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Stochastic Process: A Basic Definition

A stochastic process is an ordered collection or family of
random variables

{X (t)|t ∈ T}

The values assumed by X (t) are the state space of the process
t is index of the process, often called time and can be
continuous or discrete
Recalling that an RV is a function that maps the events of the
RV onto R the process is also often written as a function

{X (t, s)|s ∈ S , t ∈ T}
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SPs: ordered vectors of RVs

Given a fixed value of t = t1 then the SP is a standard RV
X (t1) that can assume values in S with a given pdf (or pmf)
fX (t1)(x)
For another point in time t = t2 we have another RV X (t2)
that can assume values in S with a given pdf (or pmf)
fX (t2)(x)

In general fX (t1)(x) 6= fX (t2)(x)

An SP X (t) is thus characterized by the joint pdf (or CDF or
pmf) of all possible RVs contained in it as a function of time

fX(x; t)
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SPs: Realizations

We call a realization of an SP (or sample function) the
(deterministic) function of time Xs1(t) that is the outcome of the
SP when the sample space has been fixed to s1
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Classes of SPs

The state space S and the index (or time) value t can be
continuous or discrete

We have four classes of SPs
CS-CT: Continuous Space – Continuous Time: s ∈ R, t ∈ R
CS-DT: Continuous Space – Discrete Time: s ∈ R, t ∈ Z
DS-CT: Discrete Space – Continuous Time: s ∈ Z, t ∈ R
DS-DT: Discrete Space – Discrete Time: s ∈ Z, t ∈ Z

Discrete Space SPs are normally called chains
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Examples of SPs in life

Temperature of a given area
CS-CT. Highly correlated in space and time (the temperature
does not change by 10 C0 in 1s nor in 1m!)

People (or jobs, or packets, or . . . ) waiting in a queue
DS-CT. People (or jobs, . . . , objects in general) are countable
so S is the number of objects in the queue; continuous time
because objects can arrive and go at any moment
But if the "queue" is a bucket of water, then S is continuous
(unless you want to count single molecules)

The number of cars (or PCs, or apples, or wine bottles,
. . . again objects) produced in a single day

DS-DT. Time is discrete, because we are only interested in the
number at the end of the day . . . in other time instants we can
even say that the system simply “does not exist”
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Examples of SPs in science

Chemical reactions
CS-CT. Highly dependent on temperature and affinity of
chemicals. The randomness (normally ignored in high-school
chemistry) comes from the random movement of molecules
that determines how they “collide”

Disease diffusion
DS-CT. People get infected following very complex, time and
state dependent random function that depend on the disease
and how people interact

The value of a market index (is economy a science?)
CS-CT. The process is very complex & Mandelbrot (yes, the
"fractals" guy) showed are strictly unpredictable . . .
CS-CT. If you take daily closures
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Examples of SPs in CS & TLC

Execution time of programs/tasks
CS-CT. Both time of arrival of programs and tasks are
continuous, the execution time is random because of
non-deterministic software execution (depends on parameters)
and other tasks interaction.

Noise in electronics or telecommunications (not strictly the
same)

CS-CT. Can affect voltage, current, EM fields intensity,
frequency, phase, . . .

Errors in digital transmissions
DS-DT. Errors are on bits or symbols, and bits and symbols
are transmitted at discrete intervals
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Examples of SPs in Networking

Packet arrivals at routers/transmission media
DS-CT. If I count individual packets, they arrive at any point
in time (sometimes)
DS-DT. If the system is slotted, so that for a given period of
time T the packet is either present or not

The topology of a P2P overlay
DS-CT. The space is the graph representing the topology
. . . the space has an enormous dimension, but it is countable,
time is continuous unless we take snapshots

Request arrivals at servers
DS-CT. If I count individual requests, they arrive at any point
in time
DS-DT. If I count the number of requests per second
(minute/hour/. . . )
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The joint pdf of an SP

A generic SP {X (t)|t ∈ T} is an ordered collection of RVs

{X (t)|t ∈ T} =
{X (tn),X (tn−1), · · · ,X (t2),X (t1)|tn > tn−1 > · · · > t2 > t1}
∀x = (xn, xn−1, · · · , tx1) ∈ Rn;

∀t = (tn, tn−1, · · · , t1) ∈ T n; tn < tn−1 < · · · < t1

Thus in general the SP {X (t)|t ∈ T} can be described completely
only through the global n-th order statistic:

FX(x; t) = P[Xn(tn) ≤ xn,Xn−1(tn−1) ≤ xn−1, · · · ,X1(t1) ≤ x1]

Such a complete description is a forbidding task . . . but
sometimes we can simplify this description
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Strictly Stationary Processes

A generic SP {X (t)|t ∈ T} is said strictly stationary if

FX(x; t) = FX(x; t + τ) (1)

for all vectors x ∈ Rn and t ∈ T n, and all scalars τ (added to all
components of t) for which ti + τ ∈ T .

Let µ(t) = E [X (t)] be the time dependent average (or
ensemble average) of the a stationary process {X (t)|t ∈ T}. It
is not difficult to see that µ(t) = µ: it is constant for all times
With some more computations it is not difficult to prove that
strict stationarity implies that all central moments and in
particular the variance are constant in time
Still to fully describe a stationary process we need the full n-th
order joint distribution
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Independent Processes

A process is independent if all its n-th order joint pdf, pmf, CDF
are in product form

FX(x; t) =
n∏

i=1

FXi (xi ; ti )

=
n∏

i=1

P[Xi (ti ) ≤ xi ]

fX(x; t) =
n∏

i=1

fXi (xi ; ti )

This is the simplest form of SP
We often find it in measurement and experiments
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Renewal Processes

A special case of Independent Process is the case where the time is
discrete and all Xi , non-negative, independent and identically
distributed (iid) RV

{Xn|n ∈ Z} = {Xn,Xn−1, · · · ,X1}

Systems that can be repaired (or replaced) in negligible time:
the sequence of times between failures is a renewal process
(the name comes from this example)
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Markov Processes (MP)

The assumption of independence, as well as the one of strict
stationarity, are rarely met in reality, because they assume the
world has no memory at all of the past
A mild, but very useful and often met in reality, form of
dependence is assuming that the evolution of the process
depends only on its present state
In other words that RV X (tn+1) depends only on RV X (tn)

A process {X (t)|t ∈ T} is called Markov Process if given
t0 < t1 < · · · < tn

P[X (t) ≤ x |X (tn) = xn,X (tn−1) = xn−1,X (t0) = x0] =

P[X (t) ≤ x |X (tn) = xn] (2)
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Markov Processes

An MP is not strictly stationary: Eq. (2) does not imply
Eq. (1)
The distribution of an MP depends on its state, thus an MP is
actually not stationary in general
The so-called “Markov property” formalized by Eq. (2) implies
only that the evolution of a markovian stochastic system
depends only on its current state at time t, and not on its past
history
The history is completely summarized by the state at time t
Notice the dependence on time t
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Time-homogeneous Markov Processes

In many real cases the marginal distributions of an MP are
time invariant, i.e.:

P[X (t) ≤ x |X (tn) = xn] = P[X (t − tn) ≤ x |X (t0) = xn] (3)

we cal this MP time-homogeneous, and we will normally
restrict our analysis to this class of MPs
Again, Eq. (3) does not imply Eq. (1), thus also a
time-homogeneous MP is not strictly stationary
However in a time-homogeneous MP the evolution of the
process depends on the state and not on t, thus we can say
that the state of the process completely describes its past
This is indeed a very “normal” behavior that we expect from
the real world
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Markov Chains

If we restrict the state to be discrete we can represent
graphically an MP

In continuous time: CTMC

In discrete time: DTMC
The time spent by the system in a state is called dwell time
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Time-homogeneous CTMCs

A time-homogeneous CTMC has exponential dwell times, let’s see
why.

Given that the past history of the process must be completely
described by the current state, the dwell time Y in any state
must satisfy the following property:

P[Y ≤ r + t|Y ≥ t] = P[Y ≤ r ]

and by definition of conditional probability

P[Y ≤ r ] =
P[t ≤ Y ≤ r + t]

P[Y ≥ t]
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Time-homogeneous CTMCs

Which is equivalent to

FY (r) =
FY (t + r)− FY (t)

1− FY (t)

Taking the derivative of both terms with respect to r we have

F ′Y (0) =
F ′Y (t)

1− FY (t)

This is a differential equation that admits a unique solution

FY (t) = 1− eF ′
Y (0)t

i.e., the dwell time must be exponentially distributed
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Time-homogeneous DTMCs

A time-homogeneous DTMC has geometically distributed dwell
times

With a procedure similar to the one used for CTMC but using
finite difference equations it is not difficult to show that the
dwell time for this class of DTMCs must be geometrically
distributed

The “time” between successive steps of a DTMC (DT process
in general) “does not exist”, i.e., it is not correct to try to
represent a DT process in continuous time, as the process
cannot represent instants between transition events
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Semi-Markov processes

Generalizing a time-homogeneous MC to dwell times that are
generally distributed we obtain a MC whose future evolution
depends on the state, but also on the time td already spent in
the state
Clearly the MC is not time-homogeneous, but we have a
guarantee that whenever the process returns to the same
state, its behavior remains the same as in the previous visit

An Event Driven simulation is always a semi-Markov process in
discrete time where the program variables are the state and
the events correspond to transitions between states
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Semi-Markov processes

Example: A queueing system with exponential inter-arrival times
with rate a, but generally distributed service times with rate d

A CPU serving tasks in batch (there is no reason why a task
should have an exponential service time)
Links serving packets of non-geometric size
A post office/bank/train tiketing
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Autocorrelation Function

How can we measure if the RVs Xti of an SP {X} are
correlated or not?
knowing that a process is independent is important
. . . specially if we are taking measures from a process and we
want to reconstruct its structure
Given {X}, take the function

R(t1, t2) = E [X (t1) · X (t2)]

We call this function the Autocorrelation function of the
process {X}
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Properties of R(·)

The autocorrelation computed for t2 = t1 is the second
moment of X (t1)

R(t1, t2) = E [X (t1) ·X (t1)] = E [X 2(t1)] = Var[X (t1)]+µ2
X (t1)

The autocorrelation is a function of the covariance

R(t1, t2) = Cov(X (t1),X (t2)) + µ1µ2
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Properties of R(·)

The autocovariance of a stationary process {X} depends only
on τ = t2 − t1

R(t1, t2) = R(τ); τ = t2 − t1

thus it is a one-dimensional function of τ
The autocorrelation function of a stationary independent
process is

R(τ) =

{
0, ∀τ 6= 0
Var[X (t)] + µ2 = σ2 + µ2, τ = 0
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Normalization of R(·)

We can normalize R(·) so that it is a function comprised
between −1 and 1

R ′(t1, t2) =
R(t1, t2)− µX (t1)µX (t2)

σX (t1)σX (t2)

Restricting to stationary processes

R ′(τ) =
R(τ)− µ2

σ2
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Wide-Sense Stationary Process

Consider a process {X} with the following properties

1 µ(t) = E [X (t)] = µ is time independent
2 R(t1, t2) = R(0, t2 − t1) = R(τ); t2 ≥ t1 ≥ 0
3 R(0) = E [X (t)] ≤ ∞ (the variance is finite and constant)

We call this process stationary in wide-sense and it is indeed a
definition that comply with our intuition and it is easily measurable
on data
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