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What is a model?

Given a system a model is a mathematical law (function)
that describe some of it properties as a function of one or

more free parameters
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What is a model? - Examples

The Digital Binary Communication Channel (DBCC)
The bit error probability given the noise on the channel . . . but

What is the noise? What modulation is used? What is the
“channel”

The speed of a car given the power (force, torque) yield by the
engine

What about frictions, air, gears, . . .

The number and distribution of arcs in a graph (network)
given the “arc generation law”
The completion time of a job on a specific computer
The time spent in a bank given the operation I have to do
(and the other customers?)
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Different models

Deterministic
Simple (or complex) equations, e.g., a = F

m , v(t) =
∫
t

F (t)
m dt

Stochastic
Random Variables . . .

Static (does not depend on time)
Deterministic, Stochastic

Dynamic (depends on time)
Deterministic, Stochastic (differential equations, random
processes)
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DBCC

The system

The model

Characterization only requires P[1|0] and P[0|1]
But who give us these parameters?
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Gilbert-Helliot DBCC

DBCC can be easily extended with a Markov Chain to model
more complex, non-stationary scenarios

Now we have more parameters to define:

PG [1|0];PG [0|1]; PB [1|0];PB [0|1]; λB,G ;λB,G

Yet we do not know how to set these parameters

The Art of Modeling - Renato Lo Cigno - Designing Models 6



Bit Error Rate (BER)

A pretty simple concept, we need it to tune our DBCCs
. . . which is what we use as Computer Scientist to design
protocols, networks, distributed applications
It depends on many characteristics of the transmission system

Modulation scheme (amplitude, phase, frequency, No. of
bits/symbol, . . . )
The transmission means (copper, fiber, wireless, central
frequency, . . . )
Receiver characteristics
Presence and characteristics of error correcting codes
. . .

Disclaimer: this is not meant to be a rigorous analysis of
Communication Theory!

The Art of Modeling - Renato Lo Cigno - Designing Models 7



BER - PAM Modulation
PAM: Pulse Amplitude Modulation:
1→ positive amplitude pulse; 0→ negative amplitude pulse
We use a “reasonable” real waveform w(t) (similar to a square
wave) of duration T

The transmitted energy per bit is

ET
b =

∫ T

0
Aw(t) dt = A

if we assume w(t) energy equal to 1
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BER - PAM Modulation

Maximum Likelihood Receiver: integrates the received signal
over the bit period T and decides based on sign of the integral

In practice it evaluates what is the sign of the waveform based
on the amount of energy present in the received signal
Details are too technical to unfurl here, but in practice we have

bi =

∫ iT

(i−1)T
r(t) dt

where bi is the i-th bit we decide has been received (1 if
bi > 0, 0 if bi < 0), r(t) is the signal received and w(t) is the
base waveform
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BER - AWGN

And the Channel?
We assume the simplest possible model: only Additive, White
(uncorrelated), Gaussian Noise with 0 mean and σ2 = N0;
N0 is called ‘spectral noise density’
An the inevitable attenuation β

The received useful energy per bit is

Eb =

∫ T

0
βAw(t) dt = βA
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BER - The signal received

r(t) = ±βAw(t) + n(t)

Normalizing so that t = (i − 1)T + t

bi =

∫ T

0
±βAw(t) + n(t) dt
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BER - The signal received

Thanks to the central limit theorem bi is a Gaussian RV with mean
±βA = ±Eb and standard deviation σ2 = N0

Computing the BER reduces to evaluate the probability that a
bi has the wrong sign compared to the transmitted signal, i.e.,
that a Gaussian RV with σ = N0 is larger than

√
Eb

BER =
1√
2π

∫ ∞
√

Eb/N0

e−x2
dx =

1
2
erfc

(√
Eb

N0

)
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BER AWGN, PAM – lin-lin scale

We only have to find a good plot to show its behavior . . .
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BER AWGN, PAM – log-log scale
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Modeling the speed of a car

What do we have to take into account to get a reasonable
model?
The engine power for sure . . . is it enough?
That in the end is what we mostly know about our car engine
. . .
What is the torque? And what about frictions and air drag?
Does the gear have influence? And the weight of the car?
Let’s make some models

Disclaimer: these are simplifications of Vehicular Technology
for Computer Scientists . . .
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Generic Model

We want to model the behavior of a vehicle when we go full
throttle. We start from high school physics . . .{

ẋ = v
v̇ = a

(1)

where x is the position, v is the speed, a is the acceleration

Now we consider three different models for car’s acceleration
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Model 1

This model assumes constant force (so constant torque) with no
RPM limit. {

ẋ = v
v̇ =

Feng1 (rgear)
m

(2)

where Feng is the force generated by the engine, m is the mass of
the car, and rgear is the transmission gear ratio. Feng is computed
depending on the engine and vehicle parameters. In particular,

Feng1(rgear) =
T · rgear

dwheel · π
. (3)

T is the torque in Nm, dwheel is the tracting wheels diameter in m.
We assume only one gear, and engine RPM limit . . .
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Model 1

Acceleration versus time
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Model 1

Acceleration versus speed
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Model 1

Speed versus time
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Model 2

This model assumes constant torque, but a maximum number of
engine RPM. When we reach this number of RPM, we change gear.
In this example, we have four gears.
First we define a function which gives us the engine RPM as
function of the speed:

RPM(v) =
60 · rgear · v
dwheel · π

(4)

rgear(v) =


r1 if 0 ≤ v < v1

r2 if v1 ≤ v < v2

r3 if v2 ≤ v < v3

r4 if v3 ≤ v

(5)
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Model 2

Feng =
T · rgear(v)
dwheel · π

. (6)

Feng2(v) =



Feng1(r1) if 0 ≤ v < v1

Feng1(r2) if v1 ≤ v < v2

Feng1(r3) if v2 ≤ v < v3

Feng1(r4) if v3 ≤ v < v4

0 otherwise

(7)

To compute vi , we can use the following formula which computes
the speed of the vehicle given the RPMs and the gear ratio ri :

vi =
dwheel · π

60 · ri · RPMmax
(8)
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Model 2

The model now becomes {
ẋ = v
v̇ =

Feng2 (v)
m

(9)
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Model 2

Acceleration versus time
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Model 2

Acceleration versus speed
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Model 2

Speed versus time
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Model 3

This model assumes the limited RPM engine model, gears, plus air
friction {

ẋ = v
v̇ =

Feng2 (v)−Fair(v)
m

(10)

where Fair(v) is the force due to air friction and is defined as

Fair(v) =
1
2
cairALρav2 (11)

where cair is the drag coefficient, AL is the maximum vehicle cross
section area, ρa is the air density, and v the vehicle’s speed
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Model 3

Acceleration versus time
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Model 3

Acceleration versus speed
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Model 3

Speed versus time

0

50

100

150

0 50 100 150 200
time [s]

sp
ee

d 
[k

m
/h

] factor(gear)

1

2

3

4

The Art of Modeling - Renato Lo Cigno - Designing Models 30



What are the models we did so far?

The BER model is a static stochastic model
The Car model is a dynamic (differential equations)
deterministic model
The DBCC model is stochastic, and either static or dynamic
depending if there is a single error probability model or if we
use a Markov Chain to embed different models . . .

Markov Models are one of the most powerful (yet simple)
technique to design models
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What is a Markov Model?

We have seen that a Markov Chain (DT or CT) is a simple
time-varying SP
It is a suitable means to model dynamic systems with
non-deterministic behavior
We have to identify a set of variables that represent the state
of the system
We have to identify a set of transition probabilities (rates) that
govern the evolution of the system . . .

. . .We have to find a method to solve it
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Ex. 1: Slotted Stop & Wait Protocol

Time is slotted: natural modeling with DT
Note that slots need not be of the same length, they can
depend, e.g., on the state
The protocol can only be in 3 states:

Idle: there is nothing to transmit, you can sleep
Wait: one packet is in transmission, waiting for the
acknowledgement
Re-transmit: a packet has not been ack-ed, we have to
re-transmit it
S = {I ,W ,R}
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Ex. 1: Slotted Stop & Wait Protocol

The States of the Model

States alone are not enough
We need the transition probabilities
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Ex. 1: Slotted Stop & Wait Protocol

Transition probabilities from State I

PII Probability that when Idle no packets arrive
PIW Probability that when Idle one or more packets arrive
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Ex. 1: Slotted Stop & Wait Protocol

Transition probabilities from State W

PWI Probability that the transmission is successful and there
are no other packets to transmit

PWR Probability that the transmission fails the packet must be
re-transmitted

PWW Probability that the transmission is successful and there
are other packets to transmit
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Ex. 1: Slotted Stop & Wait Protocol

Transition probabilities from State R

PRI Probability that the re-transmission is successful and there
are no other packets to transmit

PRW Probability that the transmission is successful and there
are other packets to transmit

PRR Probability that the transmission fails the packet must be
re-transmitted (again)
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Ex. 1: Slotted Stop & Wait Protocol

DTMC of the Model

The slot times include the transmission time and its Ack
We have external events (arrival of packets from the upper
protocol layers that drive the model
We have complex transitions that account for external arrivals
and loss/error probabilities
We have self-transitions that tells us, e.g., the distribution of
the number of re-transmissions per packet
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Solving a DTMC

We know that the evolution of a Markov Chain depends only
on the state . . . and we assume a time-homogeneous DTMC to
make things simpler
States are numerable, so without loss of generality we can set
S = {0, 1, 2, 3, 4, . . .}
pjk denotes the transition probability from state j to state k
The matrix

P = [pij ] =


p00 p01 p02 · ·
p10 p11 p12 · ·
p20 p21 p22 · ·
...

...
...

...
...


completely characterized a DTMC
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The Transition Probabilities Matrix

P is a stochastic matrix, i.e., it has the following properties

0 ≤ pij ≤ 1, ∀i , j ∈ S∑
j∈S

pij = 1, ∀i ∈ S

P elements are all non-negative
P rows must sum to 1 for the theorem of total probability
(i.e., the sum of the probabilities of disjoint events covering S
must be 1)

Representing a DTMC with P or with the state diagram is
exactly the same
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State Probabilities

Let p(n) = [p0(n), p1(n), . . . , pj(n), . . .] be the vector of the
probability of being in a given state at step n

Clearly
∑
i∈S

pi (n) = 1, ∀n

It is immediate to see that

p(n + 1) = p(n)P

If we have an initial state distribution (e.g.,
p(0) = [1, 0, 0, 0, . . .]) with a simple recursion we have

p(1) = p(0)P; p(2) = p(1)P = p(0)P2; . . . ; p(n) = p(0)Pn
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Chapman-Kolmogorov equations

Another way to see the evolution of a DTMC is computing the
transition probabilities in n steps ∀n
This imply computing the sum of the probabilities of all
possible paths to go from state i to state j in exactly n-steps
For n = 1 this is trivially pij entry of the transition matrix P
Recall that for a time-homogeneous DTMC by definition

pij(n) = P[Xm+n = j |Xm = i ], ∀m

so we can drop the dependence on m

pij(n) = P[Xn = j |X0 = i ]
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Chapman-Kolmogorov equations

The equation above tells us that we have to compute all the
conditional probabilities of going from state i to state k in h
steps times the probability of going from state k to state j in
n − h stpes
Formally

pij(n) =
n∑

h=1

∑
k∈S

pik(h)pkj(n − h)

which are the Chapman-Kolmogorov equations that can be
rewritten in the simple matrix form of

P(n) = P · P(n − 1) = Pn

in case of homogeneous DTMC
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Limiting Probabilities

We can ask the question if it is possible (and meaningful) to
compute

v = [v0, v1, . . . vi , . . .]

where
vi = lim

n→∞
pi (n)

As p(n) = p(0)Pn, it equivalent to ask if limn→∞ Pn exists
and is meaningful
If these limits exists and are meaningful, as P is a stochastic
matrix and v is a stochastic vector v is the left eigenvector of
P associated to the eigenvalue λ = 1 and can be found as

v = vP
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Stationary and Steady-State

Every vector vthat satisfies

v = vP;
∑
i∈S

vi = 1

is called a stationary distribution (or probability) of the DTMC

If v exists, it is unique and independent from the initial state
p(0) of the DCMC, then it is called the steady-state of the
DTMC

Question: Under which conditions the steady-state of a DTMC
exists?
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DTMC States Classification

Definition: Transient State

A state i is said to be transient if there is a positive probability
that the process will never return to i after leaving it

Formally this is equivalent to state that

lim
n→∞

pji (n) = 0; ∀j ∈ S
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DTMC States Classification

Transient States (yellow)
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DTMC States Classification

Definition: Recurrent State

A non-transient state is said recurrent
A state is recurrent if yhe probability of visiting i after leaving
it for n→∞ is 1

∞∑
n=1

pii (n) =∞
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DTMC States Classification

Definition: Recurrent State

Let fij(n) be the conditional probability that the first visit to j
after leaving i occurs in exactly n steps
Then the probability of ever visiting j from i is

fij =
∞∑

n=1

fij(n)

A state is recurrent if fii = 1; if fii ≤ 1 it is transient
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DTMC States Classification

Recurrent States (yellow)
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DTMC States Classification

Definition: Recurrent Positive State

For a recurrent state i it is interesting to know the distribution
of the recurrence time, i.e., after how many steps the DTMC
returns to i after leaving it
We define the mean recurrence time of state i

µi =
∞∑

n=1

nfii (n)

A state is said recurrent positive (non=null) if µi ≤ ∞
A state is said recurrent null if µi =∞
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DTMC States Classification

Recurrent Null/Positive States

If p < q all states are recurrent positive
If p ≥ all states are recurrent null
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DTMC States Classification

Definition: Periodic State

Let di be the greatest common divisor of the set of positive
integers n such that pii (n) > 0
A state is said periodic if di > 1; the value di is called the
period
A state is said aperiodic if di = 1
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DTMC States Classification

Periodic States (yellow)
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DTMC States Classification

Definition: Absorbing and Communicating States

A state i is said absorbing if pii = 1
Once the DTMC enters i it will never leave it
This notion can be extended to a set of states

Given two states i and j they are said communicating if
directed paths exist from i to j and viceversa pij(n) > 0 for
some n and pji (m) > 0 for some m
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DTMC States Classification

Absorbing States (yellow)
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DTMC States Classification

Communicating States
(yellow)

Non Communicating States
(yellow, 0 and 1 do not
communicate with 2)

The Art of Modeling - Renato Lo Cigno - Classifying and solving a DTMC 57



DTMC States Classification

DTMC with Transient States (yellow) and a set of absorbing states
(white) that do not communicate with the Transient ones
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Irreducible Markov Chain

A MC (not only DT) is said Irreducible if every state i is
reachable from any other state j in finite time: ∀i , j ∈ S there
exists n ≥ 1 such that pij(n) > 0
An irreducible MC does not have Transient or recurrent-null
states, i.e., they are all recurrent positive states
All states in an irreducible MC are of the same type: Periodic
or Aperiodic

Any Irreducible Aperiodic Markov Chain admits a
Steady-State that can be computed (for DTMCs) as

v = vP
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Infinite States DTMCs

If |S | is infinite, then the steady state can be found only if P
has some special structure that allows a recursive solution
Example: DT Birth-Death Process with p < q

P =


q p 0 0 0 · · ·
q 0 p 0 0 · · ·
0 q 0 p 0 · · ·
0 0 q 0 p · · ·
...

...
...

...
...

...
...

...


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DT Birth-Death Process

To solve the system we simply have to solve this system of
recursive equations

pv0 = q(v0 + v1)
(p + q)vi = pvi−1 + qvi+1 ∀i > 0∑∞

i=0 vi = 1

Whose solution yields the well known geometric distribution of
customers in a queue:

v0 =

(
1− p

q

)
; vi =

(
1− p

q

)(
p
q

)i

∀i > 0

The DT Birth-Death Process models any (single server, single
customer class) DT queueing system given that p is known
and q = (1− p) is a reasonable assumption
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Cashe conflicts in multi-core processors

Consider a simple processor with two cores and a L1 cashe
memory
If processes running on different cores need to access the cashe
there is a conflict and one must wait slowing the processing
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Cashe conflicts in multi-core processors

The state of the system is simply
S = {I ,C1,C2,W } = {0, 1, 2, 3}
Idle: no core is accessing the cashe; C1 (C2) core 1 (or 2) is
accessing alone; or one is accessing and the other is Waiting
Assume the probability of accessing are p1 and p2 respectively
in any time slot and the time to retrieve the content of the
cash is exactly one slot time, while retrieving the content the
core is blocked and cannot generate other requests. Then the
model is

P =


1− (p1 + p2) p1 − 0.5p1p2 p2 − 0.5p1p2 p1p2

1− p2 0 p2 0
1− p1 p1 0 0

0 0.5 0.5 0


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Homework (not exam assignment!)

Solve the model
Extend the model to 4 cores and content retrieve time
uniformly distributed between 1 and 4 slots and solve it (if it is
too complex to solve it in close form, program the solution as
a function of p1 · · · p4)
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Rewards

The real performance of the system can be normally derived
from the state distribution (sometimes from transitions, but
we do not consider this case for the time being
We can associate rewards ri to any state that measure it
performance
The performance of the system is associated to the average
reward r

r =
∞∑
i=0

ri · vi

If we are interested in the transient reward until step K we can
compute

r(K ) =
K∑

k=0

∞∑
i=0

ri · pi (k)
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Homework (not exam assignment!)

Back to the cashe memory model
The performance of the system is given by its efficiency, so we
can assume the following reward distribution:
r0 = 1, r1 = r2 = 0.5; r3 = 0
Compute the “surface” (p1, p2) that guarantees that r > rt ,
where rt is the target efficiency of your system
This result tells you what are the characteristics of the
workload that your 2-core processor can accept to
Extend this result to the 4 cores case
Make a comparison between a 4 core processor and two
2-cores one with the same processing power and cashe memory
capacity
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What if the time is Continuous

Some systems cannot be modeled in discrete time . . .
When “human time” is involved
When the evolution of the system is intrinsically analogic

. . . but we know there are CTMC
Classification of CTMC states is similar to DTMC, but
Periodic states do not exist
The condition for steady state existence is similar to DTMCs
(we do not make the whole analysis again)
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Representation of a CTMC

Recall that all transitions in a CTMS are exponentially
distributed (implied by the fact that dwell times must be
exponentially distributed)
A CTMC is fully described by a matrix

Q = [qij ] =


q0 q01 q02 · ·
q10 q1 q12 · ·
q20 q21 q2 · ·
...

...
...

...
...


called the infinitesimal generator
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Representation of a CTMC

qij are the transition rates from stat i to state j

qi = −
∞∑

j=0,j 6=i

qij

Neither qij , nor qi are probabilities, but the relation above
stems for a simple conservation law “on average whatever goes
in must come out”
State probabilities are normally called π and not v
. . .π(t) = [π0(t), π1(t), π2(t), . . .]
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Steady state of a CTMC

The steady state of a CTMC exists under the same conditions
(with the due changes!) of a DTMC
The Chapman-Kolmogorov equations can be found first
writing time-dependent probabilities and then taking the limit
for δt going to zero, obtaining differential equations
Finally, solving these equations we find that the steady-state
state probability vector π as solution of the linear system

πQ = 0;
∞∑
i=0

πi = 1
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