Natural Language Processing and
Information Retrieval

Indexing and Vector Space Models

Alessandro Moschitti

Department of Computer Science and Information
Engineering
University of Trento
Email: moschitti@disi.unitn.it

Last lecture

s Dictionary data structures

s Tolerant retrieval

Wildcards

Spell correction
Soundex
Spelling Cheking
Edit Distance

$m

mo

on

a-hu

hy-m

mace >

madden_ |

among

amortize_

abandon

— among__

What we skipped

s IR Book

¥ Lecture 4: about index construction also in distributed
environment

¥ Lecture 5: index compression

This lecture; lIR Sections 6.2-6.4.3

= Ranked retrieval
s Scoring documents
s Term frequency
s Collection statistics
» Weighting schemes

= Vector space scoring

Ranked retrieval

= So far, our queries have all been Boolean.

¢ Documents either match or don’ t.

m Good for expert users with precise understanding of

their needs and the collection.

¥ Also good for applications: Applications can easily consume
1000s of results.

» Not good for the majority of users.

¥ Most users incapable of writing Boolean queries (or they
are, but they think it’ s too much work).

® Most users don’ t want to wade through 1000s of results.

e This is particularly true of web search.

Problem with Boolean search:
feast or famine

s Boolean queries often result in either too few (=0) or
too many (1000s) results.

s Query 1: “standard user dlink 650" - 200,000 hits

s Query 2: “standard user dlink 650 no card found’: 0
hits

n |t takes a lot of skill to come up with a query that
produces a manageable number of hits.

¢ AND gives too few; OR gives too many

Ranked retrieval models

s Rather than a set of documents satisfying a query
expression, in ranked retrieval, the system returns an
ordering over the (top) documents in the collection
for a query

m Free text queries: Rather than a query language of
operators and expressions, the user’ s query is just
one or more words in a human language

= In principle, there are two separate choices here, but
in practice, ranked retrieval has normally been
associated with free text queries and vice versa

Feast or famine: not a problem in ranked
retrieval

s When a system produces a ranked result set,

large result sets are not an issue
¥ Indeed, the size of the result set is not an issue

¥ We just show the top k (= 10) results
¥ We don’ t overwhelm the user

¥ Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

s We wish to return in order the documents most likely
to be useful to the searcher

m How can we rank-order the documents in the

collection with respect to a query?
m Assign a score —say in [0, 1] —to each document

m This score measures how well document and query

“match”.

Query-document matching scores

= We need a way of assigning a score to a query/
document pair

s Let’ sstart with a one-term query

= If the query term does not occur in the document:
score should be O

s The more frequent the query term in the document,
the higher the score (should be)

s We will look at a number of alternatives for this.

Take 1: Jaccard coefficient

Recall from last lecture: A commonly used measure of

overlap of two sets A and B
jaccard(A,B)=|AnB|/|A U B|
jaccard(A,A) =1
jaccard(A,B)=0ifAnB=0

A and B don’ t have to be the same size.

Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

Query: ides of march

Document 1: caesar died in march

Document 2: the long march

Issues with Jaccard for scoring

s It doesn’ t consider term frequency (how many times a
term occurs in a document)

= Rare termsin a collection are more informative than
frequent terms. Jaccard doesn’ t consider this
information

s We need a more sophisticated way of normalizing for
length

= Laterin this lecture, we' lluse |ANB|/,/|AUB]|

= ...instead of |[ANn B|/|A U B| (Jaccard) for length
normalization.

Recall (Lecture 1): Binary term-document
incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Term-document count matrices

s Consider the number of occurrences of a term in a
document:

¥ Each document is alcount vectorlin NV: a column below

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0
Brutus 4 157 0 1 0
Caesar 232 227 0 2 1
Calpurnia 0 10 0 0 0
Cleopatra 57 0 0 0
mercy 3 5 5
worser 1 1 1

Bag of words model

s Vector representation doesn’ t consider the ordering
of words in a document

m John is quicker than Mary and Mary is quicker than
John have the same vectors

s Thisis called the bag of words model.

m In a sense, this is a step back: The positional index was
able to distinguish these two documents.

= We will look at “recovering” positional information
later in this course.

s For now: bag of words model

Term frequency tf

= The term frequency tf, , of term t in document d is
defined as the number of times that t occurs in d.

s We want to use tf when computing query-document
match scores. But how?

= Raw term frequency is not what we want:

A document with 10 occurrences of the term is more
relevant than a document with 1 occurrence of the term.

¥ But not 10 times more relevant.

m Relevance does not increase proportionally with term
frequency.

S VNI

O SRE Ay
oS

Log-frequency weighting

s The log frequency weight of termtindis

1 +log,tt,,, 1ttt , >0
Wia =

0, otherwise

0-0,1->1,2-1.3,10-> 2,1000 - 4, etc.

Score for a document-query pair: sum over terms t in
both g and d:

score = E@ﬂd(l +logtt, ,)

The score is 0 if none of the query terms is present in

the document.

Document frequency

Rare terms are more informative than frequent terms

¥ Recall stop words

Consider a term in the query that is rare in the collection

(e.g., arachnocentric)

A document containing this term is very likely to be relevant
to the query arachnocentric

— We want a high weight for rare terms like

arachnocentric.

Document frequency, continued

= Frequent terms are less informative than rare terms

s Consider a query term that is frequent in the
collection (e.g., high, increase, line)

s A document containing such a term is more likely to
be relevant than a document that doesn’ t

s Butit s not a sure indicator of relevance.

s — For frequent terms, we want high positive weights
for words like high, increase, and line

s But lower weights than for rare terms.

s We will use document frequency (df) to capture this. .

idf weight

= df, is the document frequency of t: the number of

documents that contain t

¢ df,is an inverse measure of the informativeness of t
e df, =N

s We define the idf (inverse document frequency) of t
by idf, =log,, (N/df))

» We use log (N/df,) instead of N/df, to “dampen” the effect
of idf.

Will turn out the base of the log is immaterial.

idf example, suppose N = 1 million

calpurnia 1
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

idf, =log,, (N/df))

There is one idf value for each term tin a collection. s

Effect of idf on ranking

s Does idf have an effect on ranking for one-term

gueries, like

¥ iPhone

» idf has no effect on ranking one term queries
¥ idf affects the ranking of documents for queries with at least
two terms

¥ For the query capricious person, idf weighting makes
occurrences of capricious count for much more in the final
document ranking than occurrences of person.

Collection vs. Document frequency

s The collection frequency of t is the number of

occurrences of t in the collection, counting multiple
occurrences.

= Example:
m Collection frequency Document frequency
insurance 10440 3997
try 10422 8760

s Which word is a better search term (and should get a
higher weight)?

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight
and its idf weight.

w =log(l+tf, ,)xlog, (N /df,)

Best known weighting scheme in information retrieval

¥ Note: the “-” in tf-idf is a hyphen, not a minus sign!
e Alternative names: tf.idf, tf x idf

Increases with the number of occurrences within a
document

Increases with the rarity of the term in the collection

Score for a document given a query

Score(q.d) = » _ tfidf,,

regnd

= There are many variants

¥ How “tf” is computed (with/without logs)
¥ Whether the terms in the query are also weighted

Binary = count - weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € R|V|

Documents as vectors

So we have a |V |-dimensional vector space
Terms are axes of the space
Documents are points or vectors in this space

Very high-dimensional: tens of millions of dimensions
when you apply this to a web search engine

These are very sparse vectors - most entries are zero.

Queries as vectors

s Keyidea 1: Do the same for queries: represent them
as vectors in the space

s Keyidea 2: Rank documents according to their
proximity to the query in this space

= proximity = similarity of vectors
= proximity = inverse of distance

m Recall: We do this because we want to get away from
the you' re-either-in-or-out Boolean model.

» Instead: rank more relevant documents higher than
less relevant documents

Formalizing vector space proximity

First cut: distance between two points

¥ (=distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . ..

. because Euclidean distance is large for vectors of

different lengths.

Why distance is a bad idea

The Euclid_san distance G OSSIP d-
between g

and c72> is large even 1 1(](1—_

though the

distribution of terms in 9

the query @ and the

distribution of

terms in the document

d, are

very similar. 1» JEALOUS

Use angle instead of distance

s Thought experiment: take a document d and append
it to itself. Call this document d'.

s Semantically” d and d’ have the same content

m The Euclidean distance between the two documents
can be quite large

s The angle between the two documents is O,
corresponding to maximal similarity.

m Keyidea: Rank documents according to angle with
query.

From angles to cosines

s The following two notions are equivalent.

¥ Rank documents in decreasing order of the angle between
guery and document

¥ Rank documents in increasing order of
cosine(query,document)

s Cosine is a monotonically decreasing function for the
interval [0°, 180°]

From angles to cosines

S0 o0 150 200 250 300 350

s But how — and why — should we be computing cosines?

Length normalization

m A vector can be (length-) normalized by dividing each
of its components by its length — for this we use the L,

o A, =3

m Dividing a vector by its L, norm makes it a unit (length)
vector (on surface of unit hypersphere)

s Effect on the two documents d and d’ (d appended to
itself) from earlier slide: they have identical vectors
after length-normalization.

e Long and short documents now have comparable weights

cosine(query,document)

Dot product

\ s

‘d q d i qu'di

c_z;‘ ‘Q‘ ‘a" \/Ele l\/EVdiz

qgi is the tf-idf weight of term j in the query
di is the tf-idf weight of term j in the document

cos(d,d) is the cosine similarity of gand d ..
equivalently, the cosine of the angle between q and

Cosine for length-normalized vectors

s For length-normalized vectors, cosine similarity is
simply the dot product (or scalar product):

= v

COS(@,C?) =g*d=) qd,

Cosine similarity illustrated

POOR
11 v(d1)

RICH

Cosine similarity amongst 3 documents

How similar are
the novels

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

affection

jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting. g,

3 documents example contd.

Log frequency weighting After length normalization
affection 3.06 2.76 2.30 affection 0.789 0.832 0.524
jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465
gossip 1.30 0 1.78 gossip 0.335 0 0.405
wuthering 0 0 2.58 wuthering 0 0 0.588

cos(SaS,PaP) =

0.789 x 0.832 + 0.515 x 0.555 + 0.335 x 0.0 + 0.0 x 0.0 = 0.94
cos(SaS,WH) = 0.79
cos(PaP,WH) =~ 0.69

Computing cosine scores

COSINESCORE(q)

—

O O© 00O N O B W N =

float Scores|N| =0

float Length[N]

for each query term t

do calculate w4 and fetch postings list for t
for each pair(d.tf;) in postings list
do Scores|d]4+ = wt g X Wt 4

Read the array Length

for each d

do Scores|d| = Scores|d|/Length|d]

return Top K components of Scoresl]

tf-idf weighting has many variants

Term frequency Document frequency Normalization
n (natural) tfe o n (no) 1 n (none) 1
, : . P . PR N p . \
| (logarithm) 1 + log(tf: o) t (idf) log —¢ c (cosine)

S df

r

a (augmented) 0.5+ % p (prob idf) max{0,log X=diey |y (pivoted 1/u
gt t.d .

‘lft
unique)
b (boolean) {1 if theg >0

b (l i /Charl.e a
0 otherwise > (byte size) 1, ?lanengﬂ; .

o < 1

1+log(tfs 4)
1+log(aveizq(tis o))

L (log ave)

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs
documents

s Many search engines allow for different weightings for
gueries vs. documents

m SMART Notation: denotes the combination in use in
an engine, with the notation ddd.qqg, using the
acronyms from the previous table

s A very standard weighting scheme is: Inc.ltc

s Document: logarithmic tf (| as first character), no idf
and cosine normalization 2B

A bad idea?

m Query: logarithmic tf (| in leftmost column), idf (t in
second column), no normalization ...

tf-idf example: Inc.ltc

Document: car insurance auto insurance
Query: best car insurance

tf- tf-wt df idf wt n'liz tf-raw tf-wt wi n’ liz

raw e e
auto 0 0 5000 23 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 20 0.52 1 1 1 052 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Exercise: what is N, the number of docs?

Doc length =12+ 0>+ 12 +1.3* ~1.92
Score = 0+0+0.27+0.53 = 0.8

Summary — vector space ranking

Represent the query as a weighted tf-idf vector
Represent each document as a weighted tf-idf vector

Compute the cosine similarity score for the query vector
and each document vector

Rank documents with respect to the query by score

Return the top K (e.g., K = 10) to the user

End Lesson

The Vector Space Model

Berlusconi

d;

Bush

A Bush declares Wonderful Berlusconi
war. Totti in the acquires
Berlusconi yesterday Inzaghi
gives support match against before
Berlusconi’s elections
d 5 Milan

d,: Politic d,: Sport d,:Economic

q, : Berlusconi visited

q, : Totti will not

play against
Berlusconi’s
milan

Tott1

VSM: formal definition

= VSM (Salton89’)

» Features are dimensions of a Vector Space.

» Documents and Queries are vectors of feature weights.

—

» A setof gocuments IS retrieved based on d- q

» where d, d are the vectors representing documents and query
and th is

Feature Vectors

= Each example is associated with a vector of n feature
(e.g. unique words)

x=(@,..1,.,0,.0,..,,.0,.0, ..,1,.0,.0, ..,1,..0,.., 1)

acquisition buy market sell stocks

= The dot product X* Z This provides a sort of similarity

Feature Selection

Some words, i.e. features, may be irrelevant

For example, “function words” as: “the”, “on”,"those”....

Two benefits:
» efficiency
» Sometime the accuracy

Sort features by relevance and select the m-best

Document weighting: an example

= N, the overall number of documents,
= N, the number of documents that contain the feature f

0 Ojf the occurrences of the features f in the document d

= The weight fin a document is:

N
w! =|log— |x0! =
f f

N,

= The weight can be normalized:
d

0 =
o \/2 (a)td)2

ted

IDF(f) % 0"

Relevance Feeback and query expansion:
the Rocchio’s formula

d : :
= W, the weightof f ind
» Several weighting schemes (e.g. TF * IDF, Salton 91°)

g Z]f , the profile weights of f in C::

-

_ B

d d
qf—maX<O, ? C()f — Tza)fF
i

= 1, the training documents in q

"

Similarity estimation between query and
documents

= Given the document and the category representation

d = <a)}i,..., a)ff>, g = <Qf1,..., an>
= It can be defined the following similarity function (cosine
measure
d-g }fg’g <
I |<lall - {d <1l

S =cos(d ,§) =

s dis assignedto g if c?-é>a

Performance Measurements

= Given a set of document T
s Precision = # Correct Retrieved Document / # Retrieved Documents
s Recall = # Correct Retrieved Document/ # Correct Documents

Retrieved
Documents
(by the system)

Correct
Documents

Correct
Retrieved

Documents
(by the system)

