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Abstract

P2P systems are used to provide distributed storage, file sharing, video streaming, dis-
tributed gaming, and other applications based on the collaboration of participating
peers and on the observation that sharing resources used sporadically leads to huge
savings. The operation of a P2P system as well as its sheer survival, however, is open
to many kinds of attacks, which are tough to fight due to both the decentralized na-
ture of P2P applications, and the lack, in some of them, of a central authority, or of a
well-defined structure, or both.

Particularly, as P2P systems require the active collaboration of the participants be-
yond their selfish interest. Many system include methods designed to lure the most
resourceful users into broader participation, to provide an overall better service. The
methods devised to attract the contribution of users are unfortunately vulnerable to a
particular class of attacks: Collusion. Collusion is broadly defined as any malicious
coordinated behavior of a group of users aimed at gaining undeserved benefits of at
damaging (some) well behaved users.

In this paper, we survey the literature on P2P systems security with specific atten-
tion to collusion, to find out how they resist to such attacks and what solutions can
be used, e.g, game theory, to further counter this problem and give P2P systems the
possibility of developing into full fledged services of the future Internet.

Keywords: Peer-to-Peer networks security, Collusion

1. Introduction

P2P systems are used in a variety of contexts, from file-sharing applications, to
content streaming, to distributed storage. Such systems are based on the collaboration
of all participants to provide an acceptable quality of service both to the wealthy and
the less resourceful of them.
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Many of these systems try to encourage the cooperation of selfish peers, that tend
to participate to the application only to receive benefit. This is usually achieved using
incentives, forms of payments, or some other forms of gratification and punishment.
Such gratifications, as well as the punishments, are often based on the logging of the
level of contribution of a peer. The contribution, however,can sometimes be hidden
or be presented differently from how it really happens, as single users or groups of
them collaborate to pollute the auditing system. For example, two collusive peers can
falsely claim to provide and receive service from each otherwithout actually doing it,
accumulating trust, or reputation, and acquiring positions of privilege in the system.

In general, we can expect in P2P systems the same behavior we observe in real
life: as soon as there is anonymous coverage that shields users from ethical eviction
or marginalization, behaviors tend to deviate, and as soon as there is a large potential
gain in cooperative misbehavior, then collusion appears and flourish until the system
collapses under its burden.

In this survey we want to emphasize the importance of the problem of collusion,
broadly defined as any cooperative action inside the system aiming at any malicious
result or undeserved gain, and attract the interest of the scientific community by stress-
ing the security implications of it. Starting from the recent literature, we provide a first
classification of the P2P systems according to the method they use to lure every peer to
contribute and possibly the wealthiest of them to contribute more than others.

The gratification/punishment system, in itself, is based usually on a phase of con-
tribution and another of benefit. According to the existenceor not of an intermediate
phase between the contribution provided to the system and the benefit received from it.
A direct mappingis observed in systems where there is no accumulation of credit, and
peers receive an amount of resources exactly equal to the amount they provide from
the same peer;indirect mappinginstead implies an accumulation of an abstract entity
(money, reputation, ...) and a later expenditure of it1. In some systems, some level of
debt and credit among peers are also tolerated, making the system more resilient.

Eventually, we highlight the importance of game theory as a discipline that lies on
top of both approaches, and can be used to describe both, and,what is more important,
to conjugate the strengths of both philosophies to deliver better solutions.

The survey is organized as follows. Sect. 2 analyzes how incentive systems are in
general vulnerable to collaborative attacks. Sect. 3 provides a classification of P2P sys-
tems based on their different application domains and analyzing their different vulner-
abilities to collusion. Sect. 4 describes micro-payment systems, how they differ from
standard incentives and the reasons why they can be useful tocounter collusion. Sect. 5
discusses the tools offered by Game Theory in the perspective of a collusive scenario,
analyzing their strengths, but also the limits that standard Game Theory enconters in
face of collusion. Sect. 6 closes the paper with a discussionof the survey findings and
of possible future research on this topic.

1We believe that it is not a matter of time, as suggested by Chu, Chang and Zhang [1]; it is rather a matter
of existence or not of some form of intermediation between the contribution and the benefit.
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2. Incentive Systems: Types and Vulnerabilities

Incentive systems are a means to encourage resource holdersto spend their spare
resources for the benefit of a community of peers. Incentivescan be direct, as in a
tit-for-tat scheme, where each unit of resource is reciprocated with a unit of resource;
or indirect, where the resources given to the community are reciprocated with some
currency or credit that can be used and accumulated to acquire other resources or, in
some cases, even cashed at a broker entity (micropayment systems).

2.1. Attacks against Tit-for-Tat and direct mechanisms

A direct incentive system is based on the immediate reciprocation of a unit of
resource provided with a unit of resource received. They arealso called tit-for-tat
schemes, and they are historically related to P2P systems: BitTorrent has been de-
scribed as using such a mechanism, and many other systems take inspiration from its
simplicity.

In a tit-for-tat (TFT) scheme, the resource is divided into units: in a file-sharing
system, the unit can be a chunk of the file; in a grid application, it can be a time-unit
on a processor. When playing TFT, a peerx provides one unit of resource to any peer
y encountered for the first time (timet0); at time t > t0, x reciprocates, that is, it
provides the resource or denies it, according to what they did previously (betweent0
andt). Let’s assume that there exist a way, that we callAuthority, which allows each
peer to decide whether the resource unit received is good or bad: going back to the
example of file sharing, we are assuming that a peer can decidewhether it received a
corrupted piece of data (e.g., by checking a digest).

Suppose now that a coalition of peers decides to attack a victim peerv. The coali-
tion can:

• Provide lower-quality resources than what they can actually offer (announce less
chunks, a slower processor, . . . ). Providing lower-qualityresources forces the
victim to not only accept them, but also to reciprocate (maybe honestly). The
advantage for colluders is that they get reciprocation withless resource expen-
diture. A notorious version of this kind of attack is known asEclipse attack
[2].

• Provide bad resources (e.g., corrupted files). This can lastonly one round, but
if colluders mount an Eclipse attack they are actually denying the service to the
victim for longer.

• Attack the Authority. This kind of attack can be classified asa Denial of Service,
and is more effective when the Authority is centralized.

Unlike pure TFT schemes, the approach used by BitTorrent, however, is better de-
scribed as an auction, as done by Levinet al. [3]. The key point is that the unchoking
algorithm is such that then best contributors to peerx, regardless of how much band-
width they contributed, are reciprocated with1/n of x’s bandwidth. For the coalition
to be effective, it suffices to offer the minimum such amount of resources in order to
get fully reciprocated.
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Figure 1: Space used to evaluate the reputation of a peer based on its history.

2.2. Attacks against Reputation Systems
Reputation management represents a different perspectiveon the concept of incen-

tive. Marti and Garcia-Molina [4], and Despotovic and Aberer [5] provide general
overviews about the subject. Reputation systems are especially used against selfish
peers, while malicious and Byzantine peers2 are often neglected.

2.2.1. Design: Requirements and Architecture
Whatever the adversary, a reputation system should comply with a number of some-

times contrasting requirements that translate then into a system architecture. A basic
set of requirements is the following:

R1 Stability: resilience against churn (peers connecting anddisconnecting from the
network) exemplifies this problem, because high percentages of churning might
disrupt the service and the quality of user’s experience;

R2 Persistent and secure storage of the user behaviour: in fact, one of the main targets
of an adversary is the removal of the proofs of his misbehaviour;

R3 Admission policies to the resources (who can access what);

R4 Anonymity to preserve privacy, which however contrasts with the previous two
requirements.

For a system to manage reputations and resources, a control entity is required, be it
central or distributed. Gupta, Judge, and Ammar [6] providean example of centralized
authority; Marti and Garcia-Molina, an example of a decentralized one [7].

2The main difference between Byzantine and malicious peers is that the first behave randomly, misbe-
having, but not necessarily following a pattern to maximize their benefit or to disrupt the system, while the
malicious choose actions according to a goal that is either detrimental to the system or achieves benefits (or
both).
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Let’s now focus on the way to organize the architecture. The main components of
a reputation architecture are:

A1 The way to gather reliable information about peers and theirinteraction (informa-
tion gathering sub-system);

A2 The ranking sub-system, that is, how we use the information gathered;

A3 The system’s response mechanism to a misbehaviour (punishment sub-system).

The information about a peer should link his identity to his behaviour. A peer (the
seeker) can gather information about another peer’s behavior, starting from peers that
he had direct interaction with. Directly interacting peerscan be (more) easily recog-
nized as good or bad according to their history (as is the case, for example, in PeerTrust
[8]). A general assumption is that, by aggregating more opinions, the accuracy of in-
formation about a peer is likely to become higher. The usage of a history creates issues
when designing a stranger or newcomer policy, i.e., a way to assign reputation to peers
that for the first time join the system and thus have no previous interactions.

The number of interactions each peer needs to aggregate for performing the esti-
mation with tolerable error is in the order of 20-30 (tolerablemeans that the absolute
mean error between the prediction and the actual value is around 0.3); higher volumes
of feedback provide but slightly better predictions (see Despotovic and Aberer [5]).

The ranking system establishes which behaviour influences the reputation. The
reputation is usually built after transactions. Transactions themselves may have differ-
ent importance: Fig. 1 shows how reputation is built based ontransactions and on-line
time.

For example, in the SeAL system (see [9]), peers interact through transactions in or-
der to build up reputation. Both peers in a transaction stores a Transaction Receipt (TR)
in the formTR = (client.ID||server.ID, r.ID, timestamp), giving a quantitative
information about how important a service is (by identifying the resource provided
through its ID,r.ID).

The reputation can be divided in smaller units describing different aspects of the
interaction: while some solutions use a single scalar valueto rank a peer, some others,
like TRELLIS [10], use arrays of values to separately mark different sub-reputations
of a peer. As another example, Gupta, Judge, and Ammar [6] differentiate between the
behavior of a user forwarding lookup queries or a data stream: the first operation takes
fractions of second, while the second requires a longer continuous on-line presence.

Reputation may be assigned using different ranges. This creates the problem of how
to judge about a given reputation value: for example, a system designer may choose
to use values between 0 and 1 to identify bad to good transactions, and a peer may
accumulate a reputation of 500. How can we know if 500 is a goodor a bad reputation,
if we do not have a comparison threshold? PeerTrust [8] introduces a novel element,
the Community Factor, that is the weight assigned to the trust value by the peers in the
same community and determined according to internal conventions.

2.2.2. Micropayment systems
Micropayment systems (MPSs) are indirect incentive systems where virtual or real

currency provide the level of indirection between the contribution of a service and
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Figure 2: Simple collusion. Peerp gets a wrong trust value for the honest peerq. The functiont(x) expresses
the trust that a peer has in the peerx. ci, i = 1, 2, 3, are colluders.

the request of a similar contribution from another peer. Thearchitecture of an MPS
comprises aBroker, which issues the currency and certifies its value.

MPSs are not open to the problem of collusion whenever the single peer can issue
its own currency and there is a way to measure the credit diversity of coins coming
from other peers, as suggested by Tran, Li, and Subramanian in [11].

2.2.3. Collusion in reputation systems
Collusion can threat any element of a reputation system. We describe the problem,

see how it applies to the sub-systems described in Sec. 2.2.1, and then try to present
some of the solutions that partially solve the problem.

Collusion and information gathering system.The part of the system most vulnerable
to collusion is the information gathering sub-system. The basic forms of collusion we
can find in this case are slandering and promotion.

A coalition can slander an honest user by always poorly voting the transactions
they have with him. Slandering has a natural opposite, malicious promotion, that arises
whenever a coalition votes to rise a reputation of an ally of them without him being
involved in any (good) transaction.

Slandering and promotion are not the only ways peers can collude and cause harm.
Assume the population of the peers is divided in two groups: the honest peers, who
always report honestly, and the liars, who misbehave in different ways. Letpi be the
probability for peeri to behave trust-worthily: scenarios analyzed in the literature (for
example [5, 12]) include the following:

Simple collusion: The liars always misreport about honest peers, and always report 1
(trustworthy behaviour) about peers of their group, as exemplified in Fig. 2.

Collusive chain: The liars form an ordered circular set (chain): if there aren liars,
then peerci always reports 1 for peerci−1 and misreports on all the others,
c0 ≡ cn. Chains are most effective when loops bring gains, which normally
is the case, for example, in social networks. The EigenTrustalgorithm ([12])
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effectively limits the attack, but a set of pre-trusted peers (chosen before the
application starts) play a key role in this result, because they help the system
keep the reputation of colluders low enough to prevent them from being selected.
Without pre-trusted peers the algorithm has no means to combat the attack and
the colluders irreversibly take over the system.

Probabilistic chain: A variation of the previous scenario occurs when malicious peers
misbehave with a probabilityf , but behave collaboratively for the rest of the
time; they form a chain as described above. Simulation results in [12] show that
in this case colluders have a negative effect on the service of the system as a
whole, because they earn trust by providing authentic content. Specifically, the
maximum damage is done forf = 50%. The authors argue that this scenario
forces the colluders to spend resources in the system to gaintheir advantage;
however, this argument is meaningful only if a malicious peer’s goal is not the
disruption of the system, but a service better than he deserves.

Two collusive groups: The population of liars further splits into two groups, which we
call L1 andL2: a peeri belonging toL1 always behaves honestly (pi = 1), but
always report 1 for the service provided by any peer fromL2; a peerj belonging
to L2 always report 1 for the services provided by any peer fromL1, but we
do not do any hypothesis about the service it provides (pj is not necessarily 1).
This means that peers of groupL1 gain high reputation thanks to their honest
behaviour, and acquire high credibility to recommend peersof the groupL2.

Infiltrators and Parasites: A variation of the previous case. Colluders split into two
groups: a first group (the Infiltrators) behaves collaboratively with every user
and earns high reputation, but always assigns high trust values to a second group
of colluders, who never collaborate (the Parasites). The Parasites earn high rep-
utation from the scores assigned by the Infiltrators. With the same effort spent
in the probabilistic chain, malicious users have twice the benefit. This kind of
threat creates great damage with acceptable effort, and is therefore one of the
most effective collusion schemes found so far.

3. Applications Suffer Collusion

Of all the possible classifications that can be used, we opt for a division among
three dimensions: CPU, memory, and network. Each application shares among the
peers one of those resources: file sharing and content delivery networks, for example,
fall into the memory-sharing applications, while video streaming is more about sharing
the network load, and grid computing is about sharing CPU power.

3.1. Memory and Storage

Memory-intensive applications are systems where the service exchanged among
peers is storage, be it semantic-less (pure memory space) orsemantically meaningful,
as in file-sharing systems.
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Kamvar, Schlosser and Garcia-Molina [12] present a decentralized algorithm to
build reputation by using the concept of global reputation,which is computed aggre-
gating the local trust information of each node belonging toa subset of the network.
Nodes belong to regions of responsibility according to the CAN DHT system described
in Ratnasamyet al. [13]. The reputation of a target peer is computed by a set of M
score managers, chosen by hashing the unique ID of the target node through M differ-
ent hash functions. A score manager has to know the set of peers interacting with the
target node, known asdaughter, either receiving a service or providing it: in particular,
the nodes that received service from the daughter give the score manager the reputation
values about the daughter, which the manager in turn uses to compute a trust value. The
authors show that this trust can be obtained by an iterative computation of the principal
eigenvector of the normalized local trust values.

To counter collusion, this algorithm relies on pre-trustedpeers. The assumption is
that there are a set of peers (e.g., the designers of the system, or a number of mirrors
managed by an organization) that can be trusted regardless of previous interactions.
The algorithm prescribes the selection of peers at random with a given, parameterized
probability to select the pre-trusted peers. Pre-trusted peers are a means of common
sense, but their use just testifies that maliciousness and collusion are topics requiring
further research.
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Figure 3: Example of collusion and how the Maxflow algorithm fights it.

To limit collusion, the Reciprocative function [14] uses amaxflow algorithm[15,
16] to compute a subjective reputation for the nodes. The maxflow algorithm operates
on a portion of a digraph to give a value to the paths that may exist between two peers
A andB, as exemplified in Fig. 3. The digraph is built in the following way: the
vertices are the peers, the edges represent the service a peer requested to another, while
the weights are the reports about the service that one peer received from the other. The
maxflow algorithm computes the path between the nodes calculating the reputation
and the node under examination. The trust of the path is the minimum trust of the
bottleneck link; the algorithm searches for the maximum value of all the possible paths
from source to target. In Fig. 3, the nodeA finds a flow of capacity 0 towards the node
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B because, even if the colluding nodes (indicated with ac letter) report thatB helped
them, the nodeT whomA trusts has never dealt withB, which is correctly identified
as not trustworthy. The subjective reputation of the peerB perceived by peerA is:

min

{

maxflow(j, i)

maxflow(i, j)
, 1

}

The drawback of Maxflow is its cost in terms of complexity, which is O(V 3);
however, a truncated version of the algorithm presents goodproperties of scalability,
though in some cases no flow is found even if it exists.

Clearly if a chain of colluders gain the trust ofA the method fails. Indeed, Lianet
al. [17] argue that the application of the EigenTrust algorithmto Maze (a file-sharing
system) creates two problems: false negatives, that happens when a low-reputation
colluder has even a one-time interaction with a high-reputation peer, so boosting his
reputation; and false positives, that occur when there is a cluster network that down-
loads high volumes of files but shares them only with the nodesof the cluster. To limit
these issues, they manipulate the trust computation algorithm and in particular the pro-
cess of building the global trust from the local trust matrix. The key observation, that
is partially shared by Piateket al. [18], is that most of the peers have one interaction
with any one peer, and an increasing number of interactions is less and less probable.
The key observation of Piateket al. , instead, is that there is a rough division among
peers into two groups: the resourceful peers, that gain muchreputation because they
can serve large volumes of data, and less-resourceful peers, that can serve less data
because of their limitations. Resourceful peers have a veryhigh probability of serving
the population, and in particular any two less-resourcefulpeers likely interact with a
common resourceful one. The implication of this observation is that we can use a re-
sourceful peerR as an intermediary between any two peers that have interacted with
him. This in turn means that we can use just the one-step reputation matrix to compute
a good value for the reputation of any peer, if we know their intermediary.

We stress the fact that this kind of observations are unlikely to be applicable to
streaming systems, and in general to any system where there are many more interac-
tions, each one of very brief duration.

Similarly to the one hop reputation model, Marti and Garcia-Molina [7] model the
collusion of a group of peers, particularly focusing onfront peers, that always provide
good service, but lie about the reputation of malicious peers. The reputation of a target
peer is based on two components: the direct opinion of the peer, if he already had
interactions with the target, and the (indirect) opinions that other peers have about the
target peer. The two components are weighed according to thetrust the peer has in the
peers that express an indirect opinion about the target. Fig. 4 pictorially presents the
situation, also reporting the trust building equations.

Xiong and Liu [8] suggest a slow-rising/fast-dropping scheme to fight peers ac-
cumulating high trust and then starting to misbehave: a large number of successful
transactions build a high trust value; at the same time, however, trust decreases fast
and few bad-rated transactions are enough to drop it. A proper use of a time window
prevents peers from using long up-time periods and past goodbehaviour to misbehave
effectively in the present.
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Figure 4: Use of the Friend Cache and problem of the front peer. In the figure, the front peerc2 conquers a
position inx’s Friend Cache, thus polluting the trust about the colluderc1. tu(v) is the trust that peeru has
about peerv.

A way to counter collusion is to have a mechanism to demonstrate that an agent
actually provided a service. Specifically, if a peerp declares he received some service
from peerq, it is desirable to have a proof that is actually happened: this would prevent
the collusion betweenp andq. This idea is studied by Reiter, Sekar and Zhang [19],
who show preliminary simulation results by applying their system to the Maze P2P
file-sharing application [20].

An entity, theverifier, wants to verify that a set of peers own a resource, assumed to
be a piece of informationI in this case: he sends to each peer a puzzle, i.e., a question
that can be easily and quickly answered only by the peers who own I. The question’s
answer can be found by hashingI; the hash function is universally known by the peers
and is modeled as a random oracle3. A thresholdθ represents the time by which the
peers under trial have to solve the puzzle: if a peer exceeds it, then he becomes suspect
of misbehaviour. The threshold is chosen in such a way that peers cannot collaborate:
a peer that does haveI has just the time to solve his puzzle and send the response.

Under the assumption of random oracle, the article shows that a bound exists to the
number of puzzles a set of colluders can collectively solve.This bound has a closed
form but is hard to compute. To solve this problem, the authors prove the existence of a
tighter but computable bound, not in a closed form. The modelof collusion they adopt
is based on the work by Lianet al. [17].

Barter systems are a flavor of tit-for-tat. A research prototype by Ngan, Wallach
and Druschel [21] with the characteristics of a barter system is based on incentives pro-
vided in a totally decentralized way (no central authority). Both the benefit and the
contribution are in terms of storage space, which represents the service. The attack

3A random oracleis the abstraction of a function that can produce a truly random output, and gives the
same response to the same query.
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Figure 5: Remote storage application. Peerp stores 100 units of storage forq; both report this value in the
appropriate list.

scenarios consider the presence of collusion and compare the performance of the sys-
tem when colluders are present or absent. The authors assumethat the colluders are a
minority, and can even try to bribe other peers to let them usetheir space without of-
fering space in exchange. Let’s see how the system works to understand its advantages
and weaknesses.

Each peerp owns ausage file, digitally signed with his private key, containing:

• the advertised capacity provided to store other peers’ files,

• a local list with the files stored locally for others,

• a remote list containing information aboutp’s files stored remotely.

The peer can store his files whenever he isunder quota, that is, his advertised capacity
is larger than the storage he is consuming remotely in other peers’ storage, that is, he
consumes less than he offers.

Let’s make an example (see also Fig. 5). Suppose that peerp advertise 250 GB of
space available for other peers. Peerq reads the advertisement. He is hosting 100 GB of
other peers’ data, as reported in his local list, stores 140 GB of his own data remotely,
as reported in his remote list, and advertises 300 GB: since300 > 140, q is under quota
and can askp for remote storage.

A malicious peerc can lie about his advertised capacity, by claiming he can store
locally more than he actually can, or he can lie about files stored remotely, by claiming
he stores remotely less files than he actually does. In particular, colluders can form a
chain to hide an imbalance between the storage quota offeredand used by one misbe-
having peer, known as thecheating anchor.

Attacks are prevented by using random auditing on top of anonymized communi-
cation. Ifp is storing a fileF for peerc, he can queryc about his remote list. This list
must contain an entry for peerp. Since the communication system is assumed to be
anonymous,c cannot know who is auditing him, and therefore he cannot knowwhich
entry he can hide. In fact, ifc’s remote list maliciously lacks the presence ofF (c tries
to increase his under-quota situation by claiming he is using less space than he actually
does),p can delete him from his local storage, becausec is discovered as not paying for
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the storage he is consuming. The operation of auditing a nodeby a peer entertaining a
service relationship with it is callednormal auditing.

The chance for a normal user to evict a misbehaving user is a danger, though. A
central authority can always verify the right to evict by examining the proof of mis-
behavior, because the response of the peer being audited is signed by the author, but
introduces a single point of failure and a centralized entity in the system.

To discover collusion and chains of cheating, in theory, it is necessary to walk along
the chain up to its originating cheating anchor, but this operation does not scale well
with the number of peers in the system. For this reason, beyond normal auditing, peers
are required to perform arandom auditingon a randomly chosen peer, which they
might have no relationship with. The authors prove that withhigh probability all the
peers in the system are subject to audit, including the cheating anchor.

The punishment is ensured by the usage file being digitally signed, so the misbe-
haviour of the cheating peer is clearly and easily identified. However, if a set of col-
luders never tells the truth about fellow colluders, as the colluding party grows larger,
the auditing mechanism becomes less effective, since most of the auditors collude with
the peer subject to auditing.

Lian et al.[17] study a file sharing system in order to define a set of behaviors iden-
tifiable as collusive. In the system they analyze, the reputation is measured by points
accumulated as content is uploaded to the other participants. A single central entity
assigns users more points per byte for uploads rather than ittakes away for downloads:
this means that uploading and downloading the same amount ofdata produces a net
gain. This property can be exploited by colluders to earn fake reputation (that is, with-
out actually providing any benefit to the system) and use themto increase their own
benefits (in this case, the download speed). The authors build a set of detectors to mark
suspect behavior. They are the following:

1. Colluders produce a large amount of traffic with the same content to minimize
the number of data uploaded and maximize the number of pointsgained;

2. Pairs of colluders can upload to each other large amounts of data with respect to
the amount of data provided to the rest of the users;

3. Many identities on the same machine might be an attempt of acolluder of gaining
reputation by uploading content to itself. This threat exploits the inexpensiveness
of identity creation (like in the Sybil attack);

4. Colluders are likely to keep a facade behaviour by uploading small amounts of
data to many peers while at the same time directing most of theuploaded data
to a single partner. This behaviour is highlighted by a useful indicator named
Traffic Concentration (TC).

3.2. Computing Resources

Peer-to-peer networks are used to distribute the computational workload that would
be overwhelming when used on a single machine. Distributingthe load among ma-
chines allows resource-constrained users to exploit the idle cycles of machines whose
owners join the system. This type of systems is sometimes called P2P Grid computing,
and in some cases (e.g., [22]), it relies on a reputation system to determine the presence
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of incorrect results at one machine by having a majority of machines confirming the
same outcome for the same job (or batch of jobs).

Common process containment techniques, like chroots and virtual machines, can
actively limit the damage of a job that tries to abuse of the resources put at its command;
we believe, however, that there is a good chance for coordinated adversaries to perform
some of the attacks we have discussed in the previous sectionfor storage systems.

To set the picture, we describe a seminal work, the basic system designed by Kim
et al. [23], that follows. A client wants to have a job executed. He prepares a profile
describing the resources required to process the job, and submits it to aninjection node,
which we can think about as a known entry point. The injectionnode assigns a global
ID to the job and routes it to another node, who becomes theowner. From the owner
node, after a matchmaking phase that consists in searching anode with the required
resources, the job is assigned to arun node, which in turn starts processing it (after
processing all the jobs arrived before). For the protocol tobe reliable in case of failure
of any of the nodes involved, nodes regularly exchange heartbeat messages.

To get past the limitations of this system, reputation systems can be used here too.
Silaghi et al. [22] combine a direct and an indirect mechanisms to compute the trust
of peers processing jobs, explicitly addressing the collusion problem in a peer-to-peer
grid system used for distributed computation. In the original system, volunteer nodes
(workers) provide their CPU power to run experiments over a large amount of common
data sets. A master node distributes computation tasks for workers to run over the data
sets, while data sets themselves are distributed using BitTorrent. Collusion is countered
by using replication and consensus, that is, a result is deemed valid when a majority of
the workers agree upon it. The original system always uses replication to validate the
results, with large computation overhead.

To alleviate this load, the authors propose a weighted voting system to assess the
validity of results, using trust values to compute a validity score for results. The setting
is the following: we haven workers that are assigned a work replicatedn times. Then
results are collected by the master, who stores a table containing trust values for each
worker. Each resultrj is assigned a scoresj in the form

sj =

∑

i φi,jti
∑

i ti

whereφi,j is 1 if peeri ran the workj, 0 otherwise; the valueti is the trust for
peeri, stored in the aforementioned table. If we defines∗j = maxjsj , then the result
r∗j is accepted ifs∗j > θ, whereθ is a threshold properly chosen to guarantee the
coherence of results in the presence of low reputation peers, but always greater than 0.5.
Moreover, to avoid that low reputation workers (maybe forming a malicious coalition)
undermine the correct result provided by a high-reputationworker, the authors require
that the lowest reputation peer in a pool delivering the result rj , say,wl (pivot), has a
trust valuetl > 0.5.

A further study from the same authors ([24]) deal with the formation of coalitions
that explicitly attack the voting system. In particular, they assume that the colluders
follow a coordination protocol, and that they only attack when they know all the other
members of the coalition are ready to start polluting a vote.The collusion detection
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system proposed in the paper shows that it is possible, in some settings, to trace the ac-
tivity of colluders and tell them apart from honest peers; the only assumption, however,
that colluders must not be aware of the detection algorithm being in place, weakens the
result.

It seems that the awareness of collusion in P2P grid applications is greater than
in other contexts. The research line described in [22, 24] ispromising and works in
some settings. It is desirable that once the detection problem is generally characterized
and solved, a major research propulsion would go in the direction of how to limit the
damage created by colluders, that is, in the design of prevention mechanism that break
the collusion before it starts.

3.3. Network and Bandwidth

Some systems may have peculiar characteristics that make tit-for-tat schemes par-
ticularly ineffective: video streaming applications are an example of this anomaly. Chu,
Chuang and Zhang [1] propose an alternative incentive scheme based on linear taxa-
tion, that we can classify as direct in that it immediately offers service in exchange of
contribution. As observed in the paper, most peers use an ADSL connection to access
the Internet, and can thus benefit of a download bandwidth farlarger than their upload
bandwidth. In this case, with a tit-for-tat scheme peers would receive the stream at the
speed determined by their upload bandwidth, that is a waste of the larger download
bandwidth. This disincentivizes the peer’s cooperation, making him leave the system
or try to fool it.

Linear taxation is based on the balance of the following equation:

f = max(t× (r −G), 0).

The termt is the tax rate: when equal to 1, the scheme is equivalent to tit-for-tat.
r is the number of units of bandwidth the peer will receive if hecontributesf units
of bandwidth;G is a lump sum grant, ordemogrant, and is basically a measure of
the amount of contribution that a peer can voluntarily make without receiving back a
benefit. The demogrant is equally distributed among participants. A central entity, the
publisher of the content, decides the value oft, whileG is set by the system to achieve
an overall budget balance. The decision is based on the valuefi communicated by the
peers according to their utility.

To choose a good value fort, the publisher should know the type of the peers in the
system. Linear taxation is maximally effective when peers are heterogeneous; however,
it makes the most resourceful peers receive a relatively small amount of benefit com-
pared to their contribution, thus making its application toreal systems with strategic
players4 appear complicated.

In the distributed algorithm that implements this taxationscheme, each peeri mod-
ifies his strategy (thefi he communicates to the publisher) according to a personal
estimation of the demograntG. The estimation is based on a query sent to a subset of
the neighbors to know their estimation ofG. It is clear that a set of colluding neighbors

4A player is strategic if he always tries to maximize his outcome in a game.
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Figure 6: Linear taxation: collusion example.ci, i = 1, 2, 3 are colluders: they report to the victimi, that
queried them about their estimation of the demograntG, a wrong estimation,G′. According to these values,
i is induced to believe thatG′ is the real demogrant, thus computing a wrong (sub-optimal) strategyf ′,
different from the optimalfopt.

may alter the value ofG they communicate as response to the query, in order to influ-
ence the utility that the victim chooses to communicate to the publisher (Fig. 6). This
scenario, not explicitly included in [1], suggests furtherstudy.

Liu et al. [25] describe a system that fights free-riders by providing amethod to
punish misbehaviors, although not explicitly thought for collusion. In this system,
peers proactively request video chunks to their neighboursaccording to their needs,
rather than waiting for spontaneous donations (this architecture is known asmesh-pull).
Any userp serving chunks maintains a queue for each requesting neighbor, giving
priority to peers that have given him more in the past. The incentive coincides with
the priority acquired in the server’s queue. With this system, free-riders are effectively
discouraged because they receive a poor video quality: free-riders have bad positions
in the queues of the peers they send requests to, thus receiving less chunks.

This scheme is effective against collusion because the server observes his own his-
tory with the client, instead of asking other peers about thecontribution they received
from him. Of course, this limits the interactions with new peers and poses problems in
terms of newcomers policy: a peer joining the system has no contribution and may be
discouraged from joining at all if his initial received quality is low.

4. Micropayment systems

According to Micali and Rivest [26], a payment system is a setof protocols with
three basic actors: a buyer, a seller, and a bank. The actors can be individual entities
or collections of entities. Micropayment systems (MPSs) are payment system where
the single payment is of a very small amount. In this section we discuss some MPSs,
analyze some theoretical collusion attacks, and draw the relevant conclusion that col-
lusion can be fought by such systems. As micropayment systems involve a significant
amount of cryptographic verification, they are mostly applied to static content distribu-
tion systems, so we analyze them in this context.

4.1. Application to CDNs
Dandelion [27] and PACE [28] are two peer-assisted content distribution network

systems based on micropayments. Both approaches describe acentralized bank system,
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but are open to the possibility of assigning its services to adistributed system.
Aperjis, Freedman, and Johari [28] model P2P CDN applications with a market

metaphor of supply and demand, introducing an MPS-like system where the price is
associated to a peer, rather than to a file. In this model, eachresource that is poten-
tially subject to congestion is assigned a price. This comesas a consequence of a more
accurate model of the behavior of the users of a CDN system, based on multilateral ex-
change rather than on bilateral exchange. The network is modeled as a hierarchy with
several theoretical levels (only two levels are used in practice), in order to roughly dif-
ferentiate between the local link capacity of a peer in a local network, and the capacity
of the link between the local and the wide-area network.

Each peer in the system runs a buy client and a sell client. Theapplication offers
a clean interface to a rendezvous service and to a network price service, that can be
queried to know which peers own content, and the cost of the links (this feature can
be used by network providers to operate the network more efficiently). The (logically)
centralized currency service is based on strong identities(based on asymmetric key
management) and provides an intermediary between a sell client and a buy client who
have a transaction.

The bootstrapping process is suggested to be based on the download of content the
new user is not interested in, in order to have them own some content they can offer to
other peers to download and trade it with some content they are actually interested in.

In Dandelion [27], the bank is the trusted third party that watches over transactions
among pairs of peers. It can manage thousands of peers because its normal operation is
a common client-server system, that switches automatically to a peer-assisted scheme
whenever the load becomes too heavy to manage efficiently. The cryptographic opera-
tions are limited because they are required in at most two steps of the protocol for each
chunk of the content, and are fast because are based on symmetric cryptography (keys
are shared between the server and each peer in the swarm).

The credit system is based on a small amount of volatile memory, that is written to
stable storage after a number of transactions, in order to avoid the overhead of writing
to disk for each chunk.

Transactions are rewarded with credit accrued by the uploader and charged to the
downloader. The system deployer can use different policiesfor the selection of the
chunk to ask for: the file-sharing-like approach benefits from a local-random rarest
selection policy, similar to BitTorrent, while network-bound apps can gain more by
stressing the importance of the play-out deadline of each chunk, and thus prioritizing
chunks produced earlier from the source.

PPay is a system where cryptographic verification is based onasymmetric key.
The proposal designed by Yang and Garcia-Molina [29] is a micropayment system
that relies on self-managed currency (coins) under the control of a central entity called
broker issuing the currency. Coin exchange and security issues aremanaged by the
peers themselves, without intervention of the broker, unless punishment is required, or
for some security aspects, as explained below.

PKb, SKb are the pair of public and secret (private) key of the brokerb. A peer
p gets a coin from the broker paying a sum. The coin sent by the broker is a signed
message in the form

C = p, snSKb
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wheresn is the unique serial number of the coin. Peers receiving the coins directly
from the broker are calledownersof the coin.

From this moment on, the owner is responsible for the maintenance of the coin.
The owner uses it to pay another peerq in exchange for a service, thus grantingq the
right to become theholderof the coin through anassignmentthat has the form

Apq = q, seq1, CSKp

The broker has no participation in the assignment phase. Theholder canreassign
the coin to a third peer, notifying the owner and making the older assignment no longer
valid. In every moment, the owner is aware of who holds the coin and of the history of
exchanges, in order to have a proof of acceptance or relinquishment in case of disputes
with any peer that has held or still holds the coin.

When any party but the broker happens to be in a downtime phase,the remaining
agent addresses the broker to require the reassignment or the cashing of the coin. Since
this creates a load for the broker, he charges both the requester and the owner (when it
comes on-line again) to perform the operation: this encourages peers to stay on-line as
long as they can.

Leveraging PPay, Weiet al. [30] with their WhoPayconsider the anonymity issue.
WhoPay leverages on the system architecture of PPay, but ensures anonymity of peers
that perform a transaction by using group signatures as discussed by Chaum and Van
Heyst [31]. For the sake of fairness, however, the system requires the presence of a
trusted entity, thejudge, that, in conjunction with the broker, can identify the actors of
each transaction. By using group signatures, agents are guaranteed to preserve their
anonymity, unless they misbehave: in this case, the judge (and only him) is ensured to
have the means to identify the peers involved in the transaction.

Also the solution presented by Catalano and Ruffo [32] is based on PPay. As an
improvement of the basic interaction system, delegation ofaccountability is used to
further reduce the involvement of the broker. Theaccountabilityis the possibility of
linking an item, be it an object, an action or a right, to a responsible subject, who thus
becomes accountable for it. The authors propose a mechanismto pass the account-
ability of a coin from one peer to another: the first peer, the grantor, passes to the
grantee his right to delegate. To implement this mechanism,a second pair of public,
private keys is required in addition to the usual one used to identify peers in front of a
certificate authority (the broker). A delegation token is issued from grantor to grantee
for each passage, thus it is always possible to reconstruct the chain of exchanges. The
responsibility of such a verification is assigned to the grantee.

The micropayment systems considered so far are based on virtual currency, that
is cashed cumulatively. A natural alternative is the payment of real money for each
transactions.

Nair et al. [33] propose a system to incent agents in a BitTorrent-like system to
favour the download of content by other agents. Each peerp, at his entrance in the
system, generates a{PKp, SKp} pair and contacts a central authority (the brokerb,
managed by a content provider), sending it thePK and the coordinates of a valid credit
account, used for the payments. As a second step,b sends top the contact of a tracker,
that in turn provides a list of candidate peers to select fromand download content. In
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the same transaction, the brokerb also sendsp a pseudo-random sequence of numbers,
the tokens, thatp will use to pay the providers of the pieces in which the content is
divided. Specifically, one token will be given in exchange ofone piece of the content.
After the download,p will send the providerq the token, that in turn can decide to
redeem it immediately or after some time by contacting the broker. Upon such request,
the broker will take the corresponding money fromp’s account and transfer it toq’s.

This system incents the upload of content by peers who are paid for their service,
at the same time exploiting the resources of the network rather than the resources of
the content provider.

4.2. Micropayment systems can defeat collusion

Collusive attacks against a MPS systems are theoretically possible. We briefly
describe their characteristics here, and then show how the solution found by Tranet
al. [11] can rule them away.

In PPay [29], colluders could, for example, act as owner (o) and holder (h) of more
coins. Peerh claims it received coins fromo and wants to reassign them, buto is
offline5, so he asks the broker to reassign the coins. The goal is to obtain the deposit
made byo at the entrance into the system. This strategy is ineffective becauseh gets the
coin reassigned, buto cannot come on-line again, otherwise the broker would charge
him with the cost incurred for the reassignment. Even ifh gives the sum too, no gain is
obtained, because the recovered money is the original deposit of o, who already owned
it.

In the WhoPay system [30], basic collusive attacks are brieflydiscussed and proved
to be easy to neutralize by the security architecture. An adversary can collude with the
coin owner to force the holder to relinquish the coin; however, the holder can challenge
the owner to prove the validity of the transaction, and, onceproved it is illegal, he
can make the owner be punished for his misbehaviour. The authors, however, do not
address the attacks based on whitewashing and misbehaviourfollowed by change of
identity. Furthermore, no particular attention is given tosystematic collusive attacks,
like distributed denial of service.

The study of Catalano and Ruffo [32] analyzes the effects of some collusive threats.
As an example, efficiency reasons suggest for each peer to verify only the last step of
delegation, thus allowing the chance for collusive peers occupying the last two steps in
the delegation chain to provide counterfeit coins. Larger groups of colluders may create
longer sub-chains, making it harder (that is, more demanding in terms of computation
because more steps have to be verified) to discover the misbehaviour. The forgery can
be detected from the broker at the end of the passing process (i.e., when the coin has
to be cashed), or by any peer that examines the whole (in the worst case) delegation
chain. The authors, however, recognize that collusion is not in the direct scope of the
paper and suggest that the topic is an open research field.

Let’s consider now the defenses that Floodgate [33] puts against different types of
collusion. First, consider a peerx who tries to ask theN pieces of the file toN dis-
tinct peers, receives the pieces, and then claims he did not actually receive them. If

5The system prescribesh to ping the owner before contacting the broker.
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the providers complain againstx, the broker can decide to punish him. A colluder,
however, can helpx by giving him a piece of the content without payment and without
complaining withb, thus givingx a way to fool the system. The authors study this
scenario and find a constraint that relates the number of pieces of a file, the number of
outstanding tokens (maximum number of tokens accumulated without asking the bro-
ker the payment) and the number of peers in the system, and then show that by carefully
selecting these parameters it is possible to reduce this type of attack: conceptually, if
the number of pieces is far larger than the number of peers that can be contacted simul-
taneously, then it is hard forx to find enough colluders to provide him a way to gain
his advantage.

While colluders can collaborate to attack the broker using DDoS attacks, the au-
thors propose existing methods to alleviate the problem. Colluders can, for example,
try and impersonate the broker by intercepting the requestsof the peers; this would,
however, require to know the private key the broker uses for any transaction in which it
has to prove his identity. Still, colluders could simply intercept requests to block them
and negating this way the chance for honest peers to get paid for their contribution,
making the system’s reputation fall down.

Finally, isolating peers (put them in minority) is hard to achieve for colluders. Sup-
pose for instance that a group of colluders decide to complain against the broker about
another honest peer. The system design defines the number of complaints that must
receive in order to ban an agent from the working system, so the number of colluders
must be quite large (assuming the parameters are wisely chosen by the designers) to
fool the broker. In any case, the possibility exists.

Collusion can be effectively limited in systems based on virtual currency. This is
partly due to the tight control exercised by the cryptographic primitives (reasonably
assumed to be unbreakable) over the system. Particularly relevant to this discussion,
the work by Tran, Li, and Subramanian [11] shows that collusion can be effectively
detected and neutralized by measuring the diversity of contributions that the peers claim
they have made and statistically check whether the credit the peer claims to own is as
much as expected, given the distribution of credit among other peers. The additional
benefit of the system comes from the decentralization of credit production (which is
deferred to single peers), that allows a decentralized deployment and a significantly
reduced number of checks. A central server is needed only to check for consistency of
claimed credit (and effectively thwarts collusion).

5. The role of game theory

Game theory (see [34, 35, 36]) can be used to design incentives, either MPS or
generic. Modeling the interactions among users as a game, itis possible to describe
equilibria, that is, behaviors that are followed because they are the most convenient
choice for each user.

In this sense, game theory can be seen as a meta discipline that lies in the middle
between cooperation enforcement and sheer altruism: it lets the user choose his behav-
ior, but creates a system where the best behavior (the one that creates most wealth) is
the desired one.

Let’s give some definitions useful for classification:
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Definition 1: A homogeneous setting identifies a system where all the players
contribute with the same resources.

Definition 2: A heterogeneous setting identifies a system where resourcesare
unevenly distributed among users.

Definition 3: In a protocolΠ to which a set of peersP participate in order to
maximize a utility functionui, i ∈ P, a situation of social dilemma arises whenever
users earn more by defecting than by cooperating (that is,ud(i) > uc(i), where the
useri gets a utilityud(i) when defecting,uc(i) when collaborating), but the whole
system has a higher social welfare when everybody cooperates (Wc > Wd, that is, the
social welfareW achieved through collaboration is higher than through defecting).

5.1. Design
A design based on game theory defines:

• A utility function that the peer tries to maximize, which in turn is based on a cost
function and a benefit function;

• A set of actions peers can perform.

When peers aim at maximizing their utility and can decide actions consequently,
they are said to berational andstrategic. A strategy is a set of actions defined as a
response to any situation the peer can be called to respond toduring the application
session.

5.2. Examples
Let’s see some examples of game theory application, trying to understand the prob-

lems that may arise in the presence of a malicious coalition,i.e., of collusion. Burago-
hain, Agrawal, and Suri [37] introduce a design framework, where the strategy of a
peer is the level of his contribution, that is, a peer can decide how much to contribute
according to the situation.

Di denotes the level of contribution for peerpi. D can be anything meaningful in
the application context A peerpi incurs a unit costci when he contributes a resource.
If a peer contributesDi, the total cost isciDi, while the normalized contribution has
the form:di =

Di

D0

, whereD0 is a generic contribution normalization.
A similar example of decision function isReciprocative, introduced by Feldman

et al. [14] and based on a measure of the generosity of peers, definedas the ratio
between what they provide and what they consume, properly normalized to avoid that
reciprocative peers would become defective to each other.

Now suppose that peerpi looks for a benefit by joining the system. He requests
a resource to another peerpj , who provides it according to a probability distribution,
that depends on the contribution provided bypi. By subtracting costs from benefits,pi
decides whether to join the system or not. The utility function has the form:

Ui = −ciDi + p(di)
∑

j

BijDj

The first term is the contribution cost, and the second the total expected benefit. As
we see, this expected utility (forpi) is the sum of the resources provided (−ciDi) and
the product of three elements:
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1. Dj : what other peers contribute to the system,
2. Bi,j : how important their contributions are topi, i.e., their value topi,
3. p(di): the probability thatpi will get his requests satisfied, which is a function

of its normalized contribution.

Within this model, the authors analyze the existence of Nashequilibria. The scheme
effectively fights selfish free-riders; collusion, however, is neglected. The peers are
assumed to be trustworthy and not malicious, and thus to correctly report about their
contribution level. The authors admit the need for an audit mechanism to verify the
reports from the peers, but no actual implementation rule isdescribed in detail.

In the system designed by Keidar, Melamed, and Orda [38], each node keeps a
balance between what it provides and what the neighbour provides him in terms of
packets. The balance should never fall below a threshold conceptually similar to the
imbalance ratio described in Liet al. [39]. If a peer does not own a sufficient number
of packets, he asks the source to provide packets on its behalf, and pays a fee in terms
of finepackets, i.e., dummy packets which do not contribute to its balance, but waste
their resource (and the network’s). It is clear that it is notin the interest of the peer to
ask the help of the source.

The authors prove the existence of a Nash equilibrium if all the nodes choose
strongly dominant strategies in the set of protocol-obedient strategies. This proof, how-
ever, holds if no peer joins or leaves the overlay. The basic assumptions are that most
users obey because they do not have the technical skill to hack the application, or re-
frain from installing hacked applications. It is also assumed that no out-of-channel
communication occurs among users: the results depend on thesubstantial isolation
of users. For this reason, the system cannot be proved to be collusion-resistant: in
particular, the absence of any malicious peer is assumed.
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Figure 7: System designed from Maet al. [36]. The gray area in the rectangleWs shows the unavailable
bandwidth at the sources. The source will distribute the available bandwidth according to each user’s
contribution until timêt.

Ma et al. [36] also design a framework with an interesting formal result about the
amount of collusion the application can tolerate. The framework consists in a resource
allocation mechanism that induces a competition among nodes requesting a service to
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a peer. The competition is modeled as a game: Peeri expresses his requests through
biddings (bi(t)) sent to the source of a services (see Fig. 7). The source has a given
amountWs of bandwidth to distribute to requesting peers, according both to their bid-
dings and their contribution. The game is proved to have a unique Nash equilibrium,
practically implementable with a linear time algorithm by perturbing the theoretical
solution by a small positive amountε. The result is not strictly a Nash equilibrium, but
converges to an exact Nash equilibrium asε → 0. This makes the mechanism feasible
and collusion resistant in the sense described above.

5.3. Approximated equilibria

Exact Nash equilibria are hard to compute and often fragile (e.g., in presence of
churn). An approximated form of Nash equilibrium can sometimes be found to relieve
the problem, and this is the idea used in the design of FlightPath [39].

The system is modeled by using the BAR setting, an acronym that describes the
three types of behaviors a peer can follow: they can behave Altruistically, that is, al-
ways be loyal to the rules of the protocol; or they can be Rational, which means that
they are ready to deviate when this is more convenient to them; or finally, they can
behave in a Byzantine way, that is, they misbehave randomly,and particularly without
pursuing a utility.

In this setting, the approximated NE is characterized by theproperty that it is not
valid in every round, that is, a rational peer may temporarily gain more by deviating.
Let’s consider the optimal strategy and the utility that comes out of it, that we call
uo. We can describe the relative advantage of the optimal cheating strategy over the
strategy that obeys the protocol (that we can callue) as follows:

ε =
uo − ue

ue

=
(je − jo)β − (wo − we)κ

(1− je)β − weκ

=

cje
1−je

+ (1− b)

c− 1

whereb is a fraction (b < 1) of the bandwidth used to run the protocol (that can be
lower-bounded),c is the benefit-to-cost ratio,j is the jitter (expected,je, and actual,
jo), β measures a benefit,κ a cost. In steady state, the user has to upload at least
minup = ⌈Nneed

1+α
⌉, with a corresponding cost ofcost = γ +minup × ρ (α is the ratio

between what should be provided and what is actually provided, or imbalance ratio).
The parameterγ represents the fixed cost of a trade in kbps, whileρ is the increase in
cost for each chunk uploaded; finally,Nneed is the number of chunks a peer needs in
each round. To find the equilibrium, we can solve forc with the objectiveε = 0.1: we
find that this is an equilibrium if the rational peer values the stream at least 3.36 times
more than his cost in bits.

The system is proved to be robust against 10% of Byzantine peers, and resilient
against selfish behaviour. Long term strategies performed by malicious colluding peers,
however, are not considered explicitly and their study is left as a future work.
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5.4. Game theory and incentives
Morselli, Katz, and Bhattacharjee [40] propose a game-theoretic framework to

compare trust-inference protocols, that is, protocols where the frequency of interac-
tions between peers depends on the trust they have in each other. The authors define a
measure for robustness that can be used to compare differentincentives systems.

Given a generic protocol that defines the way trust is computed and assigned to each
peer, and a malicious peerAwho knows the protocol, can see every message exchanged
between any two peers, and can interfere sending messages, aprotocol is saidrobust
if A maximizes his utility by obeying to the protocol. The authors, however, do not
provide an example of a protocol which is robust and at the same time fights collusion,
even if the framework allows modeling malicious/selfish coalitions.

5.4.1. Mechanism Design
Mechanism design (along with Algorithmic Mechanism Design, or AMD, and Dis-

tributed AMD, or DAMD) [35, 41, 42] has a strict dependence ongame theory, and has
been used as a modeling tool for the construction of incentive systems. Mechanism de-
sign (MD) tries to induce a behaviour onto selfish users by designing the payments and
the punishments for good and bad behaviour, respectively. The difference with Game
theory is that this studies a behavior in a system, while MD design the system to induce
a behavior.

i o1

o3
o2

i iv (t ,o )1

O

Figure 8: Valuation of the outputo1 ∈ O from peeri having typeti.

Formally, in a generic MD problem, we haven users having atypeeach, denoted as
ti ∈ T i for useri. The type is a privately known input, while the other information is
publicly known. A mechanism design problem is composed of anoutput specification,
that mapst = t1...tn 7→ o ∈ O, whereO is the set of allowed outputs, and a set of
utility functions for the users. According to his typeti, each user gives a value, called
valuation, to any output, in the formvi(ti, o). The utility can be expressed as the sum
of the number of currency units assigned by the mechanism to the user (pi), plus his
valuation of the output (see Fig. 8):

ui = pi + vi(ti, o).

Feigenbaum and Shenker [41] survey the state of the art in theDistributed Al-
gorithmic Mechanism Design (DAMD) field, which can be exemplified as the study
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and the design of distributed systems where participants, assumed to be self-interested,
have to be properly incented to follow the system’s algorithm. Specifically, DAMD
addresses both incentive compatibility and computationaltractability in systems where
users and resources aredistributed. The authors illustrate the open problems inherent
to the DAMD problems formulation: first, they show that a measure of the hardness of
a problem is still missing; second, they question the value of approximated solutions to
hard problems; eventually, an overview of solution concepts alternative to Nash equi-
libria and dominant strategies are investigated, and indirect mechanisms are presented
as possible candidates to direct mechanisms.

The design of a mechanism depends on a model of the problem, and its approx-
imation when the problem is hard. Only basic results exist about approximation: in
particular, strategically faithful approximations are problem approximations where the
strategic properties of the original model hold, but other properties are approximated.
There exist three such approximations:

1. ε-dominance: In this approximation, the players do not play the best strategy,
but one approximation that lies within a factorε from the optimal strategy (see
Li et al. [39] for an example of application);

2. Feasibly strategyproof mechanisms: A better strategy exists, but it is infeasible
to compute forall the users; the infeasibility derives from computational limits;

3. Tolerably manipulable mechanisms: A mechanism is tolerably manipulable if it
is not group-strategyproof, but we can characterize the types of malicious groups
that can form, and we can demonstrate that their effects on the community are
tolerable. Such mechanisms answer the question: How large can the effects of
malicious coalitions be? For this reason, they are particularly interesting for the
study of collusion.

As we said above, the problems from a mechanism design perspective are usu-
ally studied with a special focus on dominant strategies andNash equilibria, which
are known to be hard to compute. However, alternative strategies may be found. In
a distributed complex environment like the Internet, it is realistic to assume that the
users do not know of the existence of each other, and they observe different payoff for
themselves applying the same strategy when network conditions change. In this case,
we obtain an interesting simplifying assumption by modeling the system as an itera-
tive game, in which the players do not know about the payoffs of other players, but
can iteratively learn them by observing the output of the choices as they appear in the
network.

Finally, the authors show that the design of indirect mechanisms offers a trade off
between the privacy of the users, who just partially (if at all) reveal their utility func-
tions, and the network complexity that derives from the needto retrieve that informa-
tion in other ways, which usually involves the explosion of the number of messages to
exchange.

6. Discussion and Conclusions

In this survey, we have analyzed the literature about P2P systems in order to find out
if and how the problem of collusion is taken into account —and eventually fought. Sin-
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gle or non-coordinated free riders and malicious users are normally considered when
analyzing security of P2P systems; however colluding usersstand to unorganized ma-
licious users and free riders as organized criminality stands to petty robbers, but the
complexity of collusion behavior and analysis seams to defeat or scare away most re-
searchers. The study of collusion in P2P systems is of the utmost importance, because
of the challenges it creates and the risks it puts on P2P systems that are founded on the
notion of collaboration and are based on the sharing of some resources. Moreover, it
must be remembered that techniques derived from botnets canbe easily imported into
P2P systems, making a single ‘real’ user the master of a strategic collusion system, and
this rises the level of danger: If the coordinated action of hundreds of different users
may be rare, the coordinated control of hundreds of nodes by asingle user is much
more probable, specially if by doing so the single real user has a large personal benefit,
and can get away leaving the controlled, artificial nodes to be blamed for the havoc.

As any survey the goal is taking a snapshot (as accurate as we are able to do) of
the state of the art on the survey subject, in order to rise thecommunity awareness on
the topic and to be the base for further active research in thefield. Not all the papers
we have included in the bibliography deals with collusion: many of them, as many
others we have not included, simply admit that “problems related to collusion are left
for future work and research”, implicitly stating the importance of the topic and, at the
same time admitting that research is lagging behind systems’ threats in this field.

The analysis we carried out took different angles to the problem: per application,
per methodology, per shared resource. We have distinguished anti-collusion methods
based on the presence of incentives, luring users to collaborate, from methods based
on ‘enforcement by design’ aiming at evicting misbehaving users from the system.

Regardless of the angle of observation or perspective, we found that there are many
open issues in P2P systems in order to embed anti-collusion systems in them. Theoreti-
cal research is required to better understand the dynamics of collusion and their impact
on the service provided. Experimental research is needed tocomplement theory, but
also to collect data about real systems behavior and workout. Indeed, this seems to
be one of the most uncovered areas: the availability of hard facts and data about the
impact and effects of collusion in real systems. To concludethe survey we discuss the
possibility that a new level of awareness on the problem may spawn a positive loop
of research and implementation that may lead to strong results against collusive be-
haviors paving the road for a new generation of services based on the P2P networking
paradigm.

6.1. Theoretical directions of research

MPSs and trust-based systems are existing, but incomplete means to counter collu-
sion. Moreover they seem to be in place more as a side-effect than by purposeful design
choice. The role of game theory seems promising, as the motivations that we find for
malicious nodes to cooperate are intuitively suitable to game models. Game theory is
a complex discipline, however, and we recognize that the efforts made in the research
on (Distributed) Algorithmic Mechanism Design, intended to make the computation of
the equilibria tractable by machines, are an important partof the process of application
of game theory itself to the field of collective attacks.
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In particular, the approach that uses approximated equilibria is encouraging since it
cuts complexity and offers, in some cases, ways to compute the error with respect to the
optimal equilibrium. In particular, Nash equilibria tend to be fragile, in the sense that
in a real environment, with errors, churn, and all sort of impairments, they cannot be
reached, with the risk of leading to protocol deadlocks or livelocks. An approximated
equilibrium instead defines a region of sustainable operation and should lead to more
robust and resilient protocols.

Indeed, from a theoretical point of view a formal way to measure the gravity of
collusion-based attacks is still missing, as well as recognized methods to define how
vulnerable systems are to such attacks. A first step towards this goal can be the defini-
tion of metrics and a classification system based on them. Albeit far from a complete
definition, this survey provides a first attempt in this direction.

Related to the lack of metrics, the sheer proof that collusion can be prevented in
real (not trivial) systems is still missing. The lack of suchresults, positive or negative,
leaves the community in the uncertainty of the scope and limits of collusion effects.

6.2. Experimental directions of research

Some of the theoretical directions of research might be veryhard and lead to dead-
ends. All the same collusion exists. Under this perspective, traffic measures to provide
evidence of the damage of collusion attacks, to detect repetitive patterns, and to con-
firm the reliability of systems built according to the results of the theory are needed. As
theory provides metrics, we can classify the existing systems and show how vulnerable
they are against collusion attacks. Experimental researchcan also focus on the com-
parison among systems, and find strong points to repeat in future systems to further
limit their vulnerability.

Also, testing tools generating representative patterns ofcollusion, with known and
proven coverage, would be extremely useful for the comparison of different protection
techniques.

Known attacks

on−the−field

Empirical results

Theory
development detectors Active Defenders

CollusionCollusion

Figure 9: The advancement of research in countering collusion. After each feedback, new systems will
incorporate the improvements determined by theory and practice. While known attacks are repelled, new
attacks fire the loop and demand further improvements to research.
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6.3. A path against collusion

On top of the output provided by theory and practice, the objective is to isolate
the results in a modular classification, and sample applications, in order to provide
developers with a reliable and tested set of tools that guarantee the resilience of the
system against collusion attacks.

We see two goals along this direction: research will first provide tools todetect
collusion, in as distributed a way as possible; second, tools will break collusion and
report about the actions taken: we can call such tools collectively an anti-collusion
active defense.

Just as security enforcement, also anti-collusion protection is not a destination but
a path: As new threats rise, the countermeasures must becomes more sophisticated,
spawning a classical cycle of system development as depicted in Fig. 9.
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