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Summary

= Computational Learning theory
¥ Perceptron Learning

¢ Margins




Linear Classifier (1)

= The equation of a hyperplane 1s
f(X)=x-w+b=0, xweER"bLENR
s X is the vector representing the classifying example

s Wis the gradient to the hyperplane

s The classification function is
h(x) = sign( f(x)) 2.2 o




Linear classifiers (2)

s Linear Functions are the simplest ones from an
analytical point of view.

= The basic 1dea 1s to select a hypothesis with null error
on the training-set.

s To learn a linear function a simple neural network of

only one neuron 1s enough (Perceptron)




An animal neuron

synapse L




The Perceptron

(%) = sgn( ZW" X X, +b)




Useful Concepts

s Functional Margin of an example with respect to a
hyperplane: YV, =, (w-x,+D)

n The distribution of functional margins of a hyperplane
with respect to a training set S 1s the distribution of the
margins of the examples in S wrt the hyperplane (W,0).

n The functional margin of a hyperplane 1s the minimum
margin of the distribution




Notations (con’td)

= If we normalize the hyperplane equation, 1.e.
w b

—, —— , we obtain the geometric margin
[ wl [[w]]

s The geometric margin measure the Euclidean distance between
the target point and the hyperplane.

s The training set Margin is the maximum geometric (functional)
margin among all hyperplanes which separates the examples in

S.

= The hyperplane associated with the above quantity 1s called
maximal margin hyperplane




Basic Concepts

—_

Lo X W
s From cos(x,w)=— —
| x| -]l wl]
s It follows that
. Lol XW W
| x| cos(x, W) =——=x"—
| w] | w]

= Norm of X times the cosine between X and W, i.e. the
projection of X on w




Geometric Margin
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Geometric margins of 2 points and hyperplane
margin
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Maximal margin vs other margins




Perceptron training on a data set
(on-line algorthm)

w, < 0;h, < 0;k < O;R < max__, Il %, |l
Repeat
fori= 1tom
ity (w, X, +b,) =0 then
Wi =W, + Ny,
b, =b +nyR’
k=k+1
endif
endfor
until no error is found

return k,(w_,b, )
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Novikoft’s Theorem

Let S be a non-trivial training-set and let

R =max || x, ||.

i=1,..m

Let us suppose there is a vector W ,||w ||=1 and
yl.(<w*,xl.> +b)=zy, i=1,.m,

with y > (. Then the maximum number of errors of the perceptron

1S:
2
R 2R
t ==,
(V)




Observations

s The theorem states that independently of the margin size, if data 1s
linearly separable the perceptron algorithm finds the solution in a
finite amount of steps.

= This number is inversely proportional to the square of the margin.

= The bound 1s invariant with respect to the scale of the patterns (i.e.
only the relative distances count).

= The learning rate is not essential for the convergence.




Dual Representation

m The decision function can be rewritten as:

h(x)=sgn(w-X+b)=sgn( Y a,y X, X+b)=

j=1..m

sgn( Eajyj)_c’j X+ D)

i=1..m

= as well as the updating function

if y.( Eajyjic’j X, +b)s0thena =a, +n
j=1..m
s The learning rate 17 only affects the re-scaling of the hyperplane,
it does not affect the algorithm, so we can fix 11 =1.




First properties of SVMs

DUALITY 1s the first feature of Support Vector Machines

SVMs are learning machines using the following function:

f(x)=sgn(w-X+b)=sgn( Yy yX X+b)

Note that data appears only as scalar product (for both

j=1l..m

testing and learning phases)

The Matrix G = ()?l. )‘c’)m

J /i, j=1

1s called Gram matrix




Limits of Linear Classifiers

m Data must be linearly separable
= Noise (almost all classifier types)

= Data must be 1n vectorial format




Solutions

s Multi-Layers Neural Network: back-propagation learning
algorithm.

s SVMs: kernel methods.

The learning algorithm 1s decoupled by the application
domain which 1s encoded by a kernel function




