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Abstract

P2P systems are used to provide distributed storage, fitmmghaideo streaming, dis-
tributed gaming, and other applications based on the amiiion of participating
peers and on the observation that sharing resources useatig@dly leads to huge
savings. The operation of a P2P system as well as its shegvauhowever, is open
to many kinds of attacks, which are tough to fight due to bothdbcentralized na-
ture of P2P applications, and the lack, in some of them, ofnérakauthority, or of a
well-defined structure, or both.

Particularly, as P2P systems require the active collatooraf the participants be-
yond their selfish interest. Many system include method&yded to lure the most
resourceful users into broader participation, to provideeerall better service. The
methods devised to attract the contribution of users arerturfately vulnerable to a
particular class of attacks: Collusion. Collusion is bigatkfined as any malicious
coordinated behavior of a group of users aimed at gainingserded benefits of at
damaging (some) well behaved users.

In this paper, we survey the literature on P2P systems ggauith specific atten-
tion to collusion, to find out how they resist to such attackd ahat solutions can
be used, e.g, game theory, to further counter this problesingare P2P systems the
possibility of developing into full fledged services of thaudre Internet.
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1. Introduction

P2P systems are used in a variety of contexts, from file4stapplications, to
content streaming, to distributed storage. Such systeensaamed on the collaboration
of all participants to provide an acceptable quality of g@nboth to the wealthy and
the less resourceful of them.
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Many of these systems try to encourage the cooperation figlsgleers, that tend
to participate to the application only to receive benefitisTit usually achieved using
incentives, forms of payments, or some other forms of gcatifbn and punishment.
Such gratifications, as well as the punishments, are ofteadban the logging of the
level of contribution of a peer. The contribution, howevaan sometimes be hidden
or be presented differently from how it really happens, aglsi users or groups of
them collaborate to pollute the auditing system. For exafplo collusive peers can
falsely claim to provide and receive service from each ottighrout actually doing it,
accumulating trust, or reputation, and acquiring posgtiohprivilege in the system.

In general, we can expect in P2P systems the same behaviobseeve in real
life: as soon as there is anonymous coverage that shields fieen ethical eviction
or marginalization, behaviors tend to deviate, and as sedheaxe is a large potential
gain in cooperative misbehavior, then collusion appeadsflrish until the system
collapses under its burden.

In this survey we want to emphasize the importance of thelpnolof collusion,
broadly defined as any cooperative action inside the systenimg at any malicious
result or undeserved gain, and attract the interest of fleatiiic community by stress-
ing the security implications of it. Starting from the retéterature, we provide a first
classification of the P2P systems according to the methgdutbeto lure every peer to
contribute and possibly the wealthiest of them to contabubre than others.

The gratification/punishment system, in itself, is basaghlig on a phase of con-
tribution and another of benefit. According to the existeaceaot of an intermediate
phase between the contribution provided to the system anlghefit received from it.
A direct mappings observed in systems where there is no accumulation oit cesl
peers receive an amount of resources exactly equal to thardarttey provide from
the same peeindirect mappingnstead implies an accumulation of an abstract entity
(money, reputation, ...) and a later expenditure of lih some systems, some level of
debt and credit among peers are also tolerated, making stensynore resilient.

Eventually, we highlight the importance of game theory asaipline that lies on
top of both approaches, and can be used to describe bothyhatlis more important,
to conjugate the strengths of both philosophies to deliettel solutions.

The survey is organized as follows. Sect. 2 analyzes howntiveesystems are in
general vulnerable to collaborative attacks. Sect. 3 gesva classification of P2P sys-
tems based on their different application domains and aimajytheir different vulner-
abilities to collusion. Sect. 4 describes micro-paymesteays, how they differ from
standard incentives and the reasons why they can be usefulitder collusion. Sect. 5
discusses the tools offered by Game Theory in the perspeatia collusive scenario,
analyzing their strengths, but also the limits that staddadame Theory enconters in
face of collusion. Sect. 6 closes the paper with a discussitime survey findings and
of possible future research on this topic.

1We believe that it is not a matter of time, as suggested by Chan@hand Zhang [1]; it is rather a matter
of existence or not of some form of intermediation between trgribution and the benefit.



2. Incentive Systems: Types and Vulnerabilities

Incentive systems are a means to encourage resource htadgyend their spare
resources for the benefit of a community of peers. Incenthagsbe direct, as in a
tit-for-tat scheme, where each unit of resource is recigtext with a unit of resource;
or indirect, where the resources given to the community ecgprocated with some
currency or credit that can be used and accumulated to &cqtkier resources or, in
some cases, even cashed at a broker entity (micropaymeetrs)s

2.1. Attacks against Tit-for-Tat and direct mechanisms

A direct incentive system is based on the immediate recgiroic of a unit of
resource provided with a unit of resource received. Theyadse called tit-for-tat
schemes, and they are historically related to P2P systent$or&nt has been de-
scribed as using such a mechanism, and many other systeenmsgliration from its
simplicity.

In a tit-for-tat (TFT) scheme, the resource is divided intotst in a file-sharing
system, the unit can be a chunk of the file; in a grid applicatibcan be a time-unit
on a processor. When playing TFT, a pegsrovides one unit of resource to any peer
y encountered for the first time (timg); at timet > ¢y, x reciprocates, that is, it
provides the resource or denies it, according to whaytti previously (between,
andt). Let's assume that there exist a way, that we Aalthority, which allows each
peer to decide whether the resource unit received is goocarr going back to the
example of file sharing, we are assuming that a peer can detidther it received a
corrupted piece of data (e.g., by checking a digest).

Suppose now that a coalition of peers decides to attack imveterv. The coali-
tion can:

e Provide lower-quality resources than what they can agtwdiier (announce less
chunks, a slower processor, ...). Providing lower-quakisources forces the
victim to not only accept them, but also to reciprocate (nealibnestly). The
advantage for colluders is that they get reciprocation V&gis resource expen-
diture. A notorious version of this kind of attack is known EBslipse attack

[2].

e Provide bad resources (e.g., corrupted files). This caroldgtone round, but
if colluders mount an Eclipse attack they are actually degyhe service to the
victim for longer.

o Attack the Authority. This kind of attack can be classifie@d3enial of Service,
and is more effective when the Authority is centralized.

Unlike pure TFT schemes, the approach used by BitTorremigher, is better de-
scribed as an auction, as done by Lestral. [3]. The key point is that the unchoking
algorithm is such that the best contributors to pear, regardless of how much band-
width they contributed, are reciprocated witfw of 2’s bandwidth. For the coalition
to be effective, it suffices to offer the minimum such amountesources in order to
get fully reciprocated.
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Figure 1: Space used to evaluate the reputation of a peed basés history.

2.2. Attacks against Reputation Systems

Reputation management represents a different perspectitiee concept of incen-
tive. Marti and Garcia-Molina [4], and Despotovic and Abef&] provide general
overviews about the subject. Reputation systems are edlyeased against selfish
peers, while malicious and Byzantine péease often neglected.

2.2.1. Design: Requirements and Architecture

Whatever the adversary, a reputation system should comghawiumber of some-
times contrasting requirements that translate then intgstes architecture. A basic
set of requirements is the following:

R1 Stability: resilience against churn (peers connecting @isdonnecting from the
network) exemplifies this problem, because high percestagiehurning might
disrupt the service and the quality of user’s experience;

R2 Persistent and secure storage of the user behaviour: jrofeedf the main targets
of an adversary is the removal of the proofs of his misbehayio

R3 Admission policies to the resources (who can access what);

R4 Anonymity to preserve privacy, which however contrastshviiie previous two
requirements.

For a system to manage reputations and resources, a camitglie required, be it
central or distributed. Gupta, Judge, and Ammar [6] progidexample of centralized
authority; Marti and Garcia-Molina, an example of a decalized one [7].

2The main difference between Byzantine and malicious peetsatsthe first behave randomly, misbe-
having, but not necessarily following a pattern to maximizgirthenefit or to disrupt the system, while the
malicious choose actions according to a goal that is eithieintlental to the system or achieves benefits (or
both).



Let’'s now focus on the way to organize the architecture. TR@momponents of
a reputation architecture are:

Al The way to gather reliable information about peers and th&raction (informa-
tion gathering sub-system);

A2 The ranking sub-system, that is, how we use the informatatheged;
A3 The system’s response mechanism to a misbehaviour (puerghsub-system).

The information about a peer should link his identity to hehaviour. A peer (the
seeker) can gather information about another peer’s behatarting from peers that
he had direct interaction with. Directly interacting peeasm be (more) easily recog-
nized as good or bad according to their history (as is the fasexample, in PeerTrust
[8]). A general assumption is that, by aggregating moreiops) the accuracy of in-
formation about a peer is likely to become higher. The uségehistory creates issues
when designing a stranger or newcomer policy, i.e., a wags@a reputation to peers
that for the first time join the system and thus have no previoteractions.

The number of interactions each peer needs to aggregateffmrming the esti-
mation with tolerable error is in the order of 20-30lérablemeans that the absolute
mean error between the prediction and the actual value isdr@.3); higher volumes
of feedback provide but slightly better predictions (ses@zovic and Aberer [5]).

The ranking system establishes which behaviour influerfoesdputation. The
reputation is usually built after transactions. Transaxgithemselves may have differ-
ent importance: Fig. 1 shows how reputation is built basettanmsactions and on-line
time.

For example, in the SeAL system (see [9]), peers interastiit transactions in or-
der to build up reputation. Both peers in a transaction starEransaction Receipt (TR)
in the formT R = (client.ID||server.ID,r.ID,timestamp), giving a quantitative
information about how important a service is (by identifyithe resource provided
through its ID,r.I D).

The reputation can be divided in smaller units describirfipidint aspects of the
interaction: while some solutions use a single scalar viuank a peer, some others,
like TRELLIS [10], use arrays of values to separately maffedent sub-reputations
of a peer. As another example, Gupta, Judge, and Ammar [é}eliftiate between the
behavior of a user forwarding lookup queries or a data strélefirst operation takes
fractions of second, while the second requires a longelirantis on-line presence.

Reputation may be assigned using different ranges. Thages¢he problem of how
to judge about a given reputation value: for example, a systesigner may choose
to use values between 0 and 1 to identify bad to good tramses;tand a peer may
accumulate a reputation of 500. How can we know if 500 is a go@dbad reputation,
if we do not have a comparison threshold? PeerTrust [8] duites a novel element,
the Community Factor, that is the weight assigned to the walse by the peers in the
same community and determined according to internal cdioren

2.2.2. Micropayment systems
Micropayment systems (MPSs) are indirect incentive systeirere virtual or real
currency provide the level of indirection between the dbotion of a service and



Figure 2: Simple collusion. Peprgets a wrong trust value for the honest pgefhe function:(x) expresses
the trust that a peer has in the peer;, i = 1, 2, 3, are colluders.

the request of a similar contribution from another peer. &tehitecture of an MPS
comprises @&roker, which issues the currency and certifies its value.

MPSs are not open to the problem of collusion whenever thgesipeer can issue
its own currency and there is a way to measure the credit sityeof coins coming
from other peers, as suggested by Tran, Li, and Subramam[ad].

2.2.3. Collusion in reputation systems

Collusion can threat any element of a reputation system. &eribe the problem,
see how it applies to the sub-systems described in Sec, 2:2d1then try to present
some of the solutions that partially solve the problem.

Collusion and information gathering systerithe part of the system most vulnerable
to collusion is the information gathering sub-system. Tasi®forms of collusion we
can find in this case are slandering and promotion.

A coalition can slander an honest user by always poorly gotite transactions
they have with him. Slandering has a natural opposite, moakicpromotion, that arises
whenever a coalition votes to rise a reputation of an allyhefrt without him being
involved in any (good) transaction.

Slandering and promotion are not the only ways peers candmlnd cause harm.
Assume the population of the peers is divided in two groups: Honest peers, who
always report honestly, and the liars, who misbehave iregfit ways. Lep; be the
probability for peeri to behave trust-worthily: scenarios analyzed in the ltteea(for
example [5, 12]) include the following:

Simple collusion: The liars always misreport about honest peers, and alwagstre
(trustworthy behaviour) about peers of their group, as etiied in Fig. 2.

Collusive chain: The liars form an ordered circular set (chain): if there arkars,
then peerc; always reports 1 for peet;_; and misreports on all the others,
co = c¢,. Chains are most effective when loops bring gains, whichmady
is the case, for example, in social networks. The EigenTaiggrithm ([12])



effectively limits the attack, but a set of pre-trusted ge@hosen before the
application starts) play a key role in this result, becalsy thelp the system
keep the reputation of colluders low enough to prevent them being selected.
Without pre-trusted peers the algorithm has no means to abthb attack and
the colluders irreversibly take over the system.

Probabilistic chain: A variation of the previous scenario occurs when maliciceerp
misbehave with a probability, but behave collaboratively for the rest of the
time; they form a chain as described above. Simulation tegu]12] show that
in this case colluders have a negative effect on the serfitleeosystem as a
whole, because they earn trust by providing authentic con@pecifically, the
maximum damage is done fgr = 50%. The authors argue that this scenario
forces the colluders to spend resources in the system totigainadvantage;
however, this argument is meaningful only if a maliciousrfsegoal is not the
disruption of the system, but a service better than he deserv

Two collusive groups: The population of liars further splits into two groups, whiige
call L; and L,: a peeri belonging toL; always behaves honestly;(= 1), but
always report 1 for the service provided by any peer fioma peerj belonging
to L, always report 1 for the services provided by any peer fiom but we
do not do any hypothesis about the service it provigess not necessarily 1).
This means that peers of grodp gain high reputation thanks to their honest
behaviour, and acquire high credibility to recommend peétke groupLs.

Infiltrators and Parasites: A variation of the previous case. Colluders split into two
groups: a first group (the Infiltrators) behaves collabwedyi with every user
and earns high reputation, but always assigns high trusésadb a second group
of colluders, who never collaborate (the Parasites). Thadias earn high rep-
utation from the scores assigned by the Infiltrators. Withghme effort spent
in the probabilistic chain, malicious users have twice thadjit. This kind of
threat creates great damage with acceptable effort, aritbisfore one of the
most effective collusion schemes found so far.

3. Applications Suffer Collusion

Of all the possible classifications that can be used, we apa fdivision among
three dimensions: CPU, memory, and network. Each applicathares among the
peers one of those resources: file sharing and content defieéworks, for example,
fall into the memory-sharing applications, while videastming is more about sharing
the network load, and grid computing is about sharing CPUguow

3.1. Memory and Storage

Memory-intensive applications are systems where the serkchanged among
peers is storage, be it semantic-less (pure memory spasep@ntically meaningful,
as in file-sharing systems.



Kamvar, Schlosser and Garcia-Molina [12] present a deakregd algorithm to
build reputation by using the concept of global reputatiwhich is computed aggre-
gating the local trust information of each node belonging wubset of the network.
Nodes belong to regions of responsibility according to tAd&NOHT system described
in Ratnasamyet al. [13]. The reputation of a target peer is computed by a set of M
score managershosen by hashing the unique ID of the target node througiiffiet-d
ent hash functions. A score manager has to know the set of pgeracting with the
target node, known ataughter either receiving a service or providing it: in particular,
the nodes that received service from the daughter give tire scanager the reputation
values about the daughter, which the manager in turn usesrtpute a trust value. The
authors show that this trust can be obtained by an iteratisgaitation of the principal
eigenvector of the normalized local trust values.

To counter collusion, this algorithm relies on pre-trugbe@rs. The assumption is
that there are a set of peers (e.g., the designers of tharsystea number of mirrors
managed by an organization) that can be trusted regardigg®wous interactions.
The algorithm prescribes the selection of peers at randdmawgiven, parameterized
probability to select the pre-trusted peers. Pre-truststpare a means of common
sense, but their use just testifies that maliciousness dhaiom are topics requiring
further research.

OA

20

Figure 3: Example of collusion and how the Maxflow algorithninfagit.

To limit collusion, the Reciprocative function [14] usesmaxflow algorithm{15,
16] to compute a subjective reputation for the nodes. Theflmaalgorithm operates
on a portion of a digraph to give a value to the paths that mést brtween two peers
A and B, as exemplified in Fig. 3. The digraph is built in the follogimvay: the
vertices are the peers, the edges represent the servicerageested to another, while
the weights are the reports about the service that one pesivee from the other. The
maxflow algorithm computes the path between the nodes edileglthe reputation
and the node under examination. The trust of the path is timémmaim trust of the
bottleneck link; the algorithm searches for the maximunueatf all the possible paths
from source to target. In Fig. 3, the nodefinds a flow of capacity 0 towards the node



B because, even if the colluding nodes (indicated withietter) report that3 helped
them, the nodd” whom A trusts has never dealt with, which is correctly identified
as not trustworthy. The subjective reputation of the pegerceived by peeA is:

. { mazx flow(j, 1) 1}

mazx flow(i, j)’

The drawback of Maxflow is its cost in terms of complexity, walhiis O(V3);
however, a truncated version of the algorithm presents gooperties of scalability,
though in some cases no flow is found even if it exists.

Clearly if a chain of colluders gain the trust dfthe method fails. Indeed, Liagt
al. [17] argue that the application of the EigenTrust algorittitnMaze (a file-sharing
system) creates two problems: false negatives, that happhan a low-reputation
colluder has even a one-time interaction with a high-refmrigpeer, so boosting his
reputation; and false positives, that occur when there isigter network that down-
loads high volumes of files but shares them only with the nodése cluster. To limit
these issues, they manipulate the trust computation ghgodnd in particular the pro-
cess of building the global trust from the local trust matiihe key observation, that
is partially shared by Piate#t al. [18], is that most of the peers have one interaction
with any one peer, and an increasing number of interact®tess and less probable.
The key observation of Piate¥ al., instead, is that there is a rough division among
peers into two groups: the resourceful peers, that gain mephtation because they
can serve large volumes of data, and less-resourceful ,pbatscan serve less data
because of their limitations. Resourceful peers have akigly probability of serving
the population, and in particular any two less-resourcpédrs likely interact with a
common resourceful one. The implication of this observaisothat we can use a re-
sourceful peek as an intermediary between any two peers that have interadgte
him. This in turn means that we can use just the one-stepatputmatrix to compute
a good value for the reputation of any peer, if we know tharimediary.

We stress the fact that this kind of observations are unlikelbe applicable to
streaming systems, and in general to any system where treeraamy more interac-
tions, each one of very brief duration.

Similarly to the one hop reputation model, Marti and Gandialina [7] model the
collusion of a group of peers, particularly focusingfamt peers that always provide
good service, but lie about the reputation of malicious pe€he reputation of a target
peer is based on two components: the direct opinion of the [felee already had
interactions with the target, and the (indirect) opiniomattother peers have about the
target peer. The two components are weighed according tousigthe peer has in the
peers that express an indirect opinion about the target. 4Hctorially presents the
situation, also reporting the trust building equations.

Xiong and Liu [8] suggest a slow-rising/fast-dropping stieeto fight peers ac-
cumulating high trust and then starting to misbehave: eaelamgmber of successful
transactions build a high trust value; at the same time, tiewérust decreases fast
and few bad-rated transactions are enough to drop it. A prege of a time window
prevents peers from using long up-time periods and past gebdviour to misbehave
effectively in the present.
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Figure 4: Use of the Friend Cache and problem of the front gaehe figure, the front peef, conquers a
position inz’s Friend Cache, thus polluting the trust about the colludert,, (v) is the trust that peer has
about peep.

A way to counter collusion is to have a mechanism to dematestheat an agent
actually provided a service. Specifically, if a peedeclares he received some service
from peery, it is desirable to have a proof that is actually happendd:vibbuld prevent
the collusion betweep andq. This idea is studied by Reiter, Sekar and Zhang [19],
who show preliminary simulation results by applying theistem to the Maze P2P
file-sharing application [20].

An entity, theverifier, wants to verify that a set of peers own a resource, assumed to
be a piece of informatior in this case: he sends to each peer a puzzle, i.e., a question
that can be easily and quickly answered only by the peers wimo/o The question’s
answer can be found by hashihgthe hash function is universally known by the peers
and is modeled as a random ordclé thresholdd represents the time by which the
peers under trial have to solve the puzzle: if a peer excegtien he becomes suspect
of misbehaviour. The threshold is chosen in such a way thartspeannot collaborate:

a peer that does havehas just the time to solve his puzzle and send the response.

Under the assumption of random oracle, the article showtsthaund exists to the
number of puzzles a set of colluders can collectively solueis bound has a closed
form but is hard to compute. To solve this problem, the awgtipoove the existence of a
tighter but computable bound, not in a closed form. The motiebllusion they adopt
is based on the work by Liagt al.[17].

Barter systems are a flavor of tit-for-tat. A research pggietby Ngan, Wallach
and Druschel [21] with the characteristics of a barter sysgbased on incentives pro-
vided in a totally decentralized way (no central authoritijoth the benefit and the
contribution are in terms of storage space, which represthet service. The attack

3A random oraclds the abstraction of a function that can produce a truly saméutput, and gives the
same response to the same query.
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Figure 5: Remote storage application. Peetores 100 units of storage fgr both report this value in the
appropriate list.

scenarios consider the presence of collusion and compeaugettiormance of the sys-
tem when colluders are present or absent. The authors askatrtke colluders are a
minority, and can even try to bribe other peers to let themtisi space without of-
fering space in exchange. Let's see how the system worksderstand its advantages
and weaknesses.

Each peep owns ausage filedigitally signed with his private key, containing:

e the advertised capacity provided to store other peers; files
e alocal list with the files stored locally for others,
e aremote list containing information abaqui$ files stored remotely.

The peer can store his files whenever herider quotathat is, his advertised capacity
is larger than the storage he is consuming remotely in otberg storage, that is, he
consumes less than he offers.

Let's make an example (see also Fig. 5). Suppose thatpadvertise 250 GB of
space available for other peers. Pgegads the advertisement. He is hosting 100 GB of
other peers’ data, as reported in his local list, stores 1B@fthis own data remotely,
as reported in his remote list, and advertises 300 GB: siti¢e> 140, ¢ is under quota
and can ask for remote storage.

A malicious peer can lie about his advertised capacity, by claiming he caresto
locally more than he actually can, or he can lie about fileestoemotely, by claiming
he stores remotely less files than he actually does. In pé&tjccolluders can form a
chain to hide an imbalance between the storage quota offer@dised by one misbe-
having peer, known as ttelheating anchar

Attacks are prevented by using random auditing on top of wmized communi-
cation. Ifp is storing a fileF" for peerc, he can query about his remote list. This list
must contain an entry for pegr Since the communication system is assumed to be
anonymousg cannot know who is auditing him, and therefore he cannot kwiyeh
entry he can hide. In fact, ifs remote list maliciously lacks the presencefofc tries
to increase his under-quota situation by claiming he isgilEiss space than he actually
does)p can delete him from his local storage, becauisediscovered as not paying for

11



the storage he is consuming. The operation of auditing a hp@epeer entertaining a
service relationship with it is calledormal auditing

The chance for a normal user to evict a misbehaving user imgedathough. A
central authority can always verify the right to evict by eaing the proof of mis-
behavior, because the response of the peer being auditeghexishy the author, but
introduces a single point of failure and a centralized giithe system.

To discover collusion and chains of cheating, in theorg itecessary to walk along
the chain up to its originating cheating anchor, but thisraflen does not scale well
with the number of peers in the system. For this reason, lwegormal auditing, peers
are required to perform emndom auditingon a randomly chosen peer, which they
might have no relationship with. The authors prove that \withh probability all the
peers in the system are subject to audit, including the oiganchor.

The punishment is ensured by the usage file being digitadiyesi, so the misbe-
haviour of the cheating peer is clearly and easily identifiddwever, if a set of col-
luders never tells the truth about fellow colluders, as wikiding party grows larger,
the auditing mechanism becomes less effective, since mis auditors collude with
the peer subject to auditing.

Lian et al.[17] study a file sharing system in order to define a set of biehsiden-
tifiable as collusive. In the system they analyze, the rajmtas measured by points
accumulated as content is uploaded to the other partigpahtsingle central entity
assigns users more points per byte for uploads rather thakeis away for downloads:
this means that uploading and downloading the same amouddtafproduces a net
gain. This property can be exploited by colluders to eare falputation (that is, with-
out actually providing any benefit to the system) and use tteeincrease their own
benefits (in this case, the download speed). The authois dsiét of detectors to mark
suspect behavior. They are the following:

1. Colluders produce a large amount of traffic with the sanrgest to minimize
the number of data uploaded and maximize the number of pgaited;

2. Pairs of colluders can upload to each other large amotidizta with respect to
the amount of data provided to the rest of the users;

3. Many identities on the same machine might be an attemptaifeder of gaining
reputation by uploading content to itself. This threat ekplthe inexpensiveness
of identity creation (like in the Sybil attack);

4. Colluders are likely to keep a facade behaviour by upluadmall amounts of
data to many peers while at the same time directing most ofipt@aded data
to a single partner. This behaviour is highlighted by a usefticator named
Traffic Concentration (TC).

3.2. Computing Resources

Peer-to-peer networks are used to distribute the computdtivorkload that would
be overwhelming when used on a single machine. Distributiegload among ma-
chines allows resource-constrained users to exploit tleecigtles of machines whose
owners join the system. This type of systems is sometimésocBRP Grid computing,
and in some cases (e.g., [22]), it relies on a reputatioresy$d determine the presence

12



of incorrect results at one machine by having a majority othirges confirming the
same outcome for the same job (or batch of jobs).

Common process containment techniques, like chroots atuhl/imachines, can
actively limit the damage of a job that tries to abuse of tlseueces put at its command;
we believe, however, that there is a good chance for codetiredversaries to perform
some of the attacks we have discussed in the previous ségatistorage systems.

To set the picture, we describe a seminal work, the basiesydesigned by Kim
et al. [23], that follows. A client wants to have a job executed. Hegares a profile
describing the resources required to process the job, dmitit to aninjection node
which we can think about as a known entry point. The injectiode assigns a global
ID to the job and routes it to another node, who becomeswheer From the owner
node, after a matchmaking phase that consists in searchiogle@ with the required
resources, the job is assigned tousm node which in turn starts processing it (after
processing all the jobs arrived before). For the protocblgaeliable in case of failure
of any of the nodes involved, nodes regularly exchange bhearimessages.

To get past the limitations of this system, reputation systean be used here too.
Silaghiet al. [22] combine a direct and an indirect mechanisms to comghéedrtist
of peers processing jobs, explicitly addressing the caiuproblem in a peer-to-peer
grid system used for distributed computation. In the oagjsystem, volunteer nodes
(workers) provide their CPU power to run experiments oveairgd amount of common
data sets. A master node distributes computation tasksditens to run over the data
sets, while data sets themselves are distributed usingBéfit. Collusion is countered
by using replication and consensus, that is, a result is ddesalid when a majority of
the workers agree upon it. The original system always uggiEation to validate the
results, with large computation overhead.

To alleviate this load, the authors propose a weighted gatirstem to assess the
validity of results, using trust values to compute a vajiditore for results. The setting
is the following: we have: workers that are assigned a work replicateiimes. Then
results are collected by the master, who stores a tableinorgarust values for each
worker. Each result; is assigned a scogg in the form

. 2i it
! Zz ti

where¢; ; is 1 if peeri ran the workj, O otherwise; the valug; is the trust for
peeri, stored in the aforementioned table. If we defije= max;s;, then the result
77 is accepted ifs; > 6, whered is a threshold properly chosen to guarantee the
coherence of results in the presence of low reputation plegralways greater than 0.5.
Moreover, to avoid that low reputation workers (maybe fargné malicious coalition)
undermine the correct result provided by a high-reputatiorker, the authors require
that the lowest reputation peer in a pool delivering the ltesy say,w; (pivot), has a
trust valuet; > 0.5.

A further study from the same authors ([24]) deal with therfation of coalitions
that explicitly attack the voting system. In particulareyhassume that the colluders
follow a coordination protocol, and that they only attackemtthey know all the other
members of the coalition are ready to start polluting a vdiee collusion detection
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system proposed in the paper shows that it is possible, i settings, to trace the ac-
tivity of colluders and tell them apart from honest peers;dhly assumption, however,
that colluders must not be aware of the detection algoritbimgin place, weakens the
result.

It seems that the awareness of collusion in P2P grid apjgitsis greater than
in other contexts. The research line described in [22, 2gfdsnising and works in
some settings. Itis desirable that once the detection @noid generally characterized
and solved, a major research propulsion would go in the tiireof how to limit the
damage created by colluders, that is, in the design of ptremechanism that break
the collusion before it starts.

3.3. Network and Bandwidth

Some systems may have peculiar characteristics that niefoe-tat schemes par-
ticularly ineffective: video streaming applications anssxample of this anomaly. Chu,
Chuang and Zhang [1] propose an alternative incentive sehmamed on linear taxa-
tion, that we can classify as direct in that it immediateliecs service in exchange of
contribution. As observed in the paper, most peers use anLAldBnection to access
the Internet, and can thus benefit of a download bandwidtlafger than their upload
bandwidth. In this case, with a tit-for-tat scheme peersldioeceive the stream at the
speed determined by their upload bandwidth, that is a wdstieedarger download
bandwidth. This disincentivizes the peer’s cooperatioakimg him leave the system
or try to fool it.

Linear taxation is based on the balance of the following &qoa

f=max(t x (r—G),0).

The termt is the tax rate: when equal to 1, the scheme is equivalent-foriiat.
r is the number of units of bandwidth the peer will receive ifdomtributesf units
of bandwidth;G is a lump sum grant, odemogrant and is basically a measure of
the amount of contribution that a peer can voluntarily makout receiving back a
benefit. The demogrant is equally distributed among paditis. A central entity, the
publisher of the content, decides the value,afhile GG is set by the system to achieve
an overall budget balance. The decision is based on the yat@mmunicated by the
peers according to their utility.

To choose a good value forthe publisher should know the type of the peers in the
system. Linear taxation is maximally effective when peees@terogeneous; however,
it makes the most resourceful peers receive a relativelyl simeount of benefit com-
pared to their contribution, thus making its applicatiorreéal systems with strategic
playerd appear complicated.

In the distributed algorithm that implements this taxaeheme, each peémod-
ifies his strategy (thg; he communicates to the publisher) according to a personal
estimation of the demogrant. The estimation is based on a query sent to a subset of
the neighbors to know their estimation@f It is clear that a set of colluding neighbors

4A player is strategic if he always tries to maximize his outcoma game.

14



G?

n
@ T\

(2)

Figure 6: Linear taxation: collusion example.,: = 1,2, 3 are colluders: they report to the victiinthat
queried them about their estimation of the demogéna wrong estimation;s’. According to these values,
i is induced to believe that’ is the real demogrant, thus computing a wrong (sub-optimai}esty f’,
different from the optimalf,p¢ .

may alter the value off they communicate as response to the query, in order to influ-
ence the utility that the victim chooses to communicate éopthblisher (Fig. 6). This
scenario, not explicitly included in [1], suggests furtsardy.

Liu et al. [25] describe a system that fights free-riders by providingethod to
punish misbehaviors, although not explicitly thought foflesion. In this system,
peers proactively request video chunks to their neighbaacerding to their needs,
rather than waiting for spontaneous donations (this achite is known asesh-pull.
Any userp serving chunks maintains a queue for each requesting neighlving
priority to peers that have given him more in the past. Thentige coincides with
the priority acquired in the server’s queue. With this systee-riders are effectively
discouraged because they receive a poor video quality:ridees have bad positions
in the queues of the peers they send requests to, thus regégis chunks.

This scheme is effective against collusion because thesebserves his own his-
tory with the client, instead of asking other peers abouttir@ribution they received
from him. Of course, this limits the interactions with newepgeand poses problems in
terms of newcomers policy: a peer joining the system has ntribation and may be
discouraged from joining at all if his initial received qiglis low.

4. Micropayment systems

According to Micali and Rivest [26], a payment system is adfgirotocols with
three basic actors: a buyer, a seller, and a bank. The acoreecindividual entities
or collections of entities. Micropayment systems (MPSs) ayment system where
the single payment is of a very small amount. In this sectierdigcuss some MPSs,
analyze some theoretical collusion attacks, and draw flegaet conclusion that col-
lusion can be fought by such systems. As micropayment sysit@rolve a significant
amount of cryptographic verification, they are mostly agglio static content distribu-
tion systems, so we analyze them in this context.

4.1. Application to CDNs
Dandelion [27] and PACE [28] are two peer-assisted contistitiloution network
systems based on micropayments. Both approaches descehg&alized bank system,
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but are open to the possibility of assigning its servicesdastiibuted system.

Aperjis, Freedman, and Johari [28] model P2P CDN applicatiwith a market
metaphor of supply and demand, introducing an MPS-likeesysivhere the price is
associated to a peer, rather than to a file. In this model, egstiurce that is poten-
tially subject to congestion is assigned a price. This comses consequence of a more
accurate model of the behavior of the users of a CDN systesedoan multilateral ex-
change rather than on bilateral exchange. The network isladds a hierarchy with
several theoretical levels (only two levels are used inta}; in order to roughly dif-
ferentiate between the local link capacity of a peer in alloetwork, and the capacity
of the link between the local and the wide-area network.

Each peer in the system runs a buy client and a sell client.appécation offers
a clean interface to a rendezvous service and to a netwark pérvice, that can be
queried to know which peers own content, and the cost of ties I{this feature can
be used by network providers to operate the network moraesifly). The (logically)
centralized currency service is based on strong identjbased on asymmetric key
management) and provides an intermediary between a sait eind a buy client who
have a transaction.

The bootstrapping process is suggested to be based on tméodovof content the
new user is not interested in, in order to have them own somiobthey can offer to
other peers to download and trade it with some content thepetually interested in.

In Dandelion [27], the bank is the trusted third party thatchias over transactions
among pairs of peers. It can manage thousands of peers bdtsangrmal operation is
a common client-server system, that switches automatitath peer-assisted scheme
whenever the load becomes too heavy to manage efficientycijptographic opera-
tions are limited because they are required in at most twassiethe protocol for each
chunk of the content, and are fast because are based on sgonengdtography (keys
are shared between the server and each peer in the swarm).

The credit system is based on a small amount of volatile megrtizat is written to
stable storage after a number of transactions, in orderdiol dkre overhead of writing
to disk for each chunk.

Transactions are rewarded with credit accrued by the uploandd charged to the
downloader. The system deployer can use different politieshe selection of the
chunk to ask for: the file-sharing-like approach benefitsnfra local-random rarest
selection policy, similar to BitTorrent, while network-liod apps can gain more by
stressing the importance of the play-out deadline of eacinichand thus prioritizing
chunks produced earlier from the source.

PPay is a system where cryptographic verification is basedsymmetric key.
The proposal designed by Yang and Garcia-Molina [29] is aropi@yment system
that relies on self-managed currencpifiy under the control of a central entity called
broker issuing the currency. Coin exchange and security issuemaraged by the
peers themselves, without intervention of the broker, ssfinishment is required, or
for some security aspects, as explained below.

PK,, SK, are the pair of public and secret (private) key of the brdkeA peer
p gets a coin from the broker paying a sum. The coin sent by tbkebris a signed
message in the form

C =p,sngg,
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wheresn is the unique serial number of the coin. Peers receiving tiesadirectly
from the broker are calleownersof the coin.

From this moment on, the owner is responsible for the maamtea of the coin.
The owner uses it to pay another pgean exchange for a service, thus grantipthe
right to become thé&older of the coin through aassignmenthat has the form

qu = q, s€eqi, CSKP

The broker has no participation in the assignment phase holier carreassign
the coin to a third peer, notifying the owner and making thieeobhssignment no longer
valid. In every moment, the owner is aware of who holds the eoid of the history of
exchanges, in order to have a proof of acceptance or refhment in case of disputes
with any peer that has held or still holds the coin.

When any party but the broker happens to be in a downtime ptiasegemaining
agent addresses the broker to require the reassignmeit cashing of the coin. Since
this creates a load for the broker, he charges both the regues the owner (when it
comes on-line again) to perform the operation: this engesgeers to stay on-line as
long as they can.

Leveraging PPay, Waidt al. [30] with their WhoPayconsider the anonymity issue.
WhoPay leverages on the system architecture of PPay, butesresinionymity of peers
that perform a transaction by using group signatures asisbed by Chaum and Van
Heyst [31]. For the sake of fairness, however, the systemimes|the presence of a
trusted entity, thgudge that, in conjunction with the broker, can identify the astof
each transaction. By using group signatures, agents arargaad to preserve their
anonymity, unless they misbehave: in this case, the judggdaly him) is ensured to
have the means to identify the peers involved in the trarmact

Also the solution presented by Catalano and Ruffo [32] isdam PPay. As an
improvement of the basic interaction system, delegatioaccbuntability is used to
further reduce the involvement of the broker. Tderountabilityis the possibility of
linking an item, be it an object, an action or a right, to a oesible subject, who thus
becomes accountable for it. The authors propose a mechaoipass the account-
ability of a coin from one peer to another: the first peer, thentpr, passes to the
grantee his right to delegate. To implement this mechanégsegcond pair of public,
private keys is required in addition to the usual one usedéatify peers in front of a
certificate authority (the broker). A delegation token suisd from grantor to grantee
for each passage, thus it is always possible to reconstraattain of exchanges. The
responsibility of such a verification is assigned to the tgan

The micropayment systems considered so far are based olvidrrency, that
is cashed cumulatively. A natural alternative is the paynuénmeal money for each
transactions.

Nair et al. [33] propose a system to incent agents in a BitTorrent-lijk&esm to
favour the download of content by other agents. Each peat his entrance in the
system, generates{?K,,, SK,,} pair and contacts a central authority (the broker
managed by a content provider), sending iti#W& and the coordinates of a valid credit
account, used for the payments. As a second stepnds tg the contact of a tracker,
that in turn provides a list of candidate peers to select famah download content. In
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the same transaction, the brokealso sendg a pseudo-random sequence of numbers,
the tokens that p will use to pay the providers of the pieces in which the conien
divided. Specifically, one token will be given in exchangené piece of the content.
After the downloadp will send the provider the token, that in turn can decide to
redeem it immediately or after some time by contacting tloédar. Upon such request,
the broker will take the corresponding money frpim account and transfer it tgs.

This system incents the upload of content by peers who atefpatheir service,
at the same time exploiting the resources of the networlerdtran the resources of
the content provider.

4.2. Micropayment systems can defeat collusion

Collusive attacks against a MPS systems are theoreticakbgible. We briefly
describe their characteristics here, and then show howdlwien found by Traret
al. [11] can rule them away.

In PPay [29], colluders could, for example, act as owngafd holder £) of more
coins. Peer claims it received coins from and wants to reassign them, buis
offline®, so he asks the broker to reassign the coins. The goal is &inabie deposit
made by at the entrance into the system. This strategy is ineffettdcausé gets the
coin reassigned, but cannot come on-line again, otherwise the broker would @arg
him with the cost incurred for the reassignment. Evéngfves the sum to, no gain is
obtained, because the recovered money is the original depes who already owned
it.

In the WhoPay system [30], basic collusive attacks are britfigussed and proved
to be easy to neutralize by the security architecture. Areesdwry can collude with the
coin owner to force the holder to relinquish the coin; howegthe holder can challenge
the owner to prove the validity of the transaction, and, ope®ved it is illegal, he
can make the owner be punished for his misbehaviour. Theesjthowever, do not
address the attacks based on whitewashing and misbehdwoltmwed by change of
identity. Furthermore, no particular attention is giversygtematic collusive attacks,
like distributed denial of service.

The study of Catalano and Ruffo [32] analyzes the effectswfescollusive threats.
As an example, efficiency reasons suggest for each peerifg valy the last step of
delegation, thus allowing the chance for collusive peecsipging the last two steps in
the delegation chain to provide counterfeit coins. Largeugs of colluders may create
longer sub-chains, making it harder (that is, more demanititerms of computation
because more steps have to be verified) to discover the naigioein The forgery can
be detected from the broker at the end of the passing processahen the coin has
to be cashed), or by any peer that examines the whole (in thst wase) delegation
chain. The authors, however, recognize that collusion isSmthe direct scope of the
paper and suggest that the topic is an open research field.

Let’s consider now the defenses that Floodgate [33] putsagdifferent types of
collusion. First, consider a peerwho tries to ask theV pieces of the file taV dis-
tinct peers, receives the pieces, and then claims he didahoaly receive them. If

5The system prescribésto ping the owner before contacting the broker.
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the providers complain against the broker can decide to punish him. A colluder,
however, can help by giving him a piece of the content without payment and witho
complaining withb, thus givingz a way to fool the system. The authors study this
scenario and find a constraint that relates the number oépiefa file, the number of
outstanding tokens (maximum number of tokens accumulatwbut asking the bro-
ker the payment) and the number of peers in the system, anditiosv that by carefully
selecting these parameters it is possible to reduce thesdf/attack: conceptually, if
the number of pieces is far larger than the number of peetsdimebe contacted simul-
taneously, then it is hard far to find enough colluders to provide him a way to gain
his advantage.

While colluders can collaborate to attack the broker usingpB@ttacks, the au-
thors propose existing methods to alleviate the problemilu@ers can, for example,
try and impersonate the broker by intercepting the requadstise peers; this would,
however, require to know the private key the broker usesrgiti@ansaction in which it
has to prove his identity. Still, colluders could simplyargept requests to block them
and negating this way the chance for honest peers to get pritidir contribution,
making the system'’s reputation fall down.

Finally, isolating peers (put them in minority) is hard tdave for colluders. Sup-
pose for instance that a group of colluders decide to complgainst the broker about
another honest peer. The system design defines the numbemplaints that must
receive in order to ban an agent from the working system, smtimber of colluders
must be quite large (assuming the parameters are wiselyeohnsthe designers) to
fool the broker. In any case, the possibility exists.

Collusion can be effectively limited in systems based otuaircurrency. This is
partly due to the tight control exercised by the cryptogreghimitives (reasonably
assumed to be unbreakable) over the system. Particuldelyarg to this discussion,
the work by Tran, Li, and Subramanian [11] shows that cofilnsian be effectively
detected and neutralized by measuring the diversity ofitiriions that the peers claim
they have made and statistically check whether the creglipéer claims to own is as
much as expected, given the distribution of credit amongropeers. The additional
benefit of the system comes from the decentralization oficpedduction (which is
deferred to single peers), that allows a decentralizedogemnt and a significantly
reduced number of checks. A central server is needed onlyeickdfor consistency of
claimed credit (and effectively thwarts collusion).

5. The role of game theory

Game theory (see [34, 35, 36]) can be used to design incengitner MPS or
generic. Modeling the interactions among users as a gansepdssible to describe
equilibria, that is, behaviors that are followed becausy thre the most convenient
choice for each user.

In this sense, game theory can be seen as a meta discipliretha the middle
between cooperation enforcement and sheer altruismsitHetuser choose his behav-
ior, but creates a system where the best behavior (the ohertdates most wealth) is
the desired one.

Let’s give some definitions useful for classification:

19



Definition 1: A homogeneous setting identifies a system where all the gdaye
contribute with the same resourcas.

Definition 2: A heterogeneous setting identifies a system where resoarees
unevenly distributed among usess.

Definition 3: In a protocolll to which a set of peer® participate in order to
maximize a utility functionu;,i € P, a situation of social dilemma arises whenever
users earn more by defecting than by cooperating (that,;ig) > u.(i), where the
useri gets a utilityu,(i) when defectingu..(¢) when collaborating), but the whole
system has a higher social welfare when everybody coopsefidte> W, that is, the
social welfarél” achieved through collaboration is higher than throughdafg). m

5.1. Design
A design based on game theory defines:

e A utility function that the peer tries to maximize, which ur is based on a cost
function and a benefit function;

e A set of actions peers can perform.

When peers aim at maximizing their utility and can decideaasticonsequently,
they are said to beational andstrategic A strategy is a set of actions defined as a
response to any situation the peer can be called to respodigritoy the application
session.

5.2. Examples

Let's see some examples of game theory application, trginmterstand the prob-
lems that may arise in the presence of a malicious coalitien,of collusion. Burago-
hain, Agrawal, and Suri [37] introduce a design frameworkgeve the strategy of a
peer is the level of his contribution, that is, a peer candakbiow much to contribute
according to the situation.

D; denotes the level of contribution for pegr D can be anything meaningful in
the application context A peer; incurs a unit cost; when he contributes a resource.
If a peer contributele, the total cost is; D;, while the normalized contribution has
the form:d; = &%, whereD, is a generic contribution normalization.

A similar example of decision function Reciprocativeintroduced by Feldman
et al. [14] and based on a measure of the generosity of peers, dedméloe ratio
between what they provide and what they consume, properipalzed to avoid that
reciprocative peers would become defective to each other.

Now suppose that peer, looks for a benefit by joining the system. He requests
a resource to another peey, who provides it according to a probability distribution,
that depends on the contribution providedhyBy subtracting costs from benefiis,
decides whether to join the system or not. The utility fumcthas the form:

The first term is the contribution cost, and the second tte éxipected benefit. As
we see, this expected utility (fgr) is the sum of the resources provided{D;) and
the product of three elements:
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1. D;: what other peers contribute to the system,
2. B; ;. how important their contributions are tg, i.e., their value t;,

3. p(d;): the probability thap; will get his requests satisfied, which is a function
of its normalized contribution.

Within this model, the authors analyze the existence of Nasiilibria. The scheme
effectively fights selfish free-riders; collusion, howevisrneglected. The peers are
assumed to be trustworthy and not malicious, and thus t@ciyrreport about their
contribution level. The authors admit the need for an auditimanism to verify the
reports from the peers, but no actual implementation rutkesribed in detail.

In the system designed by Keidar, Melamed, and Orda [38}h eade keeps a
balance between what it provides and what the neighbourigesvhim in terms of
packets. The balance should never fall below a thresholdegoally similar to the
imbalance ratio described in ket al.[39]. If a peer does not own a sufficient number
of packets, he asks the source to provide packets on itsfbahdlpays a fee in terms
of fine packets, i.e., dummy packets which do not contribute toatarce, but waste
their resource (and the network’s). It is clear that it is imathe interest of the peer to
ask the help of the source.

The authors prove the existence of a Nash equilibrium if la#l hodes choose
strongly dominant strategies in the set of protocol-ohetdigrategies. This proof, how-
ever, holds if no peer joins or leaves the overlay. The bassam@mptions are that most
users obey because they do not have the technical skill tothacapplication, or re-
frain from installing hacked applications. It is also assdnthat no out-of-channel
communication occurs among users: the results depend osutisantial isolation
of users. For this reason, the system cannot be proved tollhsioa-resistant: in
particular, the absence of any malicious peer is assumed.

Wi
Contrib Peer
@ i 312Kb
J 426Kb
k 145Kb

@ bi(?)
Figure 7: System designed from Méaal. [36]. The gray area in the rectandl&s shows the unavailable

bandwidth at the source. The source will distribute the available bandwidth acamydo each user’s
contribution until time.

Ma et al.[36] also design a framework with an interesting formal leabout the
amount of collusion the application can tolerate. The fraor& consists in a resource
allocation mechanism that induces a competition amongsmetplesting a service to
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a peer. The competition is modeled as a game: Pegpresses his requests through
biddings 6;(t)) sent to the source of a serviggsee Fig. 7). The source has a given
amountWW, of bandwidth to distribute to requesting peers, accordiity bo their bid-
dings and their contribution. The game is proved to have gusnNash equilibrium,
practically implementable with a linear time algorithm bgrfurbing the theoretical
solution by a small positive amouat The result is not strictly a Nash equilibrium, but
converges to an exact Nash equilibriumeas> 0. This makes the mechanism feasible
and collusion resistant in the sense described above.

5.3. Approximated equilibria

Exact Nash equilibria are hard to compute and often fragilg.{ in presence of
churn). An approximated form of Nash equilibrium can somes be found to relieve
the problem, and this is the idea used in the design of FlaghtB39].

The system is modeled by using the BAR setting, an acronyindeéscribes the
three types of behaviors a peer can follow: they can behatreigtically, that is, al-
ways be loyal to the rules of the protocol; or they can be Ratiovhich means that
they are ready to deviate when this is more convenient to tleerfinally, they can
behave in a Byzantine way, that is, they misbehave randamty particularly without
pursuing a utility.

In this setting, the approximated NE is characterized byptioperty that it is not
valid in every round, that is, a rational peer may tempoyagdin more by deviating.
Let's consider the optimal strategy and the utility that esnout of it, that we call
u,. We can describe the relative advantage of the optimal tigeatrategy over the
strategy that obeys the protocol (that we can ggllas follows:

Uo — Ue
= 0 Te
Ue
_ (Je = Jo)B — (wo — we)k
(1= Je)B — wek
e+ (1-0)

c—1

whereb is a fraction § < 1) of the bandwidth used to run the protocol (that can be
lower-bounded)¢ is the benefit-to-cost ratig; is the jitter (expected;., and actual,
Jo), B measures a benefit, a cost. In steady state, the user has to upload at least
MmNy = [N{_f;d 1, with a corresponding cost @bst = v + min,, x p (« is the ratio
between what should be provided and what is actually prayideimbalance ratig.
The parametey represents the fixed cost of a trade in kbps, whils the increase in
cost for each chunk uploaded; finally,,..q is the number of chunks a peer needs in
each round. To find the equilibrium, we can solve davith the objectives = 0.1: we
find that this is an equilibrium if the rational peer values tream at least 3.36 times
more than his cost in bits.

The system is proved to be robust against 10% of Byzantinespaad resilient
against selfish behaviour. Long term strategies performpexdiicious colluding peers,
however, are not considered explicitly and their studyfisde a future work.
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5.4. Game theory and incentives
Morselli, Katz, and Bhattacharjee [40] propose a gamerttanframework to
compare trust-inference protocols, that is, protocolsretibe frequency of interac-
tions between peers depends on the trust they have in eash dtie authors define a
measure for robustness that can be used to compare diffecemntives systems.
Given a generic protocol that defines the way trust is contpanel assigned to each
peer, and a malicious pedrwho knows the protocol, can see every message exchanged
between any two peers, and can interfere sending messagespaol is saidobust
if A maximizes his utility by obeying to the protocol. The authdnowever, do not
provide an example of a protocol which is robust and at theedame fights collusion,
even if the framework allows modeling malicious/selfishlitmans.

5.4.1. Mechanism Design

Mechanism design (along with Algorithmic Mechanism DesgnAMD, and Dis-
tributed AMD, or DAMD) [35, 41, 42] has a strict dependencegame theory, and has
been used as a modeling tool for the construction of incesystems. Mechanism de-
sign (MD) tries to induce a behaviour onto selfish users bigdésy the payments and
the punishments for good and bad behaviour, respectivélg. difference with Game
theory is that this studies a behavior in a system, while Mglgtethe system to induce
a behavior.

O

vi(tio)

Figure 8: Valuation of the output; € O from peeri having typet’.

Formally, in a generic MD problem, we haxaisers having typeeach, denoted as
t* € T' for useri. The type is a privately known input, while the other infotioa is
publicly known. A mechanism design problem is composed af#put specification,
that mapst = t1...t" — o € O, whereO is the set of allowed outputs, and a set of
utility functions for the users. According to his typle each user gives a value, called
valuation to any output, in the forna®(¢*, 0). The utility can be expressed as the sum
of the number of currency units assigned by the mechanisimetaiser %), plus his
valuation of the output (see Fig. 8):

u = p' + ' (t', 0).

Feigenbaum and Shenker [41] survey the state of the art iDisibuted Al-
gorithmic Mechanism Design (DAMD) field, which can be exeiiigdl as the study
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and the design of distributed systems where participasssiraed to be self-interested,
have to be properly incented to follow the system’s algamithSpecifically, DAMD
addresses both incentive compatibility and computatitraatability in systems where
users and resources atistributed The authors illustrate the open problems inherent
to the DAMD problems formulation: first, they show that a meaf the hardness of

a problem is still missing; second, they question the vafisproximated solutions to
hard problems; eventually, an overview of solution consegternative to Nash equi-
libria and dominant strategies are investigated, andeatlimechanisms are presented
as possible candidates to direct mechanisms.

The design of a mechanism depends on a model of the problelritsaapprox-
imation when the problem is hard. Only basic results exisualpproximation: in
particular, strategically faithful approximations ar@lpiem approximations where the
strategic properties of the original model hold, but otheperties are approximated.
There exist three such approximations:

1. e-dominance: In this approximation, the players do not plegy ltest strategy,
but one approximation that lies within a factofrom the optimal strategy (see
Li et al.[39] for an example of application);

2. Feasibly strategyproof mechanisms: A better strategstsbut it is infeasible
to compute fomll the users; the infeasibility derives from computationailits;

3. Tolerably manipulable mechanisms: A mechanism is tblgnamanipulable if it
is not group-strategyproof, but we can characterize thesyh malicious groups
that can form, and we can demonstrate that their effects ®@edmmunity are
tolerable. Such mechanisms answer the question: How lang¢he effects of
malicious coalitions be? For this reason, they are pagitulnteresting for the
study of collusion.

As we said above, the problems from a mechanism design mtrspare usu-
ally studied with a special focus on dominant strategies Mash equilibria, which
are known to be hard to compute. However, alternative sfiegemay be found. In
a distributed complex environment like the Internet, itéslistic to assume that the
users do not know of the existence of each other, and they\@bddferent payoff for
themselves applying the same strategy when network condithange. In this case,
we obtain an interesting simplifying assumption by modgline system as an itera-
tive game, in which the players do not know about the paydffstioer players, but
can iteratively learn them by observing the output of thela®as they appear in the
network.

Finally, the authors show that the design of indirect medmas offers a trade off
between the privacy of the users, who just partially (if & r@veal their utility func-
tions, and the network complexity that derives from the neectrieve that informa-
tion in other ways, which usually involves the explosionttd humber of messages to
exchange.

6. Discussion and Conclusions

In this survey, we have analyzed the literature about P2fes\sin order to find out
if and how the problem of collusion is taken into account —aveh¢ually fought. Sin-
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gle or non-coordinated free riders and malicious users ammally considered when

analyzing security of P2P systems; however colluding ustanrsd to unorganized ma-
licious users and free riders as organized criminalitydsaio petty robbers, but the
complexity of collusion behavior and analysis seams toatefe scare away most re-
searchers. The study of collusion in P2P systems is of thesttimportance, because
of the challenges it creates and the risks it puts on P2Pragdteat are founded on the
notion of collaboration and are based on the sharing of s@s®urces. Moreover, it

must be remembered that techniques derived from botnetisecaasily imported into

P2P systems, making a single ‘real’ user the master of agtcatollusion system, and
this rises the level of danger: If the coordinated actionwidreds of different users
may be rare, the coordinated control of hundreds of nodes digigde user is much

more probable, specially if by doing so the single real ussranlarge personal benefit,
and can get away leaving the controlled, artificial nodesetblamed for the havoc.

As any survey the goal is taking a snapshot (as accurate asevabke to do) of
the state of the art on the survey subject, in order to risednemunity awareness on
the topic and to be the base for further active research ifielee Not all the papers
we have included in the bibliography deals with collusionany of them, as many
others we have not included, simply admit that “problemateal to collusion are left
for future work and research”, implicitly stating the impamce of the topic and, at the
same time admitting that research is lagging behind systinests in this field.

The analysis we carried out took different angles to the lerab per application,
per methodology, per shared resource. We have distinglisht-collusion methods
based on the presence of incentives, luring users to cefitlhofrom methods based
on ‘enforcement by design’ aiming at evicting misbehavisgrs from the system.

Regardless of the angle of observation or perspective, uredfthat there are many
open issues in P2P systems in order to embed anti-colluggberas in them. Theoreti-
cal research is required to better understand the dynarhicdlosion and their impact
on the service provided. Experimental research is neededmplement theory, but
also to collect data about real systems behavior and workiogteed, this seems to
be one of the most uncovered areas: the availability of hactsfand data about the
impact and effects of collusion in real systems. To concthéesurvey we discuss the
possibility that a new level of awareness on the problem npayve a positive loop
of research and implementation that may lead to strongteeaghinst collusive be-
haviors paving the road for a new generation of servicesthasehe P2P networking
paradigm.

6.1. Theoretical directions of research

MPSs and trust-based systems are existing, but incompledgesrto counter collu-
sion. Moreover they seem to be in place more as a side-éff@ctty purposeful design
choice. The role of game theory seems promising, as the atiotins that we find for
malicious nodes to cooperate are intuitively suitable tmganodels. Game theory is
a complex discipline, however, and we recognize that thertsfinade in the research
on (Distributed) Algorithmic Mechanism Design, intendedriake the computation of
the equilibria tractable by machines, are an importantqfatte process of application
of game theory itself to the field of collective attacks.
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In particular, the approach that uses approximated egiailib encouraging since it
cuts complexity and offers, in some cases, ways to compatertior with respect to the
optimal equilibrium. In particular, Nash equilibria termlie fragile, in the sense that
in a real environment, with errors, churn, and all sort of @nments, they cannot be
reached, with the risk of leading to protocol deadlocks@lticks. An approximated
equilibrium instead defines a region of sustainable opmratind should lead to more
robust and resilient protocols.

Indeed, from a theoretical point of view a formal way to meesihe gravity of
collusion-based attacks is still missing, as well as rezmghmethods to define how
vulnerable systems are to such attacks. A first step towhislgbdal can be the defini-
tion of metrics and a classification system based on themeiifar from a complete
definition, this survey provides a first attempt in this diiec.

Related to the lack of metrics, the sheer proof that collusian be prevented in
real (not trivial) systems is still missing. The lack of suelsults, positive or negative,
leaves the community in the uncertainty of the scope anddioficollusion effects.

6.2. Experimental directions of research

Some of the theoretical directions of research might be karg and lead to dead-
ends. All the same collusion exists. Under this perspedtiaéfic measures to provide
evidence of the damage of collusion attacks, to detectiteeepatterns, and to con-
firm the reliability of systems built according to the resudf the theory are needed. As
theory provides metrics, we can classify the existing systand show how vulnerable
they are against collusion attacks. Experimental resezanhalso focus on the com-
parison among systems, and find strong points to repeat umefslystems to further
limit their vulnerability.

Also, testing tools generating representative patterm®Midision, with known and
proven coverage, would be extremely useful for the compari$ different protection
techniques.

Known attacks

Empirical results

Theory Collusion
development : detectors

(Y]

Collusion

Active Defenders

on-the-field

Figure 9: The advancement of research in countering colusifter each feedback, new systems will
incorporate the improvements determined by theory and peacti¢hile known attacks are repelled, new
attacks fire the loop and demand further improvements to rdsearc

26



6.3. A path against collusion

On top of the output provided by theory and practice, the aihje is to isolate
the results in a modular classification, and sample appitst in order to provide
developers with a reliable and tested set of tools that gueeathe resilience of the
system against collusion attacks.

We see two goals along this direction: research will firstvate tools todetect
collusion, in as distributed a way as possible; secondstadl break collusion and
report about the actions taken: we can call such tools daledg an anti-collusion
active defense

Just as security enforcement, also anti-collusion primiedé$ not a destination but
a path: As new threats rise, the countermeasures must beaore sophisticated,
spawning a classical cycle of system development as dejitteig. 9.
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