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Queues

A Birth-Death process is well modeled by a queue

Indeed queues can be used to model a variety of problems
CPUs, Stacks, Communication Links, . . .
Post Offices, Banks, Offices in general, . . .
Production plants, Logistics, . . .

Underlying a queuing system we always find a Markov Chain
(DT, or CT, or Semi-Markov)
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Kendall Notation

A queue is normally indicated with the following notation

A/S/m/B/K/SD

called the Kendall notation where
A: defines the type of arrival
S: defines the type of service
m: defines the number of servers
B: defines the maximum number of jobs/customers in the
systems (including those in service) (omitted if ∞)
K: defines the total population size (omitted if ∞)
SD: defines the serving discipline (omitted if FCFS)
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Kendall Notation

Arrival and Service processes (A/S)
M: Markovian arrival/services, it means that interarrival times
(service times) are exponentially distributed
G: (General) arrival/services are arbitrarily distributed
D: Deterministic
Ek : arrival/services are Erlang with k stages
Hk : arrival/services are Hyperexponential with k stages
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Kendall Notation

Serving Disciplines
FCFS (FIFO): First Come First Served
LCFS (LIFO): Last Come First Served (stacks)
PS: Processor Sharing
R or SIRO: Service in Random Order
PNPN: Priority Service (customers belong to classes) includes
preemptive and non-preemptive systems (e.g., interrupts in OS
and CPUs are –normally– preemptive)
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Kendall Notation – Examples

M/M/1
Exponential interarrival times, exponential service times, 1
server, ∞ buffering positions, ∞ population, FCFS
M/G/2/PS
Exponential interarrival times, general service times, 2 servers,
∞ buffering positions, ∞ population, Processor Sharing
M/M/4/40/400/LIFO
Exponential interarrival times, exponential service times, 4
servers, 40 buffering positions, 400 potential customers/jobs,
Last In First Out
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Why Queues?

They model a wide range of systems
Queues can be grouped in networks of queues and the solution
remains an Markov Chain
There are many “already solved” queues that we can use for
quick-n-dirty evaluation
There is a large class of networks of queues that allow a simple
“product form solution”
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What to measure – rewards

Number of customers in the queue
Easy as we associate the number of customers to the state of
the MC so given the steady state distribution π of the MC
representing the queuing system
P[No. of customers = k] = πk

Waiting times
Average values (steady state analysis)
Variance
Distribution in steady state
Transients (rarely)
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Average number of customers

Given a queue with general arrivals and services

the average number of customers E [N] is easily computed from the
steady state π

E [N] =
∞∑

k=0

kπk

What if we want to know what is the average waiting (or response)
time of the system E [R]?
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Little’s Formula

Given a queue without losses (either there are infinite position or
B≥K)

with average arrival rate E [A] and average number of customers
E [N], the average waiting time E [R] is given by a very simple
formula known as Little’s formula

E [R] =
E [N]

E [A]
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Interpretation of Little’s result

Little’s formula can be demonstrated based on conservation laws:
whatever gets into a “black box” must come out

The result is independent from: No. of servers, arrival
distribution, and service distribution
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Interpretation of Little’s result

States that the expected waiting time is directly proportional
to the number of customers in the system and inversely
proportional to the average arrival rate
The result is independent from the service distribution, but it
requires that E [A] < E [S ]
The system must be without losses
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Solution of some Simple Queues

All CTMCs underlying continuous time queues with Markovian
arrival and services are Birth-Death processes
In general the steady-state solution is not difficult to compute
We call λ the average arrival rate
We call µ the service rate of a single server

We call ρ =
λ

µ
the load of the queue

The infinitesimal generator Q is diagonal or banded
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M/M/1
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M/M/1

Must be ρ < 1 for stability
The general balance requires λπi = µπi+1 or πi+1 = ρπi

By direct substitution we have

πi = ρiπ0; i > 0; and
∞∑
i=0

πi = 1

π0 =

[ ∞∑
i=0

ρi

]−1

= (1− ρ)

πi = (1− ρ)ρi
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M/M/1

The average number of customer is

E [N] =
∞∑
i=0

iπi = (1− ρ)
∞∑
i=0

iρi =
ρ

1− ρ

The variance of the number of customer is

Var[N] =
∞∑
i=0

i2πi − (E [N])2 =
ρ

(1− ρ)2
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M/M/1

And applying Little’s rule we obtain the average waiting time

E [R] =
E [N]

λ
=

ρ

λ(1− ρ)
=

1/µ
1− ρ

note that it is the average service time over the probability
that the server is idle

Homework: plot E [N] and [R] as a function of ρ
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M/M/m
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M/M/m

Must be ρ < m for stability
The general balance equations a simple but a little
cumbersome, as they have to include the varying service rate
for i < m, so we only give the final results

π0 =

[
m−1∑
i=0

(mρ)i

i !
+

(mρ)m

m!

1
1− ρ

]−1

πi = π0ρ
i 1
m!

; i ≤ m

πi = π0ρ
i 1
m!mm−i ; i ≥ m
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M/M/m

The average number of customer is

E [N] =
∞∑
i=0

iπi = mρ+ ρ
(mρ)m

m!

π0

(1− ρ)2

And applying Little’s rule we obtain the average waiting time

E [R] =
E [N]

λ
= m

1
µ
+

1
µ

(mρ)m

m!

π0

(1− ρ)2
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M/M/∞
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M/M/∞

The queue is always stable for ρ <∞
The general balance requires λπi = (i + 1)µπi+1 or
πi+1 = ρ

i+1πi

By direct substitution we have

πi =
ρi

i !
π0; i > 0; and

∞∑
i=0

πi = 1

π0 =

[ ∞∑
i=0

ρi

i !

]−1

= e−ρ

πi =
ρi

i !
e−ρ
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M/M/∞

The average number of customer is

E [N] =
∞∑
i=0

iπi = ρ

The variance of the number of customer is

Var[N] =
∞∑
i=0

i2πi − (E [N])2 = ρ

As there is no queueing (inifinite servers) we don’t even need
Little’s rule to obtain the average response time

E [R] =
1
µ
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Homework

Compare the performance in terms of average number of customers
and average response time of the following three queuing systems

M/M/1 with service rate mµ and arrival rate mλ
M/M/m with service rate µ and arrival rate mλ
m parallel M/M/1 queues with service rate µ and arrival rate λ
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M/M/1/n
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M/M/1/n

A finite queue does not have stability problems, so 0 < ρ <∞
The general balance requires λπi = µπi+1 or πi+1 = ρπi

When new arrivals happen in state n the customers are lost
By direct substitution we have

πi = ρiπ0; 0 < i < n; and
n∑

i=0

πi = 1

π0 =

[
n∑

i=0

ρi

]−1

=


1− ρ

1− ρn+1 ; ρ 6= 1

1
n + 1

; ρ = 1
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M/M/1/n

The loss probability is given by the probability that a customer
arrives in state N conditioned on the probability that a
customer has arrived, so it is simply

Ploss = πn =
1− ρ

1− ρn+1 ρ
n

Ploss is always smaller than the probability that the queue
length in and M/M/1 queue is larger or equal to n
The reason is that a queuing customers creates a dependence
or correlation in time equal to its service time that is paid by
all customers that arrive later, while refusing a customer is
terms of service time is equal to 0
Homework: prove it or show it graphically for different ρ < 1
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M/M/1/n

Average number of customers

E [N] =
∑n

i=1 iπi

=
∑∞

i=1 iπi −
∑∞

i=n+1 iπi

=
ρ

1− ρ
− n + 1

1− ρn+1 ρ
n+1
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M/M/1/n

Throughput of the queue

For an infinite queuing system the notion of throughput is
meaningless: everything that comes in must exit
If there are losses instead we can be interested to know what it
the number (fraction) of customers serviced
Intuitively this is the total minus the lost ones so
Th = λ(1− πn)

Also intuitively it should be one minus the time the server is
inactive, hence Th = µ(1− π0)

Interestingly this also means that
(1− π0)

(1− πn)
= ρ
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G/G/1/n

In general the throughput can be computed as the arrival rate in
any state that does not lead to a loss

For a generic (finite) queue with one server

Th =
n−1∑
i=0

λiπi

note that π is not necessarily simple to compute
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M/M/1/n

Response time in finite queues

Little’s result cannot be applied directly because there are
losses
However we know what are the losses and hence the net flow
entering the queue after the lost customers are discarded

Queueing systems - Renato Lo Cigno - Solution of simple queuing systems 31



M/M/1/n

Litte’s result can be applied to this subsystem

E [R] =
E [N]

Th
=

1
λ(1− πn)

[
ρ

1− ρ
− n + 1

1− ρn+1 ρ
n+1
]

If we can compute the loss probability and hence the
throughput, then Little’s formula can be applied (any system,
not only the M/M/1/n)
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Results beyond Markovian FIFO queues

We can imagine all sort of single station queuing systems
With non Markov arrivals/services
With batch arrivals
With servers that sometimes stop serving
. . .

Many have closed form or approximate solutions
Some are important
Finding the solution is often complex . . .
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Non FIFO services

Given an M/M/1 queue
All results are stochastically independent from the serving
policy
LIFO, Random, PS, . . .
As long as it is work conserving

The result is intuitive as all customers are identical and their
service bears no memory, so even a policy that tries to favor
someone is impossible
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M/G/1

Can we find results for non-markovian services?
Indeed yes, using a very interesting technique: Using a discrete
MC obtained sampling the system at times where all the
memory is embedded in the state
But what are these times?
The problem lies in the fact that the residual service time is
not independent from the service already received
But different customers are independent one another . . .
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M/G/1

. . . if we sample the system when a customer departs, then we
obtain a DTMC . . .
. . . and we are left (only!) with the problem of computing the
transition probabilities pij
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M/G/1

Let
X = Xn; n = 0, 1, 2, 3, · · · be the (DT) stochastic process
that describes the number of customers in the queue at the
departure of the n-th customer, and
Y = Yn; n = 0, 1, 2, 3, · · · be the (DT) stochastic process
that describes the number of customers that arrive during the
service of the n-th customer

then we have

Xi+1 =

{
Xi − 1+ Yi+1, if Xi > 0
Yi+1, if Xi = 0
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M/G/1

Xi+1 =

{
Xi − 1+ Yi+1, if Xi > 0
Yi+1, if Xi = 0

The case for Xi > 0 is straightforward: when customer i + 1
leaves the system he leaves behind the customers that were in
the queue when his service started, minus himself, plus the
customers arrived during its service
The case for Xi = 0 goes as follows: when customer i + 1
leaves the system he has first arrived, so the queue that was
empty now has a customer, but then he leaves, so he leaves
the customers arrived during its service
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M/G/1

What are the possible events when a customer departs?
What states can be reached with these events?
What are the probabilities of these events?
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M/G/1

First event: no customer arrives during a service
Clearly this means a transition i → i − 1; i > 0
Let’s call the probability of this event a0
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M/G/1

Second event: one customer arrives during a service
Clearly this means a transition i → i ; i > 0, as the additional
customer compensate the one leaving on service completion
Let’s call this probability a1
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M/G/1

But what about transitions from state 0?
We have no customer in state 0, so transition 0→ 0 means
that a customer has arrived, and then no other has arrived
until he left
Then this transition has probability a0

In general transitions 0→ j happen with probability aj that j
new customers arrive during the service of the customer that
arrived and has been served
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M/G/1

Third event: two customers arrive during a service
The transition is i → i + 1; i ≥ 0 as one additional customer
compensate the one leaving on service completion and the
second one increase the no. of customers in the queue by 1
Or transition 0→ 2
We call this probability a2
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M/G/1

Fourth event: three customers arrive during a service
This means a transition i → i + 2; i ≥ 0 or 0→ 3
We call this probability a3
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M/G/1

We can recursively continue the reasoning to obtain all the
infinite aj transition probabilities from a given state to the
others
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M/G/1

Notice that the transition probabilities from any state is
identical to any other state
With the exception of state 0 where it is not possible to have a
transition to state“−1” and actually the probability a0 that no
customer arrives during a service is added to the self-transition
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M/G/1

The one step transition probability matrix is thus

P =


a0 a1 a2 a3 a4 · · ·
a0 a1 a2 a3 a4 · · ·
0 a0 a1 a2 a3 · · ·
0 0 a0 a1 a2 · · ·
...

...
...

...
...

...


The structure is known as upper Hassenberg and the system
can be solved quite easily
Still we have to formalize the aj
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M/G/1 – estimating aj

Since arrivals follow a Poisson process, then in general, if we call B
the RV describing the services we can write

P[Yn+1 = j |B = t] = e−λt (λt)j

j!

Applying the theorem of total probability

aj =

∫ ∞
0

P[Yn+1 = j |B = t] fB(t) dt =

∫ ∞
0

e−λt (λt)j

j!
fB(t) dt

aj are easily computed once the distribution fB(t) of the
services is given
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M/G/1 – computing E [N]

Completing the analysis of the M/G/1 queue, once we found
the one step transition probability matrix is still difficult and
requires math manipulations in the z (discrete frequency
transform domain) and LS (Laplace Stilties) domains, which
we do not know . . .
. . . after these passages, however we can come to the very
general and powerful result giving the average expected
number of customers E [N] for any queuing system

E [N] = ρ+
ρ2

2(1− ρ)
(1+ C 2

B)

where CB = σB
µB

is the coefficient of variation of the service time
distribution
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M/G/1 – commenting E [N]

E [N] = ρ+
ρ2

2(1− ρ)
(1+ C 2

B)

Given a load ρ, E [N] grows linearly with C 2
B

E [N] depends only on the first two moments of the services
distribution
If C 2

B →∞ then also E [N] goes to infinity: the queuing
system “seems” stable, but it response time becomes infinite
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M/G/1
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M/G/1/PS

A very interesting service discipline is the Processor Sharing
(PS) that approximate a round robin (RR) discipline as the
service time in the RR discipline approaches 0 and the RR
overhead is negligible
Jobs enter in service as soon as they arrive, but if there are j
customers each job receives only 1

j of the processing power
Intuitively this serving discipline favors short jobs that will stay
in the system for a short time, while long jobs will stay in the
system for a very long time, as they are continuously
“disturbed” (i.e., the processing power dedicated to them is
reduced) by short jobs arriving in the system
The formal analysis is not trivial
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M/G/1/PS

The analysis show that “average” performance of the
M/G/1/PS queue are the same of the M/M/1/FIFO, a very
notable result that also tell and support the intuition that if
the service is “shared” then there is no blocking phenomenon
as we have seen in the M/G/1/FIFO for CB →∞
Distributions however are not, indeed distributions are even
more biased and “stretched” if CB > 1 as heavy jobs remain in
the system for very long time
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M/G/1/PS

E [S ] = 1/µ: average (total) service time per job; ρ = λ/µ

π0 = 1− ρ
πi = (1− ρ)ρi

E [N] =
ρ

1− ρ
Var[N] =

ρ

(1− ρ)2

E [R] =
1

µ(1− ρ)
the queuing delay is not defined
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