Basic Notions of Maximum Likelihood Estimation and Regression

Renato Lo Cigno

Simulation and Performance Evaluation 2018-19

The basic idea of MLE is simple

- Given I observed event B, what is the probability the event A occurred?
- Also: Given I have the sample $\left\{X_{i}\right\}$ what is the most likely population / process that generated it?
■ MLE under certain hypotheses can be shown to be asymptotically optimum
- For small sample sets the estimation can be biased and give wrong results
- Unless there are some additional strong constraints MLE can be computationally very heavy
- There are no "general" closed form solutions
- If the state space of A is continuous, then we can in general only have an approximate solution

MLE is based on Bayes' Theorem

$$
\mathrm{P}\left[B_{j} \mid A\right]=\frac{\mathbf{P}\left[A \mid B_{j}\right] \mathrm{P}\left[B_{j}\right]}{\mathrm{P}[A]} \Leftrightarrow \mathrm{P}[A]=\frac{\mathbf{P}\left[A \mid B_{j}\right] \mathrm{P}\left[B_{j}\right]}{\mathbf{P}\left[B_{j} \mid A\right]}
$$

■ MLE maximizes the a-posteriori probability of a conditional probability

- The maximization is done on some parameters of the conditioning events

Let $\left\{X_{i} ; i=1,2, \ldots, n\right\}$ be a sample set and $\Theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right\}$ be a set or vector of parameters to be estimated Define a likelihood function $L(\Theta)$ as:

$$
L(\Theta)=\mathrm{P}\left[X_{1}=x 1, X_{2}=x_{2}, \ldots, X_{n}=x_{n} \mid \Theta\right]
$$

if the population is described by a discrete PMF
or

$$
L(\Theta)=f_{X}(x \mid \Theta)
$$

if the population is described by a continuous pdf

Now the problem is trivial: find Θ such that $L(\Theta)$ is maximum

In math

$$
\hat{\Theta}: \operatorname{argmax}_{\Theta} L(\Theta)
$$

- We need to know the joint probability of n random variables
- If they are not i.i.d. . . . game over!
- If we know the sample set is i.i.d. then the likelihood functions reduce to

$$
L(\Theta)=\prod_{i=1}^{n} \mathrm{P}\left[X_{i}=x_{i} \mid \Theta\right]
$$

if the population is described by a discrete PMF, or

$$
L(\Theta)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i} \mid \Theta\right)
$$

if the population is described by a continuous pdf

In case of i.i.d. sets (\& some other cases), as the likelihood function $L(\Theta)$ is described as a product it is custom to use logarithmic likelihood function $I(\Theta)=\log [L(\Theta)]$ so that the maximization problem is described by a sum and not by a product

$$
I(\Theta)=\sum_{i=1}^{n} \mathrm{P}\left[X_{i}=x_{i} \mid \Theta\right]
$$

if the population is described by a discrete PMF, or

$$
I(\Theta)=\sum_{i=1}^{n} f_{X_{i}}\left(x_{i} \mid \Theta\right)
$$

if the population is described by a continuous pdf

- Depending on Θ the problem can still be computationally very difficult (even in i.i.d. cases)
- Under some fairly general conditions of regularity of both the distributions and the Θ parameter set, then the optimization, in general an NP-complete problem, can be reduced to a set of k joint partial differential equations, where finding the zeros may be easy (?!?)

$$
\frac{\delta L(\Theta)}{\delta \theta_{i}} ; \quad i=1,2, \ldots, k
$$

- Really the only case where MLE is simple and works without hassles is when θ_{i} are orthogonal and the partial differential equations either reduce to normal differential equations or we can in any case apply the gradient algorithm

■ Really the only case where MLE is simple and works without hassles is when θ_{i} (the set of parameters) are orthogonal and the partial differential equations either reduce to normal differential equations

$$
\frac{d L(\Theta)}{d \theta_{i}} ; \quad i=1,2, \ldots, k
$$

- or we can in any case apply the gradient algorithm (only one minimum exists)

MLE: Examples of problems

- For instance if $\left\{X_{i}\right\}$ is drawn from a gamma distribution and θ_{1} and θ_{2} are the parameters λ and α of the distribution, then the set of 2 partial differential equations have no closed form solution and we have to resort to numerical methods (that's why you find the function in Matlab!!)
- For another totally "casual" example, if $\left\{X_{i}\right\}$ is drawn from a gamma distribution affected by random Gaussian noise samples Y_{i} distributed as $N(0, \sigma)$ and θ_{1}, θ_{2} and θ_{3} are the parameters λ, α, and σ of the two distributions, then we have to compute the distribution of

$$
Z_{i}=X_{i}+Y_{i}
$$

$$
f_{Z}(z)=f_{X}(x) * f_{Y}(y)
$$

where $*$ is the convolutional product so

$$
f_{Z}(z)=\int_{-\infty}^{\infty} \frac{\lambda^{\alpha} t^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} \frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{(x-z)^{2}}{2 \sigma^{2}}} d x
$$

and there is no solution to the MLE, unless we resort to (complex) numerical methods

MLE: One Efficient Application

MLE is instead simple when Θ is a partition of a probability space or a finite set of deterministic conditions. For example, it is the base for optimal detection in digital communications

- The key "problem" of digital transmission is finding the best strategy to decide what symbol $S_{i}(t)$ has been transmitted given we have received a symbol $R(t)$
- Find the maximum over j of

$$
\mathrm{P}\left[S_{j} \mid R\right]=\frac{\mathbf{P}\left[R \mid S_{j}\right] \mathbf{P}\left[S_{j}\right]}{\mathbf{P}[R]}
$$

$\square R(t)$ can be modeled as $R(t)=S_{i}(t)+N(0, \sigma)$

$$
\mathbf{P}\left[S_{j} \mid\left(S_{j}(t)+N(0, \sigma)\right)\right]=\frac{\mathbf{P}\left[\left(S_{j}(t)+N(0, \sigma)\right) \mid S_{j}\right] \mathbf{P}\left[S_{j}\right]}{\mathbf{P}\left[\left(S_{j}(t)+N(0, \sigma)\right)\right]}
$$

- Thus the MLE problem is reduced to a minimum distance problem

$$
\min _{j}\left(\left\|S_{j}-R\right\|\right)
$$

■ More reasoning at the blackboard.

- Consider two joint RV X, Y and a dependence function $d(\cdot)$ such that $Y=d(X)+\epsilon$ where ϵ is a residual error
- Our problem is finding $d(\cdot)$ such that $d(X)$ is as close as possible to Y in some appropriate sense, e.g., minimizing a euclidean distance or a generic norm such as I_{∞} or any proper measure
- Let $D=Y-d(X)$ be the random variable that measures the residual error done because we do not know $f_{X, Y}(x, y)$, and we approximate the dependence with the function $d(\cdot)$
- The most common measure of the difference is $E\left[D^{2}\right]$
- The function $d(x)$ that minimizes $E\left[D^{2}\right]$ is called the Least-square regression curve
■ It is not difficult to show that this function is $d(x)=E[Y \mid x]$
- However the conditional distribution $f_{Y \mid x}(y \mid x)$ is normally very difficult to find
- It is common practice to limit the structure of $d(x)$ (e.g., to a polynomial function) to make the problem more tractable

A scatter diagram is nothing else than an (x, y) plot of the outcome of n random experiments on the pair X, Y

Scatter diagram with the linear regression of the points and the "true" linear relationship

- The simplest form of dependence is assuming that the function is linear: $d(x)=a+b x$
\square Clearly this is a huge limitation to the dependence relationship, but in many cases it is useful and it can be treated easily
- In this case the problem of finding the optimal fitting curve reduces to minimize the following

$$
G(a, b)=e\left[D^{2}\right]=E\left[(Y-d(X))^{2}\right]=E\left[(Y-a-b X)^{2}\right]
$$

Linear dependence

■ Let $\mu_{x}, \mu_{y}, \sigma_{x}^{2}, \sigma_{y}^{2}$ be the mean and variance of X and Y respectively, and also $\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}}$
■ Then expanding $G(a, b)$ yields

$$
\begin{aligned}
G(a, b)= & \sigma_{y}^{2}+b^{2} \sigma_{x}^{2}+\left(\mu_{y}-a\right)^{2}+b^{2} \mu_{x}^{2}-2 b \rho \sigma_{x} \sigma_{y} \\
& -2 b \mu_{x}\left(\mu_{y}-a\right) \\
= & \sigma_{y}^{2}+b^{2} \sigma_{x}^{2}+\left(\mu_{y}-a-b \mu_{x}\right)^{2}-2 b \rho \sigma_{x} \sigma_{y}
\end{aligned}
$$

- To find the minimum of $G(a, b)$ we have to find the point where the partial derivatives with respect to a and b are zero

$$
\begin{aligned}
& \frac{\delta G(a, b)}{\delta a}=-2\left(\mu_{y}-a-b \mu_{x}\right)=0 \\
& \frac{\delta G(a, b)}{\delta b}=2 b \sigma_{x}^{2}-2 \mu_{x}\left(\mu_{y}-a-b \mu_{x}\right)-2 \rho \sigma_{x} \sigma_{y}=0
\end{aligned}
$$

Solving the equations we find that the optimal values of a and b are

$$
\begin{aligned}
b & =\rho \frac{\sigma_{y}}{\sigma_{x}} \\
a & =\mu_{y}-b \mu_{x}
\end{aligned}
$$

You normally find subroutines and function to perform a linear regression in any statistical tool

- If the relationship is not linear, then finding the regression can be very difficult, even if the polynomial structure is given (it is not like the deterministic case of fitting)
- The exception is the exponential relation

$$
Y=a e^{b X}
$$

where we can simply take the logarithm and do a linear fitting of the logarithm

