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Maximum Likelihood Estimation

The basic idea of MLE is simple
Given I observed event B , what is the probability the event A
occurred?
Also: Given I have the sample {Xi} what is the most likely
population / process that generated it?
MLE under certain hypotheses can be shown to be
asymptotically optimum
For small sample sets the estimation can be biased and give
wrong results
Unless there are some additional strong constraints MLE can
be computationally very heavy

There are no “general” closed form solutions
If the state space of A is continuous, then we can in general
only have an approximate solution
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The idea of MLE

MLE is based on Bayes’ Theorem

P[Bj |A] =
P[A|Bj ]P[Bj ]

P[A]
⇔ P[A] =

P[A|Bj ]P[Bj ]

P[Bj |A]

MLE maximizes the a-posteriori probability of a conditional
probability
The maximization is done on some parameters of the
conditioning events
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The idea of MLE

Let {Xi ; i = 1, 2, . . . , n} be a sample set and Θ = {θ1, θ2, . . . , θk}
be a set or vector of parameters to be estimated
Define a likelihood function L(Θ) as:

L(Θ) = P[X1 = x1,X2 = x2, . . . ,Xn = xn|Θ]

if the population is described by a discrete PMF

or
L(Θ) = fX (x |Θ)

if the population is described by a continuous pdf
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Maximizing the Likelihood Function

Now the problem is trivial: find Θ such that L(Θ) is maximum

In math
Θ̂ : argmaxΘL(Θ)
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MLE: Some observations

We need to know the joint probability of n random variables
If they are not i.i.d. . . . game over!
If we know the sample set is i.i.d. then the likelihood functions
reduce to

L(Θ) =
n∏

i=1

P[Xi = xi |Θ]

if the population is described by a discrete PMF, or

L(Θ) =
n∏

i=1

fXi
(xi |Θ)

if the population is described by a continuous pdf
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Maximum Log Likelihood

In case of i.i.d. sets (& some other cases), as the likelihood
function L(Θ) is described as a product it is custom to use
logarithmic likelihood function l(Θ) = log [L(Θ)] so that the
maximization problem is described by a sum and not by a product

l(Θ) =
n∑

i=1

P[Xi = xi |Θ]

if the population is described by a discrete PMF, or

l(Θ) =
n∑

i=1

fXi
(xi |Θ)

if the population is described by a continuous pdf
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MLE: Some observations

Depending on Θ the problem can still be computationally very
difficult (even in i.i.d. cases)
Under some fairly general conditions of regularity of both the
distributions and the Θ parameter set, then the optimization,
in general an NP-complete problem, can be reduced to a set of
k joint partial differential equations, where finding the zeros
may be easy (?!?)

δL(Θ)

δθi
; i = 1, 2, . . . , k

Really the only case where MLE is simple and works without
hassles is when θi are orthogonal and the partial differential
equations either reduce to normal differential equations or we
can in any case apply the gradient algorithm
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MLE: Some observations

Really the only case where MLE is simple and works without
hassles is when θi (the set of parameters) are orthogonal and
the partial differential equations either reduce to normal
differential equations

dL(Θ)

dθi
; i = 1, 2, . . . , k

or we can in any case apply the gradient algorithm (only one
minimum exists)
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MLE: Examples of problems

For instance if {Xi} is drawn from a gamma distribution and
θ1 and θ2 are the parameters λ and α of the distribution, then
the set of 2 partial differential equations have no closed form
solution and we have to resort to numerical methods (that’s
why you find the function in Matlab!!)
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MLE: 2015 assignment

For another totally “casual” example, if {Xi} is drawn from a
gamma distribution affected by random Gaussian noise
samples Yi distributed as N(0, σ) and θ1, θ2 and θ3 are the
parameters λ, α, and σ of the two distributions, then we have
to compute the distribution of

Zi = Xi + Yi
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MLE: 2015 assignment

fZ (z) = fX (x) ∗ fY (y)

where ∗ is the convolutional product so

fZ (z) =

∫ ∞
−∞

λαtα−1e−λx

Γ(α)

1√
2πσ

e
(x−z)2

2σ2 dx

and there is no solution to the MLE, unless we resort to (complex)
numerical methods
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MLE: One Efficient Application

MLE is instead simple when Θ is a partition of a probability space
or a finite set of deterministic conditions. For example, it is the
base for optimal detection in digital communications

The key “problem" of digital transmission is finding the best
strategy to decide what symbol Si (t) has been transmitted
given we have received a symbol R(t)

Find the maximum over j of

P[Sj |R] =
P[R|Sj ]P[Sj ]

P[R]
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MLE: One Efficient Application

R(t) can be modeled as R(t) = Si (t) + N(0, σ)

P[Sj |(Sj(t) + N(0, σ))] =
P[(Sj(t) + N(0, σ))|Sj ]P[Sj ]

P[(Sj(t) + N(0, σ))]

Thus the MLE problem is reduced to a minimum distance
problem

min
j

(||Sj − R||)

More reasoning at the blackboard.
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Estimating relations between RVs

Consider two joint RV X ,Y and a dependence function d(·)
such that Y = d(X ) + ε where ε is a residual error
Our problem is finding d(·) such that d(X ) is as close as
possible to Y in some appropriate sense, e.g., minimizing a
euclidean distance or a generic norm such as l∞ or any proper
measure
Let D = Y − d(X ) be the random variable that measures the
residual error done because we do not know fX ,Y (x , y), and we
approximate the dependence with the function d(·)
The most common measure of the difference is E [D2]
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Least-square regression curve

The function d(x) that minimizes E [D2] is called the
Least-square regression curve
It is not difficult to show that this function is d(x) = E [Y |x ]

However the conditional distribution fY |x(y |x) is normally very
difficult to find
It is common practice to limit the structure of d(x) (e.g., to a
polynomial function) to make the problem more tractable
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Scatter diagram

A scatter diagram is nothing else than an (x , y) plot of the
outcome of n random experiments on the pair X ,Y
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Scatter diagram with the linear regression of the points and the
“true” linear relationship
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Linear dependence

The simplest form of dependence is assuming that the function
is linear: d(x) = a + bx

Clearly this is a huge limitation to the dependence relationship,
but in many cases it is useful and it can be treated easily
In this case the problem of finding the optimal fitting curve
reduces to minimize the following

G (a, b) = e[D2] = E [(Y − d(X ))2] = E [(Y − a− bX )2]
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Linear dependence

Let µx , µy , σ2
x , σ

2
y be the mean and variance of X and Y

respectively, and also ρ =
Cov(X ,Y )

σxσy

Then expanding G (a, b) yields

G (a, b) = σ2
y + b2σ2

x + (µy − a)2 + b2µ2
x − 2bρσxσy

−2bµx(µy − a)
= σ2

y + b2σ2
x + (µy − a− bµx)2 − 2bρσxσy

To find the minimum of G (a, b) we have to find the point
where the partial derivatives with respect to a and b are zero
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Optimal linear regression

δG (a, b)

δa
= −2(µy − a− bµx) = 0

δG (a, b)

δb
= 2bσ2

x − 2µx(µy − a− bµx)− 2ρσxσy = 0

Solving the equations we find that the optimal values of a and b are

b = ρ
σy
σx

a = µy − bµx

You normally find subroutines and function to perform a linear
regression in any statistical tool
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Higher order relations

If the relationship is not linear, then finding the regression can
be very difficult, even if the polynomial structure is given (it is
not like the deterministic case of fitting)
The exception is the exponential relation

Y = aebX

where we can simply take the logarithm and do a linear fitting
of the logarithm
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