Queueing systems

Renato Lo Cigno

Simulation and Performance Evaluation 2018-19

- A Birth-Death process is a good model (and solver) of a queue

- Indeed queues can be used to model a variety of problems
- CPUs, Stacks, Communication Links, ...
- Post Offices, Banks, Offices in general, ...
- Production plants, Logistics, ...
- Underlying a queuing system we always find a Markov Chain (DT, or CT, or Semi-Markov)

A queue is normally indicated with the following notation

$$
\mathrm{A} / \mathrm{S} / \mathrm{m} / \mathrm{B} / \mathrm{K} / \mathrm{SD}
$$

called the Kendall notation where

- A: defines the type of arrival

■ S: defines the type of service
■ m: defines the number of servers

- B: defines the maximum number of jobs/customers in the systems (including those in service) (omitted if ∞)
■ K: defines the total population size (omitted if ∞)
- SD: defines the serving discipline (omitted if FCFS)

Arrival and Service processes (A/S)
■ M: Markovian arrival/services, it means that interarrival times (service times) are exponentially distributed
■ G: (General) arrival/services are arbitrarily distributed

- D: Deterministic
- E_{k} : arrival/services are Erlang with k stages
- H_{k} : arrival/services are Hyperexponential with k stages

Serving Disciplines
■ FCFS (FIFO): First Come First Served

- LCFS (LIFO): Last Come First Served (stacks)
- PS: Processor Sharing
- R or SIRO: Service in Random Order

■ PNPN: Priority Service (customers belong to classes) includes preemptive and non-preemptive systems (e.g., interrupts in OS and CPUs are -normally- preemptive)

Kendall Notation - Examples

■ $M / M / 1$
Exponential interarrival times, exponential service times, 1 server, ∞ buffering positions, ∞ population, FCFS

- M/G/2/PS

Exponential interarrival times, general service times, 2 servers, ∞ buffering positions, ∞ population, Processor Sharing

- $\mathrm{M} / \mathrm{M} / 4 / 40 / 400 /$ LIFO

Exponential interarrival times, exponential service times, 4 servers, 40 buffering positions, 400 potential customers/jobs, Last In First Out

- They model a wide range of systems
- Queues can be grouped in networks of queues and the solution remains an Markov Chain
- There are many "already solved" queues that we can use for quick-n-dirty evaluation
- There is a large class of networks of queues that allow a simple "product form solution"
- Number of customers in the queue
- Easy as we associate the number of customers to the state of the MC so given the steady state distribution π of the MC representing the queuing system $\mathbf{P}[$ No. of customers $=k]=\pi_{k}$
- Waiting times
- Average values (steady state analysis)
- Variance
- Distribution in steady state
- Transients (rarely)

Given a queue with general arrivals and services

the average number of customers $E[N]$ is easily computed from the steady state π

$$
E[N]=\sum_{k=0}^{\infty} k \pi_{k}
$$

What if we want to know what is the average waiting (or response) time of the system $E[R]$?

Given a queue without losses (either there are infinite position or $B \geq K$)

with average arrival rate $E[A]$ and average number of customers $E[N]$, the average waiting time $E[R]$ is given by a very simple formula known as Little's formula

$$
E[R]=\frac{E[N]}{E[A]}
$$

Little's formula can be demonstrated based on conservation laws: whatever gets into a "black box" must come out

- The result is independent from: No. of servers, arrival distribution, and service distribution

- States that the expected waiting time is directly proportional to the number of customers in the system and inversely proportional to the average arrival rate
- The result is independent from the service distribution, but it requires that $E[A]<E[S]$
- The system must be without losses
- All CTMCs underlying continuous time queues with Markovian arrival and services are Birth-Death processes
- In general the steady-state solution is not difficult to compute
- We call λ the average arrival rate
- We call μ the service rate of a single server
- We call $\rho=\frac{\lambda}{\mu}$ the load of the queue
- The infinitesimal generator Q is diagonal or banded

- Must be $\rho<1$ for stability

■ The general balance requires $\lambda \pi_{i}=\mu \pi_{i+1}$ or $\pi_{i+1}=\rho \pi_{i}$

- By direct substitution we have

$$
\begin{gathered}
\pi_{i}=\rho^{i} \pi_{0} ; \quad i>0 ; \quad \text { and } \sum_{i=0}^{\infty} \pi_{i}=1 \\
\pi_{0}=\left[\sum_{i=0}^{\infty} \rho^{i}\right]^{-1}=(1-\rho) \\
\pi_{i}=(1-\rho) \rho^{i}
\end{gathered}
$$

- The average number of customer is

$$
E[N]=\sum_{i=0}^{\infty} i \pi_{i}=(1-\rho) \sum_{i=0}^{\infty} i \rho^{i}=\frac{\rho}{1-\rho}
$$

- The variance of the number of customer is

$$
\operatorname{Var}[N]=\sum_{i=0}^{\infty} i^{2} \pi_{i}-(E[N])^{2}=\frac{\rho}{(1-\rho)^{2}}
$$

■ And applying Little's rule we obtain the average waiting time

$$
E[R]=\frac{E[N]}{\lambda}=\frac{\rho}{\lambda(1-\rho)}=\frac{1 / \mu}{1-\rho}
$$

note that it is the average service time over the probability that the server is idle

■ Homework: plot $E[N]$ and $E[R]$ as a function of ρ

- Must be $\rho<m$ for stability
- The general balance equations a simple but a little cumbersome, as they have to include the varying service rate for $i<m$, so we only give the final results

$$
\begin{gathered}
\pi_{0}=\left[\sum_{i=0}^{m-1} \frac{(m \rho)^{i}}{i!}+\frac{(m \rho)^{m}}{m!} \frac{1}{1-\rho}\right]^{-1} \\
\pi_{i}=\pi_{0} \rho^{i} \frac{1}{m!} ; \quad i \leq m \\
\pi_{i}=\pi_{0} \rho^{i} \frac{1}{m!m^{m-i}} ; \quad i \geq m
\end{gathered}
$$

- The average number of customer is

$$
E[N]=\sum_{i=0}^{\infty} i \pi_{i}=m \rho+\rho \frac{(m \rho)^{m}}{m!} \frac{\pi_{0}}{(1-\rho)^{2}}
$$

■ And applying Little's rule we obtain the average waiting time

$$
E[R]=\frac{E[N]}{\lambda}=m \frac{1}{\mu}+\frac{1}{\mu} \frac{(m \rho)^{m}}{m!} \frac{\pi_{0}}{(1-\rho)^{2}}
$$

- The queue is always stable for $\rho<\infty$
- The general balance requires $\lambda \pi_{i}=(i+1) \mu \pi_{i+1}$ or $\pi_{i+1}=\frac{\rho}{i+1} \pi_{i}$
- By direct substitution we have

$$
\begin{gathered}
\pi_{i}=\frac{\rho^{i}}{i!} \pi_{0} ; \quad i>0 ; \quad \text { and } \sum_{i=0}^{\infty} \pi_{i}=1 \\
\pi_{0}=\left[\sum_{i=0}^{\infty} \frac{\rho^{i}}{i!}\right]^{-1}=e^{-\rho} \\
\pi_{i}=\frac{\rho^{i}}{i!} e^{-\rho}
\end{gathered}
$$

- The average number of customer is

$$
E[N]=\sum_{i=0}^{\infty} i \pi_{i}=\rho
$$

- The variance of the number of customer is

$$
\begin{aligned}
\operatorname{Var}[N] & =\sum_{i=0}^{\infty} i^{2} \pi_{i}-(E[N])^{2}=e^{-\rho} \sum_{i=0}^{\infty} i^{2} \frac{\rho^{i}}{i!}-\rho^{2} \\
& =e^{-\rho} e^{\rho}\left(\rho+\rho^{2}\right)-\rho^{2}=\rho
\end{aligned}
$$

- As there is no queuing (infinite servers) we don't even need Little's rule to obtain the average response time

$$
E[R]=\frac{1}{\mu}
$$

Compare the performance in terms of average number of customers and average response time of the following three queuing systems

- $\mathrm{M} / \mathrm{M} / 1$ with service rate $m \mu$ and arrival rate $m \lambda$

■ $\mathrm{M} / \mathrm{M} / \mathrm{m}$ with service rate μ and arrival rate $m \lambda$

- m parallel $\mathrm{M} / \mathrm{M} / 1$ queues with service rate μ and arrival rate λ

- A finite queue does not have stability problems, so $0<\rho<\infty$

■ The general balance requires $\lambda \pi_{i}=\mu \pi_{i+1}$ or $\pi_{i+1}=\rho \pi_{i}$

- When new arrivals happen in state n the customers are lost

■ By direct substitution we have

$$
\begin{aligned}
& \pi_{i}=\rho^{i} \pi_{0} ; \quad 0<i<n ; \text { and } \sum_{i=0}^{n} \pi_{i}=1 \\
& \pi_{0}=\left[\sum_{i=0}^{n} \rho^{i}\right]^{-1}= \begin{cases}\frac{1-\rho}{1-\rho^{n+1}} ; & \rho \neq 1 \\
\frac{1}{n+1} ; & \rho=1\end{cases}
\end{aligned}
$$

- The loss probability is given by the probability that a customer arrives in state N conditioned on the probability that a customer has arrived, so it is simply

$$
P_{\mathrm{loss}}=\pi_{n}=\frac{1-\rho}{1-\rho^{n+1}} \rho^{n}
$$

- $P_{\text {loss }}$ is always smaller than the probability that the queue length in and $M / M / 1$ queue is larger or equal to n
- The reason is that a queuing customers creates a dependence or correlation in time equal to its service time that is paid by all customers that arrive later, while refusing a customer is terms of service time is equal to 0
■ Homework: prove it or show it graphically for different $\rho<1$

- Average number of customers

$$
\begin{aligned}
E[N] & =\sum_{i=1}^{n} i \pi_{i} \\
& =\sum_{i=1}^{\infty} i \pi_{i}-\sum_{i=n+1}^{\infty} i \pi_{i} \\
& =\frac{\rho}{1-\rho}-\frac{n+1}{1-\rho^{n+1}} \rho^{n+1}
\end{aligned}
$$

Throughput of the queue

- For an infinite queuing system the notion of throughput is meaningless: everything that comes in must exit
- If there are losses instead we can be interested to know what it the number (fraction) of customers serviced
- Intuitively this is the total minus the lost ones so

$$
T h=\lambda\left(1-\pi_{n}\right)
$$

- Also intuitively it should be one minus the time the server is inactive, hence $T h=\mu\left(1-\pi_{0}\right)$
- Interestingly this also means that $\frac{\left(1-\pi_{0}\right)}{\left(1-\pi_{n}\right)}=\rho$

In general the throughput can be computed as the arrival rate in any state that does not lead to a loss

- For a generic (finite) queue with one server

$$
T h=\sum_{i=0}^{n-1} \lambda_{i} \pi_{i}
$$

note that π is not necessarily simple to compute

Response time in finite queues

- Little's result cannot be applied directly because there are losses
- However we know what are the losses and hence the net flow entering the queue after the lost customers are discarded

■ Litte's result can be applied to this subsystem

$$
E[R]=\frac{E[N]}{T h}=\frac{1}{\lambda\left(1-\pi_{n}\right)}\left[\frac{\rho}{1-\rho}-\frac{n+1}{1-\rho^{n+1}} \rho^{n+1}\right]
$$

- If we can compute the loss probability and hence the throughput, then Little's formula can be applied (any system, not only the $M / M / 1 / n$)
- We can imagine all sort of single station queuing systems
- With non Markov arrivals/services
- With batch arrivals

■ With servers that sometimes stop serving
■ ...
■ Many have closed form or approximate solutions

- Some are important
- Finding the solution is often complex...

Given an $M / M / 1$ queue

- All results are stochastically independent from the serving policy
■ LIFO, Random, PS, ...
- As long as it is work conserving
- The result is intuitive as all customers are identical and their service bears no memory, so even a policy that tries to favor someone is impossible
- Can we find results for non-markovian services?
- Indeed yes, using a very interesting technique: Using a discrete MC obtained sampling the system at times where all the memory is embedded in the state
■ But what are these times?
- The problem lies in the fact that the residual service time is not independent from the service already received
■ But different customers are independent one another...

■ ... if we sample the system when a customer departs, then we obtain a DTMC ...

■ ... and we are left (only!) with the problem of computing the transition probabilities $p_{i j}$

Let
$\square X=X_{n} ; n=0,1,2,3, \cdots$ be the (DT) stochastic process that describes the number of customers in the queue at the departure of the n-th customer, and
■ $Y=Y_{n} ; n=0,1,2,3, \cdots$ be the (DT) stochastic process that describes the number of customers that arrive during the service of the n-th customer
then we have

$$
X_{i+1}= \begin{cases}X_{i}-1+Y_{i+1}, & \text { if } X_{i}>0 \\ Y_{i+1}, & \text { if } X_{i}=0\end{cases}
$$

$$
X_{i+1}= \begin{cases}X_{i}-1+Y_{i+1}, & \text { if } X_{i}>0 \\ Y_{i+1}, & \text { if } X_{i}=0\end{cases}
$$

■ The case for $X_{i}>0$ is straightforward: when customer $i+1$ leaves the system he leaves behind the customers that were in the queue when his service started, minus himself, plus the customers arrived during its service

- The case for $X_{i}=0$ goes as follows: when customer $i+1$ leaves the system he has first arrived, so the queue that was empty now has a customer, but then he leaves, so he leaves the customers arrived during its service

- What are the possible events when a customer departs?
- What states can be reached with these events?
- What are the probabilities of these events?

■ First event: no customer arrives during a service

- Clearly this means a transition $i \rightarrow i-1 ; i>0$
- Let's call the probability of this event a_{0}

- Second event: one customer arrives during a service

■ Clearly this means a transition $i \rightarrow i ; i>0$, as the additional customer compensate the one leaving on service completion

- Let's call this probability a_{1}

■ But what about transitions from state 0 ?

- We have no customer in state 0 , so transition $0 \rightarrow 0$ means that a customer has arrived, and then no other has arrived until he left
- Then this transition has probability a_{0}

■ In general transitions $0 \rightarrow j$ happen with probability a_{j} that j new customers arrive during the service of the customer that arrived and has been served

- Third event: two customers arrive during a service
- The transition is $i \rightarrow i+1 ; i \geq 0$ as one additional customer compensate the one leaving on service completion and the second one increase the no. of customers in the queue by 1
- Or transition $0 \rightarrow 2$
- We call this probability a_{2}

■ Fourth event: three customers arrive during a service

- This means a transition $i \rightarrow i+2 ; i \geq 0$ or $0 \rightarrow 3$

■ We call this probability a_{3}

- We can recursively continue the reasoning to obtain all the infinite a_{j} transition probabilities from a given state to the others

- Notice that the transition probabilities from any state is identical to any other state
- With the exception of state 0 where it is not possible to have a transition to state " -1 " and actually the probability a_{0} that no customer arrives during a service is added to the self-transition

The one step transition probability matrix is thus

$$
P=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
0 & a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
0 & 0 & a_{0} & a_{1} & a_{2} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

- The structure is known as upper Hassenberg (all values below the first lower sub-diagonal are zero) and the system can be solved with known techniques (e.g., QR-decomposition) by reducing it to a triangular matrix
- Still we have to formalize the a_{j}

Since arrivals follow a Poisson process, then in general, if we call B the RV describing the services we can write

$$
\mathrm{P}\left[Y_{n+1}=j \mid B=t\right]=e^{-\lambda t} \frac{(\lambda t)^{j}}{j!}
$$

Applying the theorem of total probability

$$
a_{j}=\int_{0}^{\infty} \mathrm{P}\left[Y_{n+1}=j \mid B=t\right] f_{B}(t) d t=\int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{j}}{j!} f_{B}(t) d t
$$

- a_{j} can be computed once the distribution $f_{B}(t)$ of the services is given
- Completing the analysis of the $\mathrm{M} / \mathrm{G} / 1$ queue, once we found the one step transition probability matrix is still difficult and requires math manipulations in the z (discrete frequency transform domain) and LS (Laplace Stilties) domains, which we do not know...
- ... after these passages, however we can come to the very general and powerful result giving the average expected number of customers $E[N]$ for any queuing system

$$
E[N]=\rho+\frac{\rho^{2}}{2(1-\rho)}\left(1+C_{B}^{2}\right)
$$

where $C_{B}=\frac{\sigma_{B}}{\mu_{B}}$ is the coefficient of variation of the service time distribution

$$
E[N]=\rho+\frac{\rho^{2}}{2(1-\rho)}\left(1+C_{B}^{2}\right)=\frac{\rho}{1-\rho}\left(1+\rho \frac{C_{B}^{2}-1}{2}\right)
$$

- Given a load $\rho, E[N]$ grows linearly with C_{B}^{2}
- $E[N]$ depends only on the first two moments of the services distribution
- If $C_{B}^{2} \rightarrow \infty$ then also $E[N]$ goes to infinity: the queuing system "seems" stable, but it response time becomes infinite

■ A very interesting service discipline is the Processor Sharing (PS) that approximate a round robin (RR) discipline as the service time in the RR discipline approaches 0 and the RR overhead is negligible

- Jobs enter in service as soon as they arrive, but if there are j customers each job receives only $\frac{1}{j}$ of the processing power
- Intuitively this serving discipline favors short jobs that will stay in the system for a short time, while long jobs will stay in the system for a very long time, as they are continuously "disturbed" (i.e., the processing power dedicated to them is reduced) by short jobs arriving in the system
- The formal analysis is not trivial
- The analysis show that "average" performance of the $M / G / 1 / P S$ queue are the same of the $M / M / 1 / F I F O$, a very notable result that also tell and support the intuition that if the service is "shared" then there is no blocking phenomenon as, instead, happens in the M/G/1/FIFO for $C_{B} \rightarrow \infty$
- Distributions however are not, indeed distributions are even more biased and "stretched" if $C_{B}>1$ as heavy jobs remain in the system for very long time
- PS discipline create "long range dependence," i.e., a single large job introduces a long memory in the system, even if arrival and services are memory-less.

■ $E[S]=1 / \mu$: average (total) service time per job; $\rho=\lambda / \mu$

- $\pi_{0}=1-\rho$
- $\pi_{i}=(1-\rho) \rho^{i}$
- $E[N]=\frac{\rho}{1-\rho}$
- $\operatorname{Var}[N]=\frac{\rho}{(1-\rho)^{2}}$
$\square E[R]=\frac{1}{\mu(1-\rho)}$ the queuing delay is not defined

