performance Measurements

- Given a set of document T
- Precision = # Correct Retrieved Document / # Retrieved Documents
- Recall = # Correct Retrieved Document/ # Correct Documents

