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Output Label Sets




Simple Structured Output

= We have seen methods for: binary Classifier or
multiclassifier single label

= Multiclass-Multilabel is a structured output, i.e. a
label subset is output




From Binary to Multiclass classifiers

= [Three different approaches:

= ONE-vs-ALL (OVA)

» Given the example sets, {E1, E2, E3, ...} for the categories: {C1,
C2, C3,...} the binary classifiers: {b1, b2, b3,...} are built.

» For b1, E1is the set of positives and E2UE3 U... is the set of
negatives, and so on

» For testing: given a classification instance x, the category is the
one associated with the maximum margin among all binary
classifiers




From Binary to Multiclass classifiers

= ALL-vs-ALL (AVA)

» Given the examples: {E1, E2, E3, ...} for the categories {C1, C2,
C3,...}

o build the binary classifiers:
{b1 2,b1 3,...,b1 n,b2 3,b2 4,...,b2 n,...,.bn-1_n}

o by learning on E1 (positives) and E2 (negatives), on E1
(positives) and E3 (negatives) and so on...

» Fortesting: given an example x,

o all the votes of all classifiers are collected

o Where bg g, =1 means a vote for C1 and bgqe, =-1is a vote
for C2

» Select the category that gets more votes




From Binary to Multiclass classifiers

= Error Correcting Output Codes (ECOC)

» The training set is partitioned according to binary sequences
(codes) associated with category sets.

o For example, 10101 indicates that the set of examples of
C1,C3 and C5 are used to train the C,,,,4 Classifier.

o The data of the other categories, i.e. C2 and C4 will be
negative examples

» In testing: the code-classifiers are used to decode one the original
class, e.g.

Ci0101= 1and C,,440 = 1 indicates that the instance belongs to C1
That is, the only one consistent with the codes




Designing Global Classifiers

= Each class has a parameter vector (w,,b,)
= X IS assigned to class k iff

w;az—l—bk>max w; x—l—b

= For simplicity set b,=0
(add a dimension and include it in w,)

= [he goal (given separable data) is to choose w, s.t.

V(xt, yb), wszwz > max; ij:ci




Multi-class SVM

Primal problem: QP
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Structured Output Model

= Main idea: define scoring function which
decomposes as sum of features scores k on
“parts’ p:

score(x,y,w) = w' D(x,y) =D wy ¢p(Xp, yp)
k,p
= Label examples by looking for max score:

prediction(x,w) = arg max score(X,y, w)
yeY(x)

« Parts = nodes, edges, etc.  SPace of feasible

outputs




Structured Perceptron

Inputs: Training set (z;,y;) fori=1...n
Initialization: W =0
Define: F(r) = argmax,ccen() ®(,y) - W
Algorithm: Fort=1...T,i=1...n

z; = F(x;)

If (2, #y;) W=W+®&(z;,y;) — ®(z;, %)

Output: Parameters W




(Averaged) Perceptron

For each datapoint x?

Predict: y; = arg max wy lo(xty)
yey

Update: w1 =w;+a(d(xy) — (', §)))
updatevif y: £yl

1 T
Averaged perceptron: ? Z



Example: multiclass setting

Feature encoding:

: ~ T 1
Predict: Y; = dfrg max w,, & . T
: y Y d(xt,y=1)T = [x* 0...0]
P(xt,y=2)" = [0x' ...0]
Update: if ¢, += yi then -
Wyi gy = Wiy + oz’ P(x,y=K) = [00..x" ]
- _ 0 2 w! = [w] we ... w]
Wy t+1 — Wy ¢ — Lol "
Predict: yz — arg max W;FCD(Xi, y)
yey

Update: Wil 1 = Wy + CX(¢(X7 yi) — CD(Xia yz))

7

updatevif Vi Eyt



Output of Ranked Example List




Support Vector Ranking

[ min %!W\HOZZ’H&?
L szoa k 1

yr = 1 if rank(z;) > rank(z;), 0 otherwise, where k = ¢ X m + j

= Given two examples we build one example (x;, X;)




Concept Segmentation and
Classification task

= Given a transcription, i.e. a sequence of words,
chunk and label subsequences with concepts

= Air Travel Information System (ATIS)
» Dialog systems answering user questions

» Conceptually annotated dataset
¥ Frames




An example of concept annotation in
ATIS

= User request: list TWA flights from Boston to
Philadelphia

list TWA flights from Boston to Philadelphia
—~ —— D = — =~ >

null airline_code 11 null Jromloc.city null tolchity

= The concepts are used to build rules for the dialog
manager (e.g. actions for using the DB)

s from location " list flights from boston to Philadelphia
: FRAME: FLIGHT
= tolocation FROMLOC.CITY = boston
= airline code I TOLOC.CITY = Philadelphia |




Our Approach
(Dinarelli, Moschitti, Riccardi, SLT 2008)

= Use of Finite State Transducer to generate word
sequences and concepts

= Probability of each annotation
= m best hypothesis can be generated

s ldea: use a discriminative model to choose the

best one
r Re-ranking and selecting the top one




Experiments

= Luna projects’ Corpus Wizard of OZ

Corpus LUNA Training set Test set

words concepts words concepts
Dialogs 183 67
Turns 1,019 373
Tokens 8,512 2,887 2,888 984
Vocabulary 1,172 34 - -
OOV rate - - 3.2% 0.1%




Re-ranking Model

= The FST generates the most likely concept
annotations.

= These are used to build annotation pairs,<s", sj> .
» positive instances if ' more correct than ¢,

= The trained binary classifier decides if s’ is more
accurate than g

= Each candidate annotation s’ is described by a
word sequence where each word is followed by
its concept annotation.




Re-ranking framework

Hypotheses Pairs Hypotheses
H1 <H1,H2> H4
i < =
Input sentence Hf' it H3 H4
— »/ASR|__ 3| SLU Model |, H3 N p| Re-ranker| L
<Hn,H1> H1
Hn <Hn,H2> Hn




Example

= | have a problem with the network card now

s’ T NULL have NULL a NULL problem
PROBLEM-B with NULL my NULL monitor
HW-B

S/: I NULL have NULL a NULL problem HW-B
with NULL my NULL monitor




Flat tree representation

ROOT
NULL PROBLEM-B PROBLEM-I HW-B HW-I

Ho un problema col monitor




Multilevel Tree

ROOT
NULL PROBLEM HW
| il S T
Ho PROBLEM-B PROBLEM-I HW-B HW-I

| | | |

un problema col monitor




Enriched Multilevel Tree

ROOT
PROBLEM
HW
/\ PROBLEM-B PROBLEM-I HW-B HW-I

FO:Ho Fl:Ho FOun  FLART  FO:problema  Fliproblema FO:col FLSPRE  FO:momtor  Fl:momtor




Results

Model Concept Error Rate

='30% of error reduction of

the best model
FSA+Re-Ranking 16.01




Structured Perceptron

Inputs: Training set (z;,y;)fori =1...n
Initialization: W =0
Define: F(r) = argmax cgene) ®(z,y) - W
Algorithm: Fort=1...T,i=1...n

z; = F(x;)

If(z; #y;)) W=W+®(z;,y;) — ®(z;, )

Output: Parameters W
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The Impact of SSTK in Answer
Classification

Fl-measure
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Mercer’s conditions (1)

Def. B.11 Eigen Values
Given a matrix A € R™ x R", an egeinvalue A\ and an egeinvector ¥ <
R"™ — {0} are such that

A7 = A\t

Def. B.12 Symmetric Matrix
A square matrix A € R" xR" is symmetriciff A;; = Ajifori # ji=1,..,m
andj=1,..n, ie iffA=A"

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A € R™ x R™ is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).




Mercer’s conditions (2)

Proposition 2.27 (Mercer’s conditions)
Let X be a finite input space with K(x,z) a symmetric function on X. Then
K(Z,2) is a kernel function if and only if the matrix

k(Z,7) = d(T) - d(2)

is positive semi-definite (has non-negative eigenvalues).

s If the Gram matrix: G =k(5c’l,,)?j)
IS positive semi-definite there is a mapping ¢ that
produces the target kernel function




The lexical semantic kernel is not always
a kernel

= It may not be a kernel so we can use MM, where M is the
initial similarity matrix

Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector & # 0

FAT>\E (> 0).

From the previous proposition it follows that: If we find a decomposition
A in M' M, then A is semi-definite positive matrix as

7AT =7 M Mi = (M%) (MZ) = M%- Mi = ||MZ||* > 0.




Efficient Evaluation (1)

= In [Taylor and Cristianini, 2004 book], sequence kernels with
weighted gaps are factorized with respect to different

subsequence sizes.
= We treat children as sequences and apply the same theory

‘ lm
A (‘7’11 . 722) — M ()\2 —+ Zp:l A-p(cnl » Cng )) )

Given the two child sequences sja = ¢,,, and s20 = ¢,
(a and b are the last children), A,(s1a, s2b) = D

[s1] [s2]

A(a,b) x ZZ Alstl=itle2l=r o A (s[12 4], 8912 7))

=1 r=1




Theory

Kernel Trick
Kernel Based Machines
Basic Kernel Properties

Kernel Types




