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Support Vector Machines 





Summary 


   Support Vector Machines 

   Hard-margin SVMs 

   Soft-margin SVMs 



Communications 


   No lecture tomorrow (neither Dec. 8) 


   ML Exams 

   12 January 2011 at 9:00, 

   26 January 2011 at 9:00 


   Exercise in Lab 

   A201 (Polo scientifico e tecnologico)  

   Wednesday 15 and 22 December, 2011 

   Time: 8.30-10.30 



Which hyperplane choose? 



Classifier with a Maximum Margin 
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IDEA 1: Select the 
hyperplane with 
maximum margin 



Support Vector 

Var1 

Var2 

Margin 

Support Vectors 



Support Vector Machine Classifiers 
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Support Vector Machines 
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We need to solve 
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Support Vector Machines 
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There is a scale for 
which k=1.  

The problem transforms 
in: 
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Final Formulation 
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Optimization Problem 


   Optimal Hyperplane: 


   Minimize 


   Subject to 


   The dual problem is simpler 
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1
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 w 2

yi ((
 w ⋅  x i ) + b) ≥1,i =1,...,m



Lagrangian Definition 
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Dual Optimization Problem 



Dual Transformation 


   To solve the dual problem we need to evaluate: 


   Given the Lagrangian associated with our problem 


   Let us impose the derivatives to 0, with respect to   w



Dual Transformation (cont’d) 


   and wrt b 


   Then we substituted them in the Lagrange function 



Final Dual Problem 



Khun-Tucker Theorem 


   Necessary and sufficient conditions to optimality 



Properties coming from constraints 


   Lagrange constraints: 


   Karush-Kuhn-Tucker constraints 


   Support Vectors have     not null 


   To evaluate b, we can apply the following equation 
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Warning! 


   On the graphical examples, we always consider 
normalized hyperplane (hyperplanes with normalized 
gradient) 


   b in this case is exactly the distance of the hyperplane 
from the origin  


   So if we have an equation not normalized we may have 


   and b is not the distance   
    

€ 

 x ⋅  w '+b = 0 with  x = x,y( ) and  w '= 1,1( )



Warning! 


   Let us consider a normalized gradient 

    

€ 

  w = 1/ 2,1/ 2( )
x,y( ) ⋅ 1/ 2,1/ 2( ) + b = 0⇒ x / 2 + y / 2 = −b

⇒ y = −x − b 2


   Now we see that -b is exactly the distance.  


   For x =0, we have the intersection with           . This 
distance projected on      is -b 
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Soft Margin SVMs 
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   slack variables are 
added 

Some errors are allowed 
but they should penalize 
the objective function 
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Soft Margin SVMs 
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The new constraints are 

The objective function 
penalizes the incorrect 
classified examples 

C is the trade-off 
between margin and the 
error 
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Dual formulation 


   By deriving wrt   

€ 

 w ,
 
ξ  and b



Partial Derivatives 



Substitution in the objective function 


        of Kronecker  ijδ



Final dual optimization problem 



Soft Margin Support Vector Machines 


   The algorithm tries to keep ξi low and maximize the margin 


   NB: The number of error is not directly minimized (NP-complete 
problem); the distances from the hyperplane are minimized 


   If C→∞, the solution tends to the one of the hard-margin algorithm 


   Attention !!!: if C = 0 we get          = 0, since  


   If C increases the number of error decreases. When C tends to 
infinite the number of errors must be 0, i.e. the hard-margin 
formulation 

|||| w
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Robusteness of Soft vs. Hard Margin SVMs 
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Soft vs Hard Margin SVMs 


   Soft-Margin has ever a solution 


   Soft-Margin is more robust to odd examples 


   Hard-Margin does not require parameters 



Parameters   


   C: trade-off parameter 


   J: cost factor 
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Theoretical Justification 



Definition of Training Set error 


   Training Data 


   Empirical Risk (error) 


   Risk (error) 

{ }1: ±→NRf
  

€ 

( x 1,y1),....,(
 x m ,ym )∈ RN × ±1{ }
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Remp [ f ]= 1
m

1
2 f ( x i ) − yi
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∑
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R[ f ]= 1
2

f ( x ) − y dP( x ,y)∫



Error Characterization (part 1) 


   From PAC-learning Theory (Vapnik): 

    where d is theVC-dimension, m is the number of 
examples, δ  is a bound on the probability to get such 
error and α is a classifier parameter.                                                

€ 

R(α) ≤ Remp (α) +ϕ( dm , log(δ )m )

ϕ( dm , log(δ )m ) = d (log 2md +1)− log(δ4 )
m



There are many versions for different bounds 



Error Characterization (part 2) 



Ranking, Regression 
and 

Multiclassification 



The Ranking SVM  
[Herbrich et al. 1999, 2000; Joachims et al. 2002] 


   The aim is to classify instance pairs as correctly ranked or 
incorrectly ranked 

   This turns an ordinal regression problem back into a binary 

classification problem 


   We want a ranking function f such that 

xi > xj iff f(xi) > f(xj) 


   … or at least one that tries to do this with minimal error 


   Suppose that f is a linear function  

f(xi) = wxi 

• Sec. 15.4.2 



The Ranking SVM  


   Ranking Model: f(xi)�

€ 

f (xi )

• Sec. 15.4.2 



The Ranking SVM  


   Then (combining the two equations on the last slide): 

xi > xj iff wxi − w xj > 0 

xi > xj iff w(xi − xj) > 0 


   Let us then create a new instance space from such 
pairs:            zk = xi − xk 

yk = +1, −1 as xi ≥ , < xk 

• Sec. 15.4.2 



Support Vector Ranking 


   Given two examples we build one example (xi , xj) 
€ 

−1



Support Vector Regression (SVR) 

 Constraints: 
+ε 

-ε 
0

 Solution: 

x 

f(x) 



Support Vector Regression (SVR) 
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 Minimise: 

 Constraints: ξ 

ξ* 



Support Vector Regression 


   yi is not -1 or 1 anymore, now it is a value 


   ε is the tollerance of our function value 



From Binary to Multiclass classifiers 


   Three different approaches: 


   ONE-vs-ALL (OVA) 


   Given the example sets, {E1, E2, E3, …} for the categories: {C1, C2, 
C3,…} the binary classifiers: {b1, b2, b3,…} are built. 


   For b1, E1 is the set of positives and E2∪E3 ∪… is the set of negatives, 
and so on 


   For testing: given a classification instance x, the category is the one 
associated with the maximum margin among all binary classifiers 



From Binary to Multiclass classifiers 


   ALL-vs-ALL (AVA) 

   Given the examples: {E1, E2, E3, …} for the categories {C1, C2, C3,…}  


   build the binary classifiers: 

   {b1_2, b1_3,…, b1_n, b2_3, b2_4,…, b2_n,…,bn-1_n}  


   by learning on E1 (positives) and E2 (negatives), on E1 
(positives) and E3 (negatives) and so on… 


   For testing: given an example x,  


   all the votes of all classifiers are collected 


   where bE1E2 = 1 means a vote for C1 and  bE1E2 = -1 is a vote 
for C2 


   Select the category that gets more votes 



From Binary to Multiclass classifiers 


   Error Correcting Output Codes (ECOC) 

   The training set is partitioned according to binary sequences (codes) 

associated with category sets.  


   For example, 10101 indicates that the set of examples of 

C1,C3 and  C5 are used to train the C10101 classifier.  


   The data of the other categories, i.e. C2 and C4 will be 

negative examples  


   In testing: the code-classifiers are used to decode one the original class, 
e.g. 

    C10101 = 1 and C11010 = 1 indicates that the instance belongs to C1 
That is, the only one consistent with the codes 



SVM-light: an implementation of SVMs 


   Implements soft margin 


   Contains the procedures for solving optimization 
problems 


   Binary classifier 


   Examples and descriptions in the web site:  

    http://www.joachims.org/  

    (http://svmlight.joachims.org/) 
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