
Reti di Calcolatori
AA 2010/2011

http://disi.unitn.it/locigno/index.php/teaching-duties/computer-networks

Internet Routing

Renato Lo Cigno

locigno@disi.unitn.it 2

CopyrightCopyright

Quest’opera è protetta dalla licenza:

Creative Commons

Attribuzione-Non commerciale-Non opere derivate

2.5 Italia License

Per i dettagli, consultare
http://creativecommons.org/licenses/by-nc-nd/2.5/it/

locigno@disi.unitn.it 3

Direct / Indirect Delivery

NtwA
165.5.1.0/24

NtwB
98.23.0.0/16

NtwC

201.12.82.0/24

HostA

HostC

165.5.1.5

201.12.82.4

NtwD
201.12.83.0/24

NtwE

198.35.112.0/24

Since this router is connected to

different

- Networks

- Routers within each network

how can it knows where to deliver the

packets for Host 201.12.82.4?

locigno@disi.unitn.it 4

Routing: What is it?

� Process of finding a path from a source to every destination
in the network

� Suppose you want to connect to Antarctica from your
desktop
� what route should you take?

� does a shorter route exist?

� what if a link along the route goes down?

� what if you’re on a mobile wireless link?

� Routing deals with these types of issues

locigno@disi.unitn.it 5

Basics

� A routing protocol
sets up a routing
table in routers
� internal table that
says, for each
destination, which is
the next output to
take

� A node makes a local
choice depending on
global topology: this
is the fundamental
problem

locigno@disi.unitn.it 6

Key problem

� How to make correct local decisions?
� each router must know something about global state

� Global state
� inherently large

� dynamic

� hard to collect

� A routing protocol must intelligently summarize relevant
information

locigno@disi.unitn.it 7

Requirements

� Minimize routing table space
� fast to look up

� less to exchange

� Minimize number and frequency of control messages

� Robustness: avoid
� black holes

� loops

� oscillations

� Use optimal path

locigno@disi.unitn.it 8

Different degrees of freedom

� Centralized vs. distributed routing

� centralized is simpler, but prone to failure and congestion

� Global vs local information exchange

� convey global information is expensive

� Static vs dynamic

� static may work at the edge, not in the core

� Stochastic vs. deterministic

� stochastic spreads load, avoiding oscillations, but misorders

� Single vs. multiple path

� primary and alternative paths (compare with stochastic)

� State-dependent vs. state-independent

� do routes depend on current network state (e.g. delay)

locigno@disi.unitn.it 9

Dynamic Routing And Routers

� To ensure that all routers maintain information about how
to reach each possible destination
� each router uses a route propagation protocol

� to exchange information with other routers

� when it learns about changes in routes

� updates the local routing table

� Because routers exchange information periodically
� the local routing table is updated continuously

locigno@disi.unitn.it 10

1

23

0111

value in arriving
packet’s header

routing algorithm

local forwarding table

header value output link

0100

0101

0111

1001

3

2

2

1

Interplay between routing, forwarding

locigno@disi.unitn.it 11

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5

Graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph abstraction

locigno@disi.unitn.it 12

Graph abstraction: costs

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5
• c(x,x’) = cost of link (x,x’)

- e.g., c(w,z) = 5

• cost could always be 1, or
inversely related to bandwidth,
or inversely related to
congestion

Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

Question: What’s the least-cost path between u and z ?

Routing algorithm: algorithm that finds least-cost path

Distance Vector Algorithms

locigno@disi.unitn.it 14

Consistency criterion

Define

c(i,k) := cost from i to k (direct connection)

D(i,j) := cost of least-cost path from i to j

� The subset of a shortest path is also the shortest path between the two
intermediate nodes

� Then, if the shortest path from node i to node j, with distance D(i,j), passes
through neighbor k, with link cost c(i,k), we have:

� D(i,j) = c(i,k) + D(k,j)

i

k

c(i,k)
D(k,j)

j

locigno@disi.unitn.it 15

Distance Vector (DV) algorithm

� Initial distance values (iteration 1):
� D(i,i) = 0 ;

� D(i,k) = c(i,k) if k is a neighbor (i.e. k is one-hop away); and

� D(i,j) = INFINITY for all other non-neighbors j.

� Note that the set of values D(i,*) is a distance vector at
node i.

� The algorithm also maintains a next-hop value (forwarding
table) for every destination j, initialized as:
� next-hop(i) = i;

� next-hop(k) = k if k is a neighbor, and

� next-hop(j) = UNKNOWN if j is a non-neighbor.

locigno@disi.unitn.it 16

Distance Vector (DV) algorithm

� After every iteration each node i exchanges its distance
vectors D(i,*) with its immediate neighbors.

� For any neighbor k, if c(i,k) + D(k,j) < D(i,j), then:
� D(i,j) = c(i,k) + D(k,j)

� next-hop(j) = k

locigno@disi.unitn.it 17

In summary

Basic idea:

� From time-to-time, each node sends its own distance vector
estimate to neighbors

Asynchronous

� When a node x receives new DV estimate from neighbor, it
updates its own DV using B-F equation:

D(x,y) ← minv{c(x,v) + D(v,y)} for each node y ∊ N

� Under minor, natural conditions, the estimate D(x,y)
converges to the actual least cost

locigno@disi.unitn.it 18

In summary

� Iterative,
asynchronous:

each local iteration
caused by:
� local link cost change

� DV update message from
neighbor

� Distributed:

each node notifies
neighbors only when its
DV changes
� neighbors then notify
their neighbors if
necessary

wait for (change in local link

cost or msg from neighbor)

recompute estimates

if DV to any dest has

changed, notify neighbors

Each node:

locigno@disi.unitn.it 19

Distance Vector: example (starting point)

A

B C

D

7

1

1

2

25

E

A

����A
����B
����C
����D
����E

dist

0
7
-
-
1

thr.

-
B
-
-
E

B

����A
����B
����C
����D
����E

dist

7
0
1
-
5

thr.

A
-
C
-
E

C

����A
����B
����C
����D
����E

dist

-
1
0
2
-

thr.

-
B
-
D
-

D

����A
����B
����C
����D
����E

dist

-
-
2
0
2

thr.

-
-
C
-
E

E

����A
����B
����C
����D
����E

dist

1
5
-
2
0

thr.

A
B
-
D
-

locigno@disi.unitn.it 20

Distance Vector: example (running)

A

B C

D

7

1

1

2

25

E

C

����A
����B
����C
����D
����E

dist

-
1
0
2
-

thr.

-
B
-
D
-

D

����A
����B
����C
����D
����E

dist

-
-
2
0
2

thr.

-
-
C
-
E

E

����A
����B
����C
����D
����E

dist

1
5
-
2
0

thr.

A
B
-
D
-

locigno@disi.unitn.it 21

Distance Vector: example (running)

A

B C

D

7

1

1

2

25

E

C

����A
����B
����C
����D
����E

dist

-
1
0
2
4

thr.

-
B
-
D
D

E

����A
����B
����C
����D
����E

dist

1
5
4
2
0

thr.

A
B
D
D
-

D

����A
����B
����C
����D
����E

dist

-
-
2
0
2

thr.

-
-
C
-
E

locigno@disi.unitn.it 22

Distance Vector: example (running)

A

B C

D

7

1

1

2

25

E

E

����A
����B
����C
����D
����E

dist

1
5
4
2
0

thr.

A
B
D
D
-

D

����A
����B
����C
����D
����E

dist

-
-
2
0
2

thr.

-
-
C
-
E

A

����A
����B
����C
����D
����E

dist

0
7
-
-
1

thr.

-
B
-
-
E

B

����A
����B
����C
����D
����E

dist

7
0
1
-
5

thr.

A
-
C
-
E

locigno@disi.unitn.it 23

Distance Vector: example (running)

A

B C

D

7

1

1

2

25

E

E

����A
����B
����C
����D
����E

dist

1
5
4
2
0

thr.

A
B
D
D
-

D

����A
����B
����C
����D
����E

dist

3
7
2
0
2

thr.

E
E
C
-
E

A

����A
����B
����C
����D
����E

dist

0
6
5
3
1

thr.

-
E
E
E
E

B

����A
����B
����C
����D
����E

dist

6
0
1
7
5

thr.

E
-
C
E
E

locigno@disi.unitn.it 24

Distance Vector: example (final point)

A

B C

D

7

1

1

2

25

E

A

����A
����B
����C
����D
����E

dist

0
6
5
3
1

thr.

-
E
E
E
E

B

����A
����B
����C
����D
����E

dist

6
0
1
3
5

thr.

E
-
C
C
E

C

����A
����B
����C
����D
����E

dist

5
1
0
2
4

thr.

D
B
-
D
D

D

����A
����B
����C
����D
����E

dist

3
3
2
0
2

thr.

E
C
C
-
E

E

����A
����B
����C
����D
����E

dist

1
5
4
2
0

thr.

A
B
D
D
-

locigno@disi.unitn.it 25

Problem: “counting to infinity”

� Consider the
entries in each
routing table for
network NTW_1

� Router D is directly
connected to
NTW_1

B

AC

D

1 1

110

NTW_1

2DNTW_1

MetricNextDest

Router A

3ANTW_1

MetricNextDest

Router B

3ANTW_1

MetricNextDest

Router C

1dirNTW_1

MetricNextDest

Router D

1

locigno@disi.unitn.it 26

Problem: “counting to infinity”

-Unr.NTW_1

MetricNextDest

Router A

3ANTW_1

MetricNextDest

Router B

3ANTW_1

MetricNextDest

Router C

1dirNTW_1

MetricNextDest

Router D

B

AC

D

1 1

110

NTW_1

1

Link between B

and D fails

time

4CNTW_1

MetricNextDest

Router A

4CNTW_1

MetricNextDest

Router B

4BNTW_1

MetricNextDest

Router C

1dirNTW_1

MetricNextDest

Router D

5CNTW_1

MetricNextDest

Router A

5CNTW_1

MetricNextDest

Router B

5BNTW_1

MetricNextDest

Router C

1dirNTW_1

MetricNextDest

Router D

locigno@disi.unitn.it 27

Problem: “counting to infinity”

B

AC

D

1 1

10

NTW_1

1

time

11CNTW_1

MetricNextDest

Router A

11CNTW_1

MetricNextDest

Router B

11BNTW_1

MetricNextDest

Router C

1dirNTW_1

MetricNextDest

Router D

12CNTW_1

MetricNextDest

Router A

12CNTW_1

MetricNextDest

Router B

11DNTW_1

MetricNextDest

Router C

1dirNTW_1

MetricNextDest

Router D

…

locigno@disi.unitn.it 28

Solution to “counting to infinity”

� Maximum number of hops bounded to 15
� this limits the convergence time

� Split Horizon
� simple

� each node omits routes learned from one neighbor in update
sent to that neighbor

� with poisoned reverse

� each node include routes learned from one neighbor in
update sent to that neighbor, setting their metrics to infinity

� drawback: routing message size greater than simple Split
Horizon

locigno@disi.unitn.it 29

Distance Vector: link cost changes

� If link cost changes:
� good news travels fast

� good = cost decreases

� bad news travels slow

� bad = cost increases

� Exercise
� try to apply the algorithm in the simple scenario depicted above
when

� the cost of the link A � B changes from 4 to 1

� the cost of the link A � B changes from 4 to 60

A

CB

4 1

50

locigno@disi.unitn.it 30

RIP at a glance

� Routing Information Protocol

� A simple intradomain protocol

� Straightforward implementation of Distance Vector
Routing…
� Distributed version of Bellman-Ford (DBF)

…with well known issues
� slow convergence

� works with limited network size

� Strengths
� simple to implement

� simple management

� widespread use

locigno@disi.unitn.it 31

RIP at a glance

� Metric based on hop count
� maximum hop count is 15, with “16” equal to “∞”

� imposed to limit the convergence time

� the network administrator can also assign values higher than 1 to a
single hop

� Each router advertises its distance vector every 30 seconds
(or whenever its routing table changes) to all of its
neighbors
� RIP uses UDP, port 520, for sending messages

� Changes are propagated across network

� Routes are timeout (set to 16) after 3 minutes if they are
not updated

locigno@disi.unitn.it 32

RIP: Message Format

� Command: 1=request 2=response
� Updates are replies whether asked
for or not

� Initializing node broadcasts request

� Requests are replied to immediately

� Version: 1

� Address family: 2 for IP

� IP address: non-zero network
portion, zero host portion
� Identifies particular network

� Metric
� Path distance from this router to
network

� Typically 1, so metric is hop count

IP UDP RIP Message

Command Version 0…0

IP address (32-bit)

0...0

address family 0…0

0...0

metric
o

n
e
 ro

u
te

 e
n

try
(2

0
 b

y
te

s
)

32 bits

IP address (32-bit)

0...0

address family 0…0

0...0

metric

(up to 25 total route

entries)

…

locigno@disi.unitn.it 33

RIP procedures: introduction

� RIP routing tables are managed by application-level
process
� e.g., routed on UNIX machines

� Advertisements are sent in UDP packets (port 520)

� RIP maintains 3 different timers to support its
operations
� Periodic update timer (25-30 sec)

� used to sent out update messages

� Invalid timer (180 sec)

� If update for a particular entry is not received for
180 sec, route is invalidated

� Garbage collection timer (120 sec)

� An invalid route in marked, not immediately
deleted

� For next 120 s. the router advertises this route
with distance infinity

IP

TCP UDP

route

Data Link

Physical

locigno@disi.unitn.it 34

RIP procedures: input processing

� Request Messages
� they may arrive from routers which have just come up

� action: the router responds directly to the requestor’s address and
port

� request is processed entry by entry

� Response Messages
� they may arrive from routers that perform regular updates, triggered
updates or respond to a specific query

� action: the router updates its routing table

� in case of new route or changed routes, the router starts a
triggered update procedure

locigno@disi.unitn.it 35

RIP procedures: output processing

� Output are generated
� when the router comes up in the network
� if required by the input processing procedures
� by regular routing update

� Action: the router generates the messages according to the commands
received
� the messages contain entries from the routing table

timers

input output

request response

timers

input output

response response

timers

input output

response

locigno@disi.unitn.it 36

Link State (LS) Approach

� The link state (Dijkstra) approach is iterative, but it pivots around
destinations j, and their predecessors k = p(j)
� Observe that an alternative version of the consistency condition holds for
this case: D(i,j) = D(i,k) + c(k,j)

� Each node i collects all link states c(*,*) first and runs the complete
Dijkstra algorithm locally.

i

k

j
c(k

,j)

D(i,k)

locigno@disi.unitn.it 37

Link State (LS) Approach…

� After each iteration, the algorithm finds a new destination node j and a
shortest path to it.

� After m iterations the algorithm has explored paths, which are m hops
or smaller from node i.

� It has an m-hop view of the network just like the distance-vector approach

� The Dijkstra algorithm at node i maintains two sets:

� set N that contains nodes to which the shortest paths have been found so
far, and

� set M that contains all other nodes.

� For all nodes k, two values are maintained:

� D(i,k): current value of distance from i to k.

� p(k): the predecessor node to k on the shortest known path from i

locigno@disi.unitn.it 38

Dijkstra: Initialization

� Initialization:
� D(i,i) = 0 and p(i) = i;

� D(i,k) = c(i,k) and p(k) = i if k is a neighbor of I

� D(i,k) = INFINITY and p(k) = UNKNOWN if k is not a neighbor
of I

� Set N = { i }, and next-hop (i) = I

� Set M = { j | j is not i}

� Initially set N has only the node i and set M has the rest of
the nodes.

� At the end of the algorithm, the set N contains all the
nodes, and set M is empty

locigno@disi.unitn.it 39

Dijkstra: Iteration

� In each iteration, a new node j is moved from set M into the set N.

� Node j has the minimum distance among all current nodes in M, i.e. D(i,j) =
min {l ε M} D(i,l).

� If multiple nodes have the same minimum distance, any one of them is
chosen as j.

� Next-hop(j) = the neighbor of i on the shortest path

� Next-hop(j) = next-hop(p(j)) if p(j) is not i

� Next-hop(j) = j if p(j) = i

� Now, in addition, the distance values of any neighbor k of j in set M is reset
as:

� If D(i,k) < D(i,j) + c(j,k), then

D(i,k) = D(i,j) + c(j,k), and p(k) = j.

� This operation is called “relaxing” the edges of node j.

locigno@disi.unitn.it 40

Dijkstra’s algorithm: example

Step

0

1

2

3

4

5

set N

A

AD

ADE

ADEB

ADEBC

ADEBCF

D(B),p(B)

2,A

2,A

2,A

D(C),p(C)

5,A

4,D

3,E

3,E

D(D),p(D)

1,A
D(E),p(E)

infinity

2,D

D(F),p(F)

infinity

infinity

4,E

4,E

4,E

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

The shortest-paths spanning tree rooted at A is called an SPF-tree

locigno@disi.unitn.it 41

Dijkstra’s algorithm, discussion

Algorithm complexity: n nodes

� each iteration: need to check all nodes, w, not in N

� n(n+1)/2 comparisons: O(n2)

� more efficient implementations possible: O(n log(n))

Oscillations possible:

� e.g., link cost = amount of carried traffic

A

D

C

B
1 1+e

e0

e

1 1

0 0

A

D

C

B
2+e 0

00
1+e 1

A

D

C

B
0 2+e

1+e1
0 0

A

D

C

B
2+e 0

e0
1+e 1

initially
… recompute

routing
… recompute … recompute

locigno@disi.unitn.it 42

Summary: Distributed Routing Techniques

� Topology information is flooded
within the routing domain

� Best end-to-end paths are
computed locally at each router.

� Best end-to-end paths determine
next-hops.

� Based on minimizing some
notion of distance

� Works only if policy is shared
and uniform

� Examples: OSPF

� Each router knows little about
network topology

� Only best next-hops are chosen
by each router for each
destination network.

� Best end-to-end paths result
from composition of all next-hop
choices

� Does not require any notion of
distance

� Does not require uniform policies
at all routers

� Examples: RIP

Link State Distance Vector

locigno@disi.unitn.it 43

Comparison of LS and DV algorithms

Message complexity

� LS: with n nodes, E links, O(nE)
msgs sent

� DV: exchange between
neighbors only
� convergence time varies

Speed of Convergence

� LS: O(n2) algorithm requires
O(nE) msgs
� may have oscillations

� DV: convergence time varies
� may be routing loops

� count-to-infinity problem

Robustness: what happens if router
malfunctions?

� LS:
� node can advertise incorrect link
cost

� each node computes only its
own table

� DV:
� DV node can advertise incorrect
path cost

� each node’s table used by others

� error propagate thru
network

locigno@disi.unitn.it 44

Open Shortest Path First (OSPF)

� In alternativa al protocollo RIP di tipo Distance Vector in Internet esiste
il protocollo OSPF di tipo Link State

� I tre principali criteri di progettazione del protocollo OSPF sono:
� distinzione tra host e router

� reti broadcast

� suddivisione delle reti di grandi dimensioni

� Hli host sono collocati nelle aree periferiche della rete a sottoreti locali
connesse alla attraverso router (default gateway)

� Il modello link state prevede che il database link state includa una entry
per ogni link tra host e router

� OSPF associa il link di accesso ad una stub network
� una stub network è una sottorete terminale che non fornisce servizio di
transito

� il link di accesso viene identificato dall’indirizzo della sottorete

locigno@disi.unitn.it 45

Distinzione host/router (2)

Configurazione

fisica

Modello link state

classico

S
tu

b
 N

e
tw

o
rk

Modello OSPF

locigno@disi.unitn.it 46

Il protocollo OSPF

� Il protocollo OSPF utilizza 3 procedure, chiamati ancora
`protocolli’, per svolgere le proprie funzioni

� Hello Protocol

� Exchange Protocol

� Flooding Protocol

locigno@disi.unitn.it 47

Messaggi OSPF (1)

� I messaggi OSPF sono trasportati direttamente all’interno dei pacchetti IP

� non viene utilizzato il livello di trasporto

� nelle reti broadcast biene usato un indirizzo multicast

� Tutti i messaggi OSPF condividono lo stesso header

Packet lengthTypeVersion #

Router ID

Area ID

Checksum Auth Type

Authentication

Authentication

locigno@disi.unitn.it 48

Messaggi OSPF (2)

� Version # = 2

� Type: indica il tipo di messaggio

� Packet Length: numero di byte del messaggio

� Router ID: indirizzo IP del router di riferimento

Packet lengthTypeVersion #

Router ID

Area ID

Checksum Auth Type

Authentication

Authentication

locigno@disi.unitn.it 49

Messaggi OSPF (3)

� Area ID: identificativo dell’area
� 0 per la Bacvbone area

� Auth Type: tipo di autenticazione
� 0 no autenticazione, 1 autenticazione con passwd

� Authentication: password

Packet lengthTypeVersion #

Router ID

Area ID

Checksum Auth Type

Authentication

Authentication

locigno@disi.unitn.it 50

Il protocollo Hello

� Funzioni:
� verificare l’operatività dei link

� Messaggi:
� Hello

PriorityOptions

Dead interval

Designated router

Common header (type = 1, hello)

Network mask

Hello interval

Backup Designated router

Neighbor

locigno@disi.unitn.it 51

Hello Protocol: formato pacchetto (3)

� Neighbor: lista di nodi adiacenti da cui ha ricevuto un
messaggio di Hello negli ultimi dead interval secondi

PriorityOptions

Dead interval

Designated router

Common header (type = 1, hello)

Network mask

Hello interval

Backup Designated router

Neighbor

locigno@disi.unitn.it 52

Il protocollo Exchange

� Funzioni:
� sincronizzazione dei database link state (bring up adjacencies) tra
due router che hanno appena verificato l’operatività bidirezionale del
link che li connette

� protocollo client-server

� messaggi:

� Database Description Packets

� Link State Request

� Link State Update

� N.B. il messaggio Link State Update viene distribuito in flooding

locigno@disi.unitn.it 53

Exchange Protocol: messaggi (1)

� Database Description

0Options

DD sequence number

Link State Type

Common header (type = 2, db description)

Link State ID

Advertising router

00

Link State Sequence Number

Link State Checksum Link State Age

locigno@disi.unitn.it 54

Exchange Protocol: messaggi (2)

� Link State Request

� Link state Update

Link State Type

Link State ID

Advertising router

Common header (type = 3, link state request)

Number of link state advertisement

Link state advertisement #1

Link state advertisement #2

Common header (type = 4, link state update)

locigno@disi.unitn.it 55

Il protocollo di Flooding

� Funzioni:
� aggiornare il database link state dell’autonomous system a seguito
del cambiamento di stato di un link

� Garantisce la consegna di tutti I messaggi a tutti, a costo di
parecchie repliche

� Messaggi:
� Link State Update

Number of link state advertisement

Link state advertisement #1

Link state advertisement #2

Common header (type = 4, link state update)

