Natural Language Processing and Information Retrieval

Part of Speech Tagging and Named Entity Recognition

Alessandro Moschitti

Department of information and communication technology University of Trento Email: moschitti@dit.unitn.it

Parts of Speech

- 8 traditional parts of speech for IndoEuropean languages
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
 - Around for over 2000 years (Dionysius Thrax of Alexandria, c. 100 B.C.)
 - Called: parts-of-speech, lexical category, word classes, morphological classes, lexical tags, POS

POS examples for English

- N noun *chair, bandwidth, pacing*
- V verb *study, debate, munch*
- ADJ adj purple, tall, ridiculous
- ADV adverb unfortunately, slowly
- P preposition of, by, to
- PRO pronoun *I, me, mine*
- DET determiner *the, a, that, those*
- CONJ conjunction and, or

Open vs. Closed classes

Closed:

- determiners: *a, an, the*
- pronouns: she, he, l
- prepositions: on, under, over, near, by, ...

Open:

Nouns, Verbs, Adjectives, Adverbs.

Open Class Words

Nouns

- Proper nouns (Penn, Philadelphia, Davidson)
 - English capitalizes these.
- Common nouns (the rest).
- Count nouns and mass nouns
 - Count: have plurals, get counted: goat/goats, one goat, two goats
 - Mass: don't get counted (snow, salt, communism) (*two snows)
- Adverbs: tend to modify things
 - Unfortunately, John walked home extremely slowly yesterday
 - Directional/locative adverbs (here,home, downhill)
 - Degree adverbs (extremely, very, somewhat)
 - Manner adverbs (slowly, slinkily, delicately)

Verbs

In English, have morphological affixes (eat/eats/eaten)

Closed Class Words

- Differ more from language to language than open class words
- Examples:
 - prepositions: on, under, over, ...
 - particles: *up*, *down*, *on*, *off*, ...
 - determiners: *a, an, the, ...*
 - pronouns: *she, who, I, ..*
 - conjunctions: and, but, or, ...
 - auxiliary verbs: can, may should, ...
 - numerals: one, two, three, third, ...

Prepositions from CELEX

of	540,085	through	14,964	worth	1,563	pace	12
in	331,235	after	13,670	toward	1,390	nigh	9
for	142,421	between	13,275	plus	750	re	4
to	125,691	under	9,525	till	686	mid	3
with	124,965	per	6,515	amongst	525	o'er	2
on	109,129	among	5,090	via	351	but	0
at	100,169	within	5,030	amid	222	ere	0
by	77,794	towards	4,700	underneath	164	less	0
from	74,843	above	3,056	versus	113	midst	0
about	38,428	near	2,026	amidst	67	o'	0
than	20,210	off	1,695	sans	20	thru	0
over	18,071	past	1,575	circa	14	vice	0

Conjunctions

1	514.046	4	5.040	1	174	f	0
and	514,946	yet	5,040	considering	174	forasmuch as	0
that	134,773	since	4,843	lest	131	however	0
but	96,889	where	3,952	albeit	104	immediately	0
or	76,563	nor	3,078	providing	96	in as far as	0
as	54,608	once	2,826	whereupon	85	in so far as	0
if	53,917	unless	2,205	seeing	63	inasmuch as	0
when	37,975	why	1,333	directly	26	insomuch as	0
because	23,626	now	1,290	ere	12	insomuch that	0
SO	12,933	neither	1,120	notwithstanding	3	like	0
before	10,720	whenever	913	according as	0	neither nor	0
though	10,329	whereas	867	as if	0	now that	0
than	9,511	except	864	as long as	0	only	0
while	8,144	till	686	as though	0	provided that	0
after	7,042	provided	594	both and	0	providing that	0
whether	5,978	whilst	351	but that	0	seeing as	0
for	5,935	suppose	281	but then	0	seeing as how	0
although	5,424	cos	188	but then again	0	seeing that	0
until	5,072	supposing	185	either or	0	without	0

Auxiliaries

can	70,930	might	5,580	shouldn't	858
will	69,206	couldn't	4,265	mustn't	332
may	25,802	shall	4,118	'11	175
would	18,448	wouldn't	3,548	needn't	148
should	17,760	won't	3,100	mightn't	68
must	16,520	'd	2,299	oughtn't	44
need	9,955	ought	1,845	mayn't	3
can't	6,375	will	862	dare, have	???

Figure 5.5 English modal verbs from the CELEX on-line dictionary. Frequency counts are from the COBUILD 16 million word corpus.

POS Tagging: Choosing a Tagset

- There are so many parts of speech, potential distinctions we can draw
- To do POS tagging, we need to choose a standard set of tags to work with
- Could pick very coarse tagsets
 - N, V, Adj, Adv.
- More commonly used set is finer grained, the

"Penn TreeBank tagset", 45 tags

- PRP\$, WRB, WP\$, VBG
- Even more fine-grained tagsets exist

Penn TreeBank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	or"
POS	possessive ending	's	"	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	$[, (, \{ , <$
PRP\$	possessive pronoun	your, one's)	right parenthesis],), $\}, >$
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off			

Using the Penn Tagset

The/DT grand/JJ jury/NN commented/VBD on/ IN a/DT number/NN of/IN other/JJ topics/NNS ./.

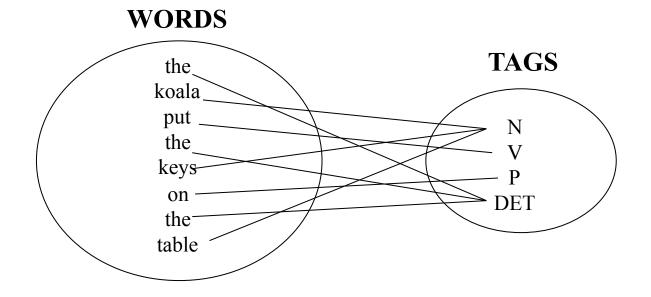
- Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
- Except the preposition/complementizer "to" is just marked "TO".

Deciding on the correct part of speech can be difficult even for people

- Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
- All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
- Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

POS Tagging: Definition

The process of assigning a part-of-speech or lexical class marker to each word in a corpus:



POS Tagging example

WORD	tag
the	DET
koala	Ν
put	V
the	DET
keys	Ν
on	Ρ
the	DET
table	Ν

POS Tagging

Words often have more than one POS: back

- The *back* door = JJ
- On my <u>back</u> = NN
- Win the voters <u>back</u> = RB
- Promised to <u>back</u> the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

How Hard is POS Tagging? Measuring Ambiguity

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous ((1 tag)	44,019		38,857	
Ambiguous (2	–7 tags)	5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

How difficult is POS tagging?

About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech

But they tend to be very common words

40% of the word tokens are ambiguous

Rule-Based Tagging

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.

Start With a Dictionary

- she: PRP
- promised: VBN,VBD
- to TO
- back: VB, JJ, RB, NN
- the: DT
- bill: NN, VB

Etc... for the ~100,000 words of English with more than 1 tag

Assign Every Possible Tag and apply rules

NN RB VBN JJ VB PRP VBD TO VB DT NN She promised to back the bill

Simple Statistical Approaches: Idea 1

Simply assign each word its most likely POS.

Success rate: 91%!

Word	POS listings in Brown					
heat	noun/89	verb/5				
oil	noun/87					
in	prep/20731	noun/1	adv/462			
а	det/22943	noun/50	noun-proper/30			
large	adj/354	noun/2	adv/5			
pot	noun/27					

Simple Statistical Approaches: Idea 2

For a string of words

$$W = w_1 w_2 w_3 \dots w_n$$

find the string of POS tags

$$\mathsf{T} = \mathsf{t}_1 \, \mathsf{t}_2 \, \mathsf{t}_3 \dots \mathsf{t}_n$$

which maximizes P(T|W)

i.e., the probability of tag string T given that the word string was W

Again, The Sparse Data Problem ...

A Simple, Impossible Approach to Compute P(T|W):

Count up instances of the string "heat oil in a large pot" in the training corpus, and pick the most common tag assignment to the string..

A Practical Statistical Tagger

By Bayes' Rule:

$$\mathbf{P}(\mathbf{T}|\mathbf{W}) = \frac{P(W|T) * P(T)}{P(W)}$$

so to maximize P(T|W), need to maximize P(W|T) * P(T).

To compute P(**T**): By the chain rule, $P(T) = P(t_1) * P(t_2|t_1) * P(t_3|t_1t_2) * ... * P(t_n|t_1...t_{n-1})$

A Practical Statistical Tagger II

But we can't accurately estimate more than tag bigrams or so...

Again, we change to a model that we CAN estimate:

A Markov Assumption: $P(t_i | t_1 \dots t_{i-1}) = P(t_i | t_{i-1})$

By which

$$P(T) = P(t_1) * P(t_2|t_1) * P(t_3|t_2) * \dots * P(t_n|t_{n-1})$$

A Practical Statistical Tagger III

To compute P(W|T), similarly assume

 $P(w_i | t_1 \dots t_n) = P(w_i | t_i)$

By which

 $P(W|T) = P(w_1|t_1) * P(w_2|t_2) * \ldots * P(w_n|t_n)$

$$P(T) * P(W|T) = P(t_1) * P(t_2|t_1) * P(t_3|t_2) * \dots * P(t_n|t_{n-1}) * P(w_1|t_1) * P(w_2|t_2) * \dots * P(w_n|t_n)$$

So, for a given string $W = w_1 w_2 w_3 \dots w_{n_1}$ the tagger needs to find the string of tags T which maximizes

Training and Performance

To estimate the parameters of this model, given an annotated training corpus:

To estimate $P(t_i|t_{i-1})$: $\frac{Count(t_{i-1}t_i)}{Count(t_{i-1})}$

To estimate $P(w_i|t_i)$:

 $\frac{Count(w_i \text{ tagged } t_i)}{Count(\text{ all words tagged } t_i)}$

- Because many of these counts are small, *smoothing* is necessary for best results...
- Such taggers typically achieve about 95-96% correct tagging, for tag sets of 40-80 tags.

Assigning tags to unseen words

- Pretend that each unknown word is ambiguous among all possible tags, with equal probability
- Assume that the probability distribution of tags over unknown words is like the distribution of tags over words seen only once
- Morphological clues

Combination

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

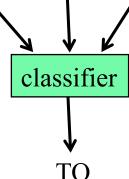
CC

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

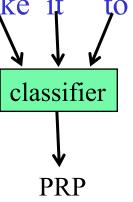
classifier VBD

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

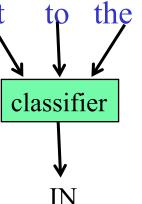


 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

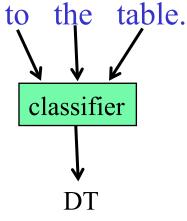


 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

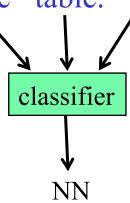


 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it



 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).



Sequence Labeling as Classification Using Outputs as Inputs

- Better input features are usually the categories of the surrounding tokens, but these are not available yet.
- Can use category of either the preceding or succeeding tokens by going forward or back and using previous output.

SVMs for tagging

- http://www.lsi.upc.edu/~nlp/SVMTool/ SVMTool.v1.4.ps
- We can use SVMs in a similar way
- We can use a window around the word
- 97.16 % on WSJ

SVMs for tagging

word unigrams	$m{w}_{-3},m{w}_{-2},m{w}_{-1},m{w}_0,m{w}_{+1},m{w}_{+2},m{w}_{+3}$
word bigrams	$(m{w}_{-2},m{w}_{-1}),(m{w}_{-1},m{w}_{+1}),(m{w}_{-1},m{w}_0),(m{w}_0,m{w}_{+1}),(m{w}_{+1},m{w}_{+2})$
word trigrams	$(\boldsymbol{w}_{-3}, \boldsymbol{w}_{-2}, \boldsymbol{w}_{-1}), (\boldsymbol{w}_{-2}, \boldsymbol{w}_{-1}, \boldsymbol{w}_{0}), (\boldsymbol{w}_{-2}, \boldsymbol{w}_{-1}, \boldsymbol{w}_{+1}),$
	$(m{w}_{-1},m{w}_0,m{w}_{+1}), (m{w}_{-1},m{w}_{+1},m{w}_{+2}), (m{w}_0,m{w}_{+1},m{w}_{+2})$
POS unigrams	p_{-3}, p_{-2}, p_{-1}
POS bigrams	$(m{p}_{-2},m{p}_{-1}),(m{p}_{-1},m{a}_{+1}),(m{a}_{+1},m{a}_{+2})$
POS trigrams	$({m p}_{-3},{m p}_{-2},{m p}_{-1}), ({m p}_{-2},{m p}_{-1},{m a}_{+1}), ({m p}_{-1},{m a}_{+1},{m a}_{+2})$
ambiguity classes	$\boldsymbol{a}_0, \boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$
maybe's	$oldsymbol{m}_0,oldsymbol{m}_1,oldsymbol{m}_2,oldsymbol{m}_3$
prefixes	$s_1, s_1s_2, s_1s_2s_3, s_1s_2s_3s_4$
suffixes	$s_n, s_{n-1}s_n, s_{n-2}s_{n-1}s_n s_{n-3}s_{n-2}s_{n-1}s_n$
binary word-form	intial_Upper_Case, all_Upper_Case, no-initial_Capital_Letter(s),
features	all_Lower_Case, contains_(period/number/hyphen)
word length	integer
Sentence info	last_word ('.', '?', '!')

from Jimenez & Marquez

An example of Features

Pierre NNP Vinken NNP , , 61 CD years NNS old JJ , , will ?? join VB the DT board NN as IN a DT nonexecutive JJ director NN Nov. NNP 29 CD . . w-2,-1:old~, w-1,1:,~join, w-3:years w-2:old w-1,0:,~will w0,1:will~join w-1:, w0:will w1:join w2:the w3:board Swn:. w1,2:join~the w-1,0,1:,~will~join w-1,1,2:,~join~the w-2,-1,0:old~,~will w-2,-1,1:old~,~join w0,1,2:will~join~the p-3:NNS p-2:JJ p-1:, p-2,-1:JJ~, p-1,1:,~VB VBP p1,2:VB VBP~DT p-2,-1,1:JJ~,~VB VBP p-1,1,2:,~VB VBP~DT k0:MD~NN k1:VB~VBP k2:DT k3:NN s0~MD:1 s0~NN:1 s1~VB:1 s1~VBP:1 s2~DT:1 s3~NN:1

No sequence modeling

- Can do surprisingly well just looking at a word by itself:
 - Word
 - Lowercased word
 - Prefixes
 - Suffixes
 - Capitalization
 - Word shapes

the: the \rightarrow DT

- Importantly: importantly \rightarrow RB unfathomable: un- \rightarrow JJ
- Surprisingly: $-Iy \rightarrow RB$
- Meridian: CAP \rightarrow NNP

35-year: $d-x \rightarrow JJ$

- Then build a maxent (or whatever) model to predict tag
- Maxent P(t|w): 93.7% / 82.6%

Evaluation

- So once you have you POS tagger running how do you evaluate it?
 - Overall error rate with respect to a gold-standard test set.
 - Error rates on particular tags
 - Error rates on particular words
 - Tag confusions...

Evaluation

- The result is compared with a manually coded "Gold Standard"
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

Error Analysis

	IN	JJ	NN	NNP	RB	VBD	VBN
IN		.2			.7		
JJ	.2		3.3	2.1	1.7	.2	2.7
NN		8.7	—				.2
NNP	.2	3.3	4.1		.2		
RB	2.2	2.0	.5				
VBD		.3	.5				4.4
VBN		2.8				2.6	—

- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
 - Past tense verb form (VBD) vs Participle (VBN) vs Adjective (JJ)

Named Entity Recognition

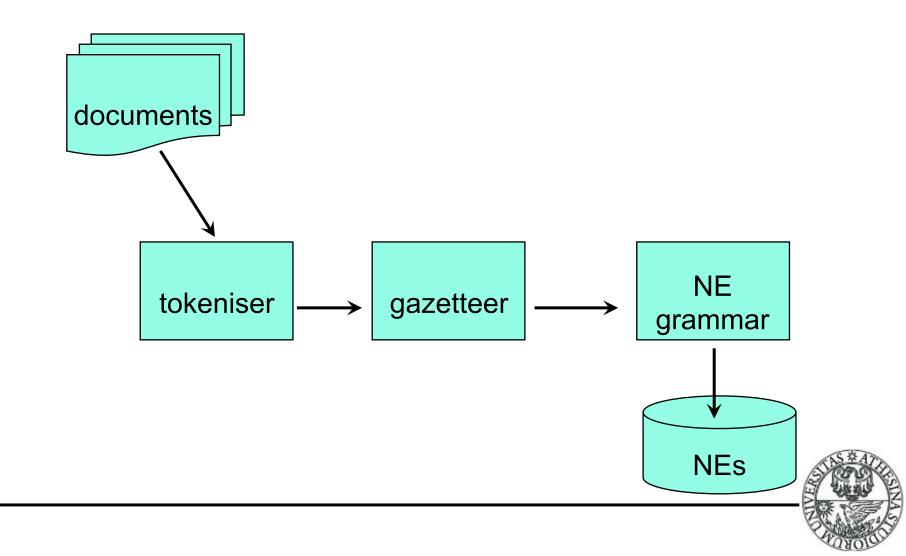
Linguistically Difficult Problem

- NE involves identification of proper names in texts, and classification into a set of predefined categories of interest.
- Three universally accepted categories: person, location and organisation
- Other common tasks: recognition of date/time expressions, measures (percent, money, weight etc), email addresses etc.
- Other domain-specific entities: names of drugs, medical conditions, names of ships, bibliographic references etc.

Problems in NE Task Definition

- Category definitions are intuitively quite clear, but there are many grey areas.
- Many of these grey area are caused by metonymy.
 - Organisation vs. Location : "England won the World Cup" vs. "The World Cup took place in England".
 - Company vs. Artefact: "shares in MTV" vs. "watching MTV"
 - Location vs. Organisation: "she met him at Heathrow" vs. "the Heathrow authorities"

NE System Architecture



Approach con't

- Again Text Categorization
- N-grams in a window centered on the NER
- Features similar to POS-tagging
 - Gazetteer
 - Capitalize
 - Beginning of the sentence
 - Is it all capitalized

Approach con't

- NE task in two parts:
 - Recognising the entity boundaries
 - Classifying the entities in the NE categories
- Tokens in text are often coded with the IOB scheme
 - O outside, B-XXX first word in NE, I-XXX all other words in NE
 - Easy to convert to/from inline MUC-style markup

Argentina	B-LOC
played	Ο
with	0
Del	B-PER
Bosque	I-PER

Feature types

- Word-level features
- List lookup features
- Document & corpus features

Word-level features

Table 1: Word-level features

Features	Examples
Case	- Starts with a capital letter - Word is all uppercased - The word is mixed case (e.g., ProSys, eBay)
Punctuation	- Ends with period, has internal period (e.g., St., I.B.M.) - Internal apostrophe, hyphen or ampersand (e.g., O'Connor)
Digit	- Digit pattern (<i>see section 3.1.1</i>) - Cardinal and Ordinal - Roman number - Word with digits (e.g., W3C, 3M)
Character	- Possessive mark, first person pronoun - Greek letters
Morphology	- Prefix, suffix, singular version, stem - Common ending (<i>see section 3.1.2</i>)
Part-of-speech	- proper name, verb, noun, foreign word
Function	 Alpha, non-alpha, n-gram (see section 3.1.3) lowercase, uppercase version pattern, summarized pattern (see section 3.1.4) token length, phrase length

List lookup features

Features	Examples
General list	- General dictionary (see section 3.2.1) - Stop words (function words) - Capitalized nouns (e.g., January, Monday) - Common abbreviations
List of entities	- Organization, government, airline, educational - First name, last name, celebrity - Astral body, continent, country, state, city
List of entity cues	 Typical words in organization (see 3.2.2) Person title, name prefix, post-nominal letters Location typical word, cardinal point

Exact match vs. flexible match Stems (remove inflectional and derivational suffixes) Lemmas (remove inflectional suffixes only) Small lexical variations (small edit distance) Normalize words to their <u>Soundex codes</u>

Document and corpus features

Table 3: Features from documents.

Features	Examples
Multiple occurrences	 Other entities in the context Uppercased and lowercased occurrences (see 3.3.1) Anaphora, coreference (see 3.3.2)
Local syntax	 Enumeration, apposition Position in sentence, in paragraph, and in document
Meta information	- Uri, Email header, XML section, (see section 3.3.3) - Bulleted/numbered lists, tables, figures
Corpus frequency	- Word and phrase frequency - Co-occurrences - Multiword unit permanency (see 3.3.4)

Examples of uses of document and corpus features

- Meta-information (e.g. names in email headers)
- Multiword entities that do not contain rare lowercase words of a relatively long size are candidate NEs
- Frequency of a word (e.g. Life) divided by its frequency in case insensitive form

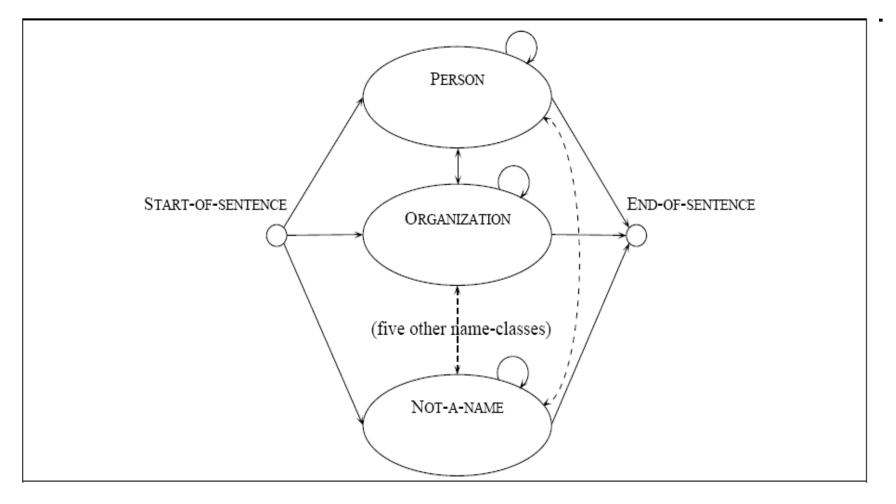
NER

- Description
- Performance

Name Entity Recognition

- IndentiFinder (Bikel et al, 1999)
- Given a set of Named Entities (NE)
 - PERSON, ORGANIZATION, LOCATION, MONEY, DATE, TIME, PERCENT
- Predict NEs of a sentence with Hidden Markov models

$$P(NC | NC_{-1}, w) = P(w | w_{-1}NC_{-1})$$



Probability of "Mr. John eats."

Pr(NOT-A-NAME | START-OF-SENTENCE, "+end+") * Pr("Mr." | NOT-A-NAME, START-OF-SENTENCE) * Pr(+end+ | "Mr.", NOT-A-NAME) * Pr(PERSON | NOT-A-NAME, "Mr.") * Pr("Jones" | PERSON, NOT-A-NAME) * Pr(+end+ | "Jones", PERSON) * Pr(NOT-A-NAME | PERSON, "Jones") * Pr("eats" | NOT-A-NAME, PERSON) * Pr("." | "eats", NOT-A-NAME) * Pr(+end+ | ".", NOT-A-NAME) * Pr(END-OF-SENTENCE | NOT-A-NAME, ".")

Other characteristics

- Probabilities are learned from annotated documents
- Features
- Levels of back-off
- Unknown models

Word Feature	Example Text	Intuition
twoDigitNum	90	Two-digit year
fourDigitNum	1990	Four digit year
containsDigitAndAlpha	A8956-67	Product code
containsDigitAndDash	09-96	Date
containsDigitAndSlash	11/9/89	Date
containsDigitAndComma	23,000.00	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
otherNum	456789	Other number
allCaps	BBN	Organization
capPeriod	М.	Person name initial
firstWord	first word of	No useful capitalization
	sentence	information
initCap	Sally	Capitalized word
lowerCase	can	Uncapitalized word
other	,	Punctuation marks, all other words

Back-off levels

Name-class Bigrams	First-word Bigrams	Non–first-word Bigrams
$\Pr(NC \mid NC_{-1}, W_{-1})$	$\Pr(\langle w, f \rangle_{first} \mid NC, NC_{-1})$	$\Pr(\langle w, f \rangle \langle w, f \rangle_{-1}, NC)$
: Dr(NC NC)		
$\Pr(NC \mid NC_{-1})$	$\Pr(\langle w, f \rangle \langle +begin+, other \rangle, NC)$	$\Pr(\langle w, f \rangle NC)$
Pr(NC)	(- c)	: $Pr(w \mid NC) \cdot Pr(f \mid NC)$
:	$\Pr(\langle w, f \rangle NC) \\ \vdots$:
number of name - classes	$\Pr(w \mid NC) \cdot \Pr(f \mid NC)$	$\frac{1}{ \mathbf{r} } \cdot \frac{1}{ \mathbf{r} }$
	:	V number of word features
	$\frac{1}{ V } \cdot \frac{1}{\text{number of word features}}$	
		A LE LA CONTRACTÓRIA DE LA CONTRACTÍRIA DE LA CONTRACTICA DE LA CONTRACTICA DE LA CONTRACTICACIÓN DE LA CONTRACT

Current Status

- Software Implementation
 - Learner and classifier in C++
 - Classifier in Java (to be integrated in Chaos)
- Named Entity Recognizer for English
 - Trained on MUC-6 data
- Named Entity Recognizer for Italian
 - Trained our annotated documents

Contributions on Italian Versions

- Annotation of 220 documents from "La Repubblica"
- Modification of some features, e.g. "date"
- Accent treatments, e.g Cinecittà

English Results

	ACT	REC	PRE	
SUBTASK SCORES enamex organization person location timex date time numex money percent	 454 381 126 109 0 87 26	85 90 94 95 0 97 94	84 88 82 97 0 85 62	Precision = 91% Recall = 87% F1 = 88.61

Italian Corpus from "La Repubblica"

Training data

Class	Subtype	N°	Total
ENAMEX	Person	1825	3886
	Organization	769	
	Location	1292	
TIMEX	Date	511	613
	Time	102	
NUMEX	Money	105	223
	Percent	118	

Italian Corpus from "La Repubblica"

Test data

Class	Subtype	N°	Total
ENAMEX	Person	333	537
	Organization	129	
	Location	75	
TIMEX	Date	45	48
	Time	3	
NUMEX	Money	5	13
	Percent	8	<u>s</u>

Results of the Italian NER

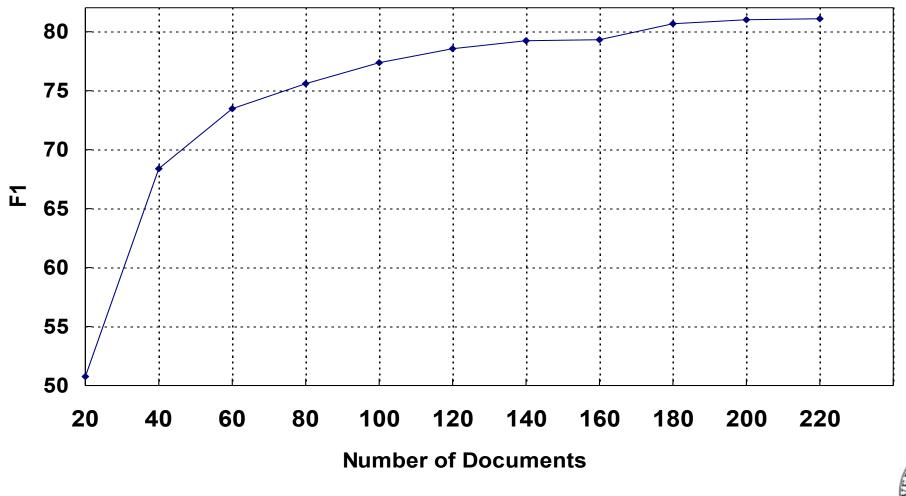
11-fold cross validation (confidence at 99%)

	Basic	+Modified	+Accent
	Model	Features	treatment
Average F1	77.98±2.5	79.08±2.5	79.75±2.5

Results on the development set 88.7 %

We acted only on improving annotation

Learning Curve

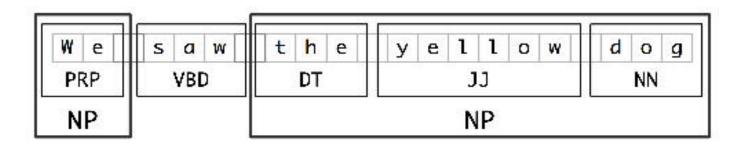


Applications of NER

- Yellow pages with local search capabilities
- Monitoring trends and sentiment in textual social media
- Interactions between genes and cells in biology and genetics

Chunking

- Chunking useful for entity recognition
- Segment and label multi-token sequences



Each of these larger boxes is called a chunk

7b

Chunking

The CoNLL 2000 corpus contains 270k words of Wall Street Journal text, annotated with part-ofspeech tags and chunk tags.

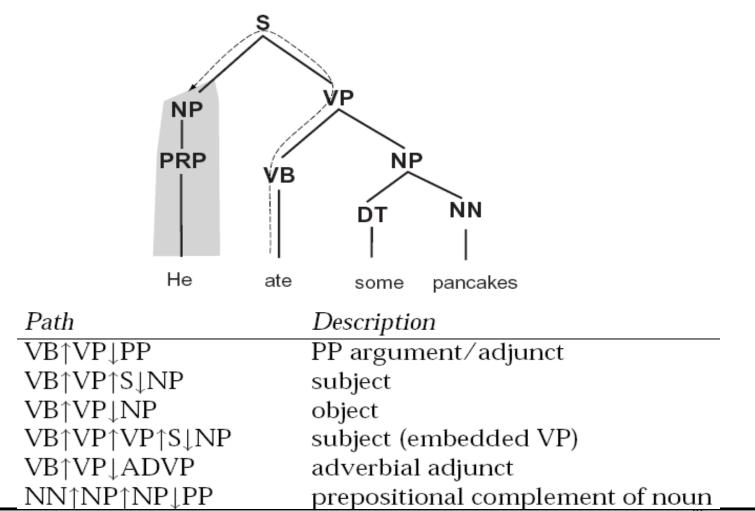
```
>>> from nltk.corpus import conll2000
>>> print conll2000.chunked_sents('train.txt')[99]
(S
    (PP Over/IN)
    (NP a/DT cup/NN)
    (PP of/IN)
    (NP coffee/NN)
    ./.
    (NP Mr./NNP Stone/NNP)
    (VP told/VBD)
    (NP his/PRP$ story/NN)
    ./.)
```

Three chunk types in CoNLL 2000:

- NP chunks
- VP chunks
- PP chunks

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in] [NP September]

No Path Feature available



•From Dan Kein's CS 288 slides (UC Berkeley)