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CI and Simulation

Confidence Intervals (CI) are fundamental in measure-based
analysis
If possible they are even more important in simulations

When do I finish a simulation?
Once I have “numbers” from a simulation how much I can
trust them?

Even more than measures results of simulations can be
correlated
Care must be put to understand the correlation structure and
to derive independent measures to estimate the reliability of
results
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Recall what is a Confidence Interval

The confidence interval around the estimated value θ̂ is the
interval (θl , θu) such that the true value θ falls within the
interval (θl , θu) with a given probability Pl that we call the
confidence level

P[θl ≤ θ ≤ θu | θ̂] ≥ Pl

Often (θl , θu) is expressed as a fraction (percentage) of θ̂
around θ̂, assuming symmetry (which is not necessarily true)
E.g., a confidence interval of ±5% with a confidence level
Pl = 99%
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Going beyond Chebychev inequality

We have used Chebychev inequality to compute a CI for the
average X of a dataset of size n given only its experimental
variance s2 and exploiting the fact that
displaystyleVar[X ] = σ2

n

P[µ− ks < X < µ+ ks] ≥ 1− 1
k2

Letting ε = ks; k =
ε

s
' nε

σ

P[µ− ε < X < µ+ ε] ≥ 1− s2

ε2
' 1− σ2

nε2
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Going beyond Chebychev inequality

The strength of Chebychev inequality is that it is completely
independent from the distribution of X
We can compute a CI without having any a-priori knowledge
about the population we are measuring (or simulating)
The limit is that it is a loose bound, so that a high level of
confidence (normally Pl ≤ 90% is unacceptable for any
practical purpose, while Pl ≥ 95− 99% is highly desirable if
not necessary for most applications) imply a very large CI
Can we do better than this?
Yes, if we know something about the distribution of the
population we’re measuring/simulating, or if we have large
datasets of independent samples
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Gaussian populations

Let’s suppose we know that the population is normally distributed:

fX (x) = N(µ, σ2)

In this case it is not difficult to show that the distribution of the
sample mean X of a dataset with n independent points is also
normally distributed

fX (x) = N(µ, σ2/n)

and finally

Z =
X − µ
(σ/
√

n)

is standard normal: fZ (z) = N(0, 1)
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Gaussian populations

Assuming a symmetric interval of normalized half-width a and
Pl = γ it is clear that for Z we have

P[−a < Z < a] = γ

and that given γ a can be found on tables. Denormalizing to find
the CI of our estimate X we have

P[X − aσ√
n
< µ < X +

aσ√
n
] = γ

so the interval (
X − aσ√

n
,X +

aσ√
n

)
is a 100γ% CI for µ.
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Gaussian populations

Let γ = 1− α for convenience. Since the normal distribution is
symmetric we have that

P[Z < −a] = P[Z > a] =
α

2

normally this specific value of a is called zα
2
and can be found in

tables as the following one, derived from the normal standard
distribution N(0, 1)

1− α 0.90 0.95 0.99
zα
2

1.645 1.96 2.576
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Gaussian populations: How many samples?

As we have a 100(1− α)% CI given by(
X −

zα
2
σ
√

n
,X +

zα
2
σ
√

n

)
it is immediate to compute the number of samples n that we need
to measure or simulate to have an estimate X that deviates less
than

ε =
zα
2√
n

from the true value µ

n =

⌈(zα
2
σ

ε

)2
⌉
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Non Gaussian population

What if the population is not Gaussian?
Easy if we have many samples and they are i.i.d.

What if the measures/simulations are not i.i.d.?
More complex, but we can still “survive” with batch means
(sometimes)
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Large i.i.d. Sample Sets

Given any set of i.i.d. RV, the central limit theorem
guarantees that under fairly mild assumptions the statistics of

Z =
X − µ
(σ/
√

n)

is N(0, µ)
This means that we can still use the improved technique
described above to compute the CI given that we have enough
samples (say more than 30–50)
In general (also for Gaussian populations) we do not know σ
so we have to use its dataset estimation s
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Large i.i.d. Sample Sets

If the sample set is small (say n < 30–50), then we should use
the Student-t distribution with n − 1 degree of freedom

With modern simulation techniques having enough samples is
normally not a problem, so the Student-t use is limited to
“difficult” experiments, where getting many measures is
difficult (e.g., medical studies)
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Correlated Datasets

In simulations it is not easy to guarantee that the output is
i.i.d.
In general we are exploring a DTMC, where the evolution is
controlled by the states, so that the “next” sample cannot be
independent from the previous one
Consider once more a queuing station, anyone, say a
G/G/m/K/LIFO

Let N(t) be the process describing the number of customers in
the queue sampled whenever a customer leaves
N(t + 1) is obviously very dependent (not only correlated) on
N(t)

Batch means techniques can help in these cases
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Recall the Batch Means

Thanks to the linearity of the average operator we can
compute X in batches splitting the sample of dimension n in k
smaller subsets

X =
1
k

k∑
i=1

k
n

n/k∑
j=1

x(ki+j)

 =
1
k

k∑
i=1

[
k
n
Xi

]

This was originally meant to reduce numerical problems with
large datasets . . .
. . . so how can we exploit this to our advantage in computing
CI with correlated processes and simulations in particular?
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Back to a queuing example

Consider a generic queue (e.g., the G/G/m/K/LIFO)

Let’s define a new process N ′(k) defined as the average
number of customers in the queue between two successive time
instances k when a leaving customer leaves the queue empty

N ′(k) =
1
ns

ns∑
i=1

N(i)

where ns is the number of customers arrived (and served)
between two instances that left the queue empty
It is not difficult to realize that when the queue empties it loses
all its memory so that N ′(k) is by construction an i.i.d. process
Moreover N = N ′, so we can compute not only the average
value of N, but also its confidence interval based on N ′
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Use of Batch Means

Whenever we can identify a renewal process (back to processes
definition for it)
Whenever we can estimate some parameters with a subset of
the samples we have and we can use/define at least 30–50
subsets
With this method we can estimate CIs also for parameters that
are not the mean (including variance, general parameters of a
distribution, . . . )
If the process identified is not strictly renewal

Make all efforts to guarantee that it is identically distributed
Verify that the output samples are reasonably independent

A powerful verification tool is checking that the process of the
errors is actually Gaussian
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