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Why Probabilities & Uncertainty

In models we reduce a complex physical phenomena to a
simple mathematical description
The hidden complexity pops-up as random variability

The arrival of queries to a web-server represented as a Poisson
process
Movement of chemical species represented as a Brownian
Motion

In measures there are inherent uncertainties that we model as
random errors

The noise introduced by electronics in a multimeter
The latency introduced by an interrupt in a software-based
delay measure
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Sample Space & Events

The Sample Space S is the set of all possible outcomes of
our experiment

Can be finite or infinite, numerable or not numerable
Sd = {1, 2, 3, 4, 5, 6} is the sample space of a dice throw
Sp = {x , y , z}; x ∈ R, y ∈ R, z ∈ R is the sample space of a
point in space

P[S ] = 1; P[∅] = 0
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Sample Space & Events

An Event E is the outcome of an experiment
Throwing dices

E1 = {1, 3, 5} “the dice is odd”
E2 = {2, 4, 6} “the dice is even”
E1 ∪ E2 = Sd
P[E1] = P[E2] = 0.5 (if the dice is fair)

Finding a point in space
Es = {x , y , z | (x − x0)

2 + (y − y0)
2 + (z − z0)

2) = r2} “the
point lies within a sphere of radius r centered in (x0, y0, z0)”
P[Es ] = 0
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Probability Axioms

1 For any event A, P[A] ≥ 0
2 P[S ] = 1
3 If A ∩ B = ∅ then P[A ∪ B] = P[a] + P[B]

4 By induction from Axiom 3 given mutually independent events
Ai , i.e., Aj ∩ Ak = ∅ ∀j 6= k , then

P

[ ∞⋃
i=1

Ai

]
=
∞∑
i=1

P[Ai ]

Together with set algebra this is all we need to work with
probabilities . . . well, with some manipulation here and there . . .
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Probability Rules

Derive directly from the axioms and set algebra
1 ∀A, P[A] = 1− P[A]
2 P[S ] = P[∅] = 0
3 Given two generic events A and B ,
P[A ∪ B] = P[A] + P[B]− P[A ∩ B]
the rule can be extended easily to any number n of events, but
it can be computationally long and cumbersome.

4 A more efficient computation of n given events Ai is

P

[
n⋃

i=1

Ai

]
= P[A1] + P[A1 ∩ A2] + P[A1 ∩ A2 ∩ A3] + · · ·

+P[A1 ∩ A2 ∩ · · · ∩ An−1 ∩ An]
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Events, Sample Space and Probabilities

A formal mathematical definition
Standard set algebra apply to events and their space
A measure is any function that assigns a positive real number
to a subset
Events are subsets of S that are measurable; we call this class
of subsets F
A probability system or probability space is the triple
(S ,F ,P) where

S is a set
F is a σ-field of subsets of S
P is a probability measure on F
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Example 1 (continuous space)

Uniform measure on the interval [0, 1]
Let S = [0, 1]
The class of events F is defined by all possible segments
The probability measure is the length of a segment:
P[a ≤ x ≤ b] = b − a; ∀0 ≤ a ≤ b ≤ 1
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Example 2 (continuous space)

Exponentially decreasing arrivals in time with parameter λ
Let S = [0,∞)s
The class of events F is defined by all possible arrival intervals
[t1, t2]
The probability measure is the integral of the exponential
function: fX (x) = λe−λt over the interval [t1, t2]

P[t1 ≤ x ≤ t2] =
∫ t2

t1
λe−λtdt; ∀0 ≤ t1 ≤ t2 ≤ ∞
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Example 3 (discrete space)

Roulette
Let S = {0, 1, 2, · · · , 36}
The class of events F is defined as each number (Ei = i), red,
black, odd, even, {1, ·, 18}, {19, · · · , 36}, {1, · · · , 12},
{13, · · · , 24}, {25, · · · , 36}, C1, C2, C3
The probability measure is the size of the event divided by the
size of S : P[E ] = |E |/|S |
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Example 3 (discrete space)

Roulette
Let S = {0, 1, 2, · · · , 36}
The class of events F is defined as each number (Ei = i), red,
black, odd, even, {1, ·, 18}, {19, · · · , 36}, {1, · · · , 12},
{13, · · · , 24}, {25, · · · , 36}, C1, C2, C3
The probability measure is the size of the event divided by the
size of S : P[E ] = |E |/|S |

Needless to say that the winning ratio is smaller than the fair share:
Wr <

1
P[E ]
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Example 3 (discrete space)

Roulette
Let S = {0, 1, 2, · · · , 36}
The class of events F is defined as each number (Ei = i), red,
black, odd, even, {1, ·, 18}, {19, · · · , 36}, {1, · · · , 12},
{13, · · · , 24}, {25, · · · , 36}, C1, C2, C3
The probability measure is the size of the event divided by the
size of S : P[E ] = |E |/|S |

But you can actually win at the roulette by playing always the same
simple number and doubling each time your bet until you win, and

then you stop . . .

. . . the only problem is that you might need and infinite amount of
money before you win

Homework: Prove the statement just done
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Example 4 (discrete space)

Repeated binary experiments with biased output p: throwing
coins, success or failure, or any other experiment that yield a
binary output ∈ [0, 1] with success probability p (output= 1)

Let S = [0, n], where n is the number of experiments
The class of events F is defined by the counter of successes:
Ei = “all strings with i 1s”
The probability measure derives from combinatorial calculus
observing that any given combination with k 1s has probability

pk(1− p)n−k and that there are
(

n
k

)
such combinations

P[Ek ] =
(n
k

)
pk(1− p)n−k
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Example 4 (discrete space)

The binomial coefficient(
n
k

)
=

n!
k!(n − k)!

The binomial coefficient stems from the calculus of the simple
combination of n distinct objects taken k at a time or in other
words from the number of possible dispositions of k objects
into n positions, where position has no meaning (all the k
objects are equal one another).
Given we have n places and k ones, we have n ways of placing
the first one, n − 1 of placing the second one, . . . , (n − k + 1)
of placing the k-th one.
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Example 4 (discrete space)

The binomial coefficient (cont.)

Thus we have n(n − 1)(n − 2 · · · (n − k + 1) =
n!

(n − k)!
possible simple dispositions of objects
However the k “ones” cannot be distinguished, thus their
position is irrelevant; this means that we have to divide the
number of simple dispositions by the number of permutations
of k elements, which is k!, thus we finally find the binomial
coefficient
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Conditional Probability

What is the probability P[A|B] of event A given event B?
B 6= ∅ −→ P[B] 6= 0

P[A|B] =
P[A ∩ B]

P[B]

P[A|B] 6= P[B|A]
Some simple algebra also yields

P[A ∩ B] =


P[A] · P[B|A] if P[A] 6= 0
P[B] · P[A|B] if P[B] 6= 0
0 otherwise
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Independent events

A is independent from B if P[A|B] = P[A]
If A is independent from B then B is independent from A
Disjoint events cannot be independent!
It is easily shown that for independent events
P[A ∩ B] = P[A]P[B]
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Independent events

Independence is not transitive
A is independent from A only if A = S
If A and B are independent then also A and B , A and B , A
and B are all independent
If A ⊂ B then A and B cannot be independent
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Independent events

Independence can be extended to any set of events
Ai , i = 1, . . . , n
Events Ai are mutually independent only if for any set of
k , 2 ≤ k ≤ n distinct indices i1, i2, . . . ik then
P[Ai1 ∩ Ai2 ∩ · · · ∩ Aik ] = P[Ai1 ]P[Ai2 ] · · ·P[Aik ]

Pairwise independence
P[Ai ∩ Aj ] = P[Ai ]P[Aj ], ∀i , j < n, i 6= j does not imply
mutual independence
P[A1 ∩ A2 ∩ · · · ∩ An] = P[A1]P[A2] · · ·P[An] does not imply
mutual independence
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Total Probability

Observation: P[A] = P[A ∩ B] + P[A ∩ B] . . . trivial
By induction from the observation above it is easy to show that
given A ⊂ S ′ and a set of events Bi , i = 1, . . . , n such that

S ′ =
n⋃

i=1

Bi ; Bi ∩ Bj = ∅ ∀i , j , i 6= j

Then

P[A] =
n∑

i=1

P[A|Bi ]P[Bi ]
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Bayes’ Rule (or Theorem)

Suppose we have observed and event A, that we know is
associated to a set of mutually exclusive events
Bi , i = 1, . . . , n, but we do not know which of the Bi actually
occurred with (or before) A

However, we know that P[Bj |A] =
P[Bj ∩ A]]

P[A]
Applying the definition of conditional probability to the
numerator we get

P[Bj |A] =
P[A|Bj ]P[Bj ]

P[A]
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Bayes’ Rule (or Theorem)

Often Bayes’ Rule is written as applying the theorem or total
probability to the denominator

P[Bj |A] =
P[A|Bj ]P[Bj ]∑n
i=1 P[A|Bi ]P[Bi ]

In practice this “transforms” apriori probabilities P[A|Bi ] into
aposteriori probabilities P[Bj |A] probabilities, hence gives
insight into several class of problems, including classification
problems
Bayes’ Rule is the base for machine learning
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Probability Mass Function (pmf)

A RV X is a function on the state space S that maps onto R

X : S 7→ R

For a discrete RV X we define the pmf pX (x) as the
probability that the outcome of a random experiment with RV
X yields as result x

pX (x) = P[X = x ]

Any function that guarantees that
1 0 ≤ pX (x) ≤ 1
2

∑
x(s)∈R

pX (x) = 1

can be a pmf
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Mapping example

Consider as random experiment throwing a generic coin the
events are Head or Tail: S = {H,T}
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Mapping example

Valid mapping function (depending on the coin “honesty“ are
1 H 7→ x1 = 1; pp[X = x1] = 0.5

T 7→ x2 = −1; pp[X = x2] = 0.5
2 H 7→ x1 =

√
2; pp[X = x1] = 0.22

T 7→ x2 = 0.1; pp[X = x2] = 0.78

Wile the following mappings violate the definition of
probability function

1 H 7→ x1 = 1; pp[X = x1] = 0.33
T 7→ x2 = −1; pp[X = x2] = 0.33

2 H 7→ x1 =
√
2; pp[X = x1] = −0.1

T 7→ x2 = 0.1; pp[X = x2] = 1.1

Probability Rehearsal - Renato Lo Cigno - Probability Functions 25



Vectors of RVs

Let
−→
X = {X1,X2, · · · ,Xn} be a vector of n RVs

In this case the outcome of a random experiment is the vector
−→x = {x1, x2, · · · , xn}
Extending the notion of pmf to vectors is conceptually easy

−→
X : S 7→ Rn; ||

−→
X || = n

S is the cartesian product of each RV state space

The joint pmf of
−→
X is

p−→X (−→x ) = P[X1 = x1,X2 = x2, · · · ,Xn = xn]

Whenever there is no ambiguity we will drop the notation −→·
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Independent RVs

We can extend the notion of independence from events to RVs

Two RVs X1 and X2,
−→
X = {X1,X2} are said independent if

p−→X (−→x ) = P[X1 = x1,X2 = x2] = P[X1 = x1]P[X2 = x2]; ∀x1, x2

A similar notation for independent RVs is

pX ,Y (x , y) = pX (x)pY (y)

Mutual independence for a generic vector
−→
X of RVs means

that
p−→X (−→x ) =

∏
i

pXi (xi )
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Example: two dices

We expect that throwing two dices the
outcome of the RVs D1 and D2 representing
the experiment are independent
P[1, 1] = P[1]P[1] = 1/36, P[2, 1] = P[2]P[1] = 1/36,etc.
Notice, however, the possibility of another random experiment
with outcome Ds = D1 + D2; Ds is clearly another RV
function of D1 and D2

1 What is the state space of Ds?
2 What is the mapping that leads to a proper representation of

Ds as a probability function?
3 What are the probabilities of the elementary events of Ds?
4 Does independence of D1 and D2 play a role here?
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Cumulative Distribution Function (CDF)

Consider now a continuous RV X
The probability cannot be associated to single points, as they
have a null support
However, we can consider the event E = X ∈ (−∞, x ], and we
define the CDF as

FX (x) = P[X ≤ x ]

1 FX (x) is a continuous non decreasing function of x
2 lim

x→−∞
FX (x) = 0

3 lim
x→∞

FX (x) = 1
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Probability Density Function (pdf)

We define pdf the derivative of FX (x)

fX (x) =
d FX (x)

dx

FX (x) =
∫ x

−∞
fX (x) dx ; −∞ ≤ x ≤ ∞

The CDF must be continuous and derivable
A mixed continuous/discrete RV require the use of generalized
analysis including the Dirac’s delta δ function

δ(x0) =

{
0 ∀x 6= x0
∞ x = x0

;

∫ ∞
−∞

δ(x0) = 1
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Joint Continuous RVs

Consider two RVs X and Y
FX ,Y (x , y) = P[X ≤ x ,Y ≤ y ]

fX ,Y (x , y) =
∂2 FX ,Y (x , y)

∂x ∂y

FX ,Y (x , y) =
∫ y

−∞

∫ x

−∞
fX ,Y (x , y) dx dy

They are independent if

FX ,Y (x , y) = FX (x)FY (y)

fX ,Y (x , y) = fX (x)fY (y)

and the partial derivatives becomes standard derivatives
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Probabilities are volumes

For a mono-dimensional continuous RV the probability of an
event is the area (integral) of fX (x) on the interval defining
the event

P[a ≤ x ≤ b] =
∫ b

a
fX (x) dx

Example for a uniform distribution
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Probabilities are volumes

In general for an m-dimensional random vector X the probability of
an event E = {x1 ∈ e1, x2 ∈ e2, · · · , xm ∈ em} is the volume
subtended by the m-dimensional pdf integrated over the intervals
that define E

P[x ∈ E] =
∫

e1

∫
e2

· · ·
∫

em

fX(x) dx1 dx2 · · · dxm

if X is continuous or

P[x ∈ E] =
∑
x1∈e1

∑
x2∈e2

· · ·
∑

xm∈em

pX(x)

if X is discrete
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Probabilities are volumes

If the random vector X is composed of mutually independent RVs
the integrals (sums) are decoupled (product form)

P[x ∈ E] =
∫

e1

fX1(x1) dx1

∫
e2

fX2(x2) dx2 · · ·
∫

em

fXm(xm) dxm

if X is continuous or

P[x ∈ E] =
∑
x1∈e1

pX1(x1)
∑
x2∈e2

pX2(x2) · · ·
∑

xm∈em

pXm(xm)

if X is discrete
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Marginal Distributions

Given an m-dimensional random vector X = {X1,X2, · · · ,Xm} we
define marginal probability distribution of xi the integral of the
joint pdf with respect to all other RVs in the vector

fXi (xi ) =

∫ ∞
−infty

∫ ∞
−infty

· · ·
∫ ∞
−infty

fX(x) dx1 dx2 · · · dxj · · · dxm ; j 6= i

pXi (xi ) =
∑
i1

∑
i2

· · ·
∑
ij

· · ·
∑
im

pX(x); j 6= i

This is in practice the pdf of the RV Xi without any influence of
the other RVs
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Exercises

Given the random vector D = {D1,D2} representing the throw
of two independent dices, find the marginal distribution fD1(x).

Given fX ,Y (x , y) =
2
ab

; 0 ≤ x ≤ a , 0 ≤ y ≤ b,
find the marginal distributions of both X and Y and draw all
three distributions
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Percentiles

The n-th percentile of a distribution is the value xn such that∫ xn

−∞
fX (x) dx =

n
100

Probability Rehearsal - Renato Lo Cigno - Probability Functions 37



Percentiles

Percentiles are fundamental in reliability analysis
They can be used for quick hypothesis rejection

Given a set or measured points we make an hypothesis on their
stochastic distribution, if the percentiles of the distribution are
not compatible with the measured points our hypothesis is
wrong

Some performances are related to fraction of “objects”
lost/delayed/not met/. . . or achieved/reached/survived/. . .

In a video stream the main performance metric is the fraction
of video frames that arrive within the playout delay
In a real-time system the key performance is the fraction of
jobs that do not finish within the deadline
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Moments

We call n-th moment E [X n] of an RV the sum (integral) of the
n-th power of the RV value multiplied by its probability (pdf)

E [X n] =
∞∑

i=−∞
xn
i pX (xi ); for a discrete RV

E [X n] =

∫ ∞
i=−∞

xn fX (x) dx ; for a continuous RV
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The average

The first moment of a distribution is its average

E [X ] =
∞∑

i=−∞
xi pX (xi ); for a discrete RV

E [X ] =

∫ ∞
∞

x fX (x) dx ; for a continuous RV

E [X ] is often indicates as µX or simply µ
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Examples

fX (x) = 1
b−a ; a ≤ x ≤ b

E [X ] =

∫ ∞
−∞

x fX (x) dx =

∫ b

a

x
b − a

dx =

=
x2

2(b − a)

∣∣∣∣
[a,b]

=
b + a
2

Throwing a dice

E [X ] =
6∑

i=1

xi =
6∑

i=1

1/6 = 3.5

E [X ] is not necessarily ∈ S!!
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Central moments

We call n-th central moment E [(X − µ)n] or simply µn[X ] of
an RV the moment computed on the RV minus its average
value

µn[X ] =
∞∑

i=−∞
(xi − µ)n pX (xi ); for a discrete RV

µn[X ] =

∫ ∞
−∞

(x − µ)n fX (x) dx ; for a continuous RV
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Variance and Standard Deviation

The second central moment is normally E [(X − µ)2] or simply
σ2

X is called variance and is strictly related to the “spread” of
the distribution; σ is called standard deviation

σ2
X =

∞∑
i=−∞

(xi − µ)n pX (xi ); for a discrete RV

σ2
X =

∫ ∞
−∞

(x − µ)n fX (x) dx ; for a continuous RV
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Variance and Standard Deviation

The second central moment is normally E [(X − µ)2] or simply
σ2

X is called variance and is strictly related to the “spread” of
the distribution; σ is called standard deviation

Probability Rehearsal - Renato Lo Cigno - Probability Functions 44



Exercise

Compute the variance of the following distributions

fX (x) =
1

b − a
; a ≤ x ≤ b

Throwing a dice

fX (x) = λe−λx ; 0 ≤ x ≤ ∞

The sum of throwing n dices, increasing n. How does the
variance change?
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Distribution of sums of RVs

Consider a RV Z = αX + βY .
What is the pdf fZ (z) given fX ,Y (x , y)?
We can immediately write

FZ (z) = P[Z ≤ z ] =
∫ ∫

Az

fX ,Y (x , y) dxdy

Az = {(x , y)|αx + βy ≤ z} identifies a half plane of (x , y)
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pdf of a sum of RVs

Let’s set α = β = 1 for the sake of simple computations . . .
Since y = z − x , then

FZ (z) =
∫ ∫

Az

fX ,Y (x , y) dxdy =

∫ ∞
−∞

∫ z−x

−∞
fX ,Y (x , y) dydx

and with the change of variable y = t − x

FZ (z) =
∫ ∞
−∞

∫ z

−∞
fX ,Y (x , (t − x)) dtdx

=

∫ z

−∞

∫ ∞
−∞

fX ,Y (x , (t − x)) dxdt

Probability Rehearsal - Renato Lo Cigno - Probability Functions 47



pdf of a sum of RVs

Integrating in x , by definition of pdf we have

FZ (z) =
∫ z

−∞
fZ (t) dt

Which implies, comparing the last equation of slide 98

fZ (z) =
∫ ∞
−∞

fX ,Y (x , (t − x)) dx
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pdf of a sum of independent RVs

Let X and Y be independent: fX ,Y (x , y) = fX (x)fY (y).
Then given Z = X + Y

fZ (z) =
∫ ∞
−∞

fX (x)fY (z − x) dx

which is known as convolution (or convolutional
product/integral) of fX (x) and fY (y) often indicated as
fX (x) ∗ fY (y)
Furthermore if x ≥ 0, y ≥ 0

fZ (z) =
∫ z

0
fX (x)fY (z − x) dx
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The process of convolution
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Linearity of expectation

Consider the first moment of a sum of RVs Z = αX + βY

E [Z ] = E [αX + βY ] =

∫ ∞
−∞

∫ ∞
−∞

(αx + βy)fX ,Y (x , y) dxdy =

=

∫ ∞
−∞

αx
∫ ∞
−∞

fX ,Y (x , y) dydx +

∫ ∞
−∞

βy
∫ ∞
−∞

fX ,Y (x , y) dxdy

by definition of marginal distribution we have

E [αX + βY ] =

∫ ∞
−∞

αx fX (x) dx +

∫ ∞
−∞

βy fY (y) dy

E [Z ] = αE [X ] + βE [Y ]
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Linearity of expectation

The linearity of expectation can be extended to any number of
RVs

E

[
n∑

i=1

αiXi

]
=

n∑
i=1

αiE [Xi ]

It is not required that the RVs are independent!

Linearity is valid only for the first moment, and not for the
others (obviously!!)
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Central Limit Theorem (without proof)

Consider the sum Z of n independent RVs with finite mean
and variance and let n→∞
The pdf fZ (z) is a Gaussian distribution with
µ =

∑
i

µi and σ2 =
∑

i

σ2
i

fZ (z) =
1

σ
√
2π

e−
(z−µ)2

2σ2

This theorem is fundamental in data analysis, but requires that
RVs are independent and they have finite variance
Convergence speed depends on the underlying distributions,
but it is normally fast (10-20 RVs are enough to have a good
approximation)
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Central Limit Theorem

A more formal statement of the theorem can be enunciated
forming the normalized RV Zn such that

Zn =

∑n
i Xi −

∑n
i µi√∑n

i σ
2
i

so that E [Zn] = 0 and Var[Zn] = 1
Under reasonable regularity conditions of the Xi , we have that
Zn converges to a Gaussian (normal) distribution with zero
mean and unitary variance; Zn → N(0, 1):

lim
n→∞

FZn(z) = lim
n→∞

PZn < z =

∫ z

−∞

1√
2π

e−t2/2 dt
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Covariance (mutual variance of RVs)

We define covariance of 2 RVs X and Y the quantity

Cov(X ,Y ) = E [(X − µx)(Y − µy )] = E [XY ]− E [X ]E [Y ]

The covariance measure how much two RVs are
interdependent: the larger the covariance the more correlation
the the RVs have
It follows that in general

E [XY ] = E [X ]E [Y ] + Cov(X ,Y )
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Covariance properties - 1

By definition if Cov(X ,Y ) = 0 then X and Y are incorrelated
For independent variables Cov(X ,Y ) = 0 so independent
variables are incorrelated (prove it)
The converse is not necessarily true, i.e., Cov(X ,Y ) = 0 does
not imply independence. Example:

Consider X uniformly distributed in (−1, 1) and Y = X 2.
Clearly Y is completely dependent on X
All odd moments of X are zero by definition: E [X k ] = 0 ∀k
odd
Cov(X ,Y ) = E [XY ]− E [X ]E [Y ] = E [X 3]− E [X ]E [Y ] = 0
Thus X and Y are uncorrelated even if they are strictly
dependent one another
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Covariance properties - 2

Take Y = aX , a 6= 0, so that Y is linearly dependent from X

Cov(X ,Y ) = E [XY ]− E [X ]E [Y ] = aE [X 2]− aE [X ]E [X ] =

= aVar[X ] =
1
a
Var[Y ]

taking the square value we have

Cov2(X ,Y ) = Var[X ]Var[Y ]

In general it can be shown that

0 ≤ Cov2(X ,Y ) ≤ Var[X ]Var[Y ]
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Properties of independent RVs

Given the independent RVs (can be extended to any number of
them) the following holds

E [XY ] = E [X ]E [Y ] =⇒ Cov(X ,Y ) = 0
Var[X + Y ] = Var[X ] + Var[Y ]

Incorrelation is not independence
Cov(X ,Y ) = 0 is sufficient (definition) for RVs to be
incorrelated, but as we have see it is only necessary and not
sufficient for RVs to be independent
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Independence vs Incorrelation

Cov(X ,Y ) measures the degree of linear dependence between
RVs, but misses higher order dependencies

Independence instead requires that also higher order
dependencies do not exist, but this is difficult to express in
terms of relations of higher order moments.
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Coefficient of variation and correlation

It is useful to normalize coefficients to compare different pdfs

Cx =
σx

µx
is the coefficient of variation

For an exponential distribution Cx = 1, so it is a convenient
means to measure how much a distribution resembles an
exponential

ρ(X ,Y ) =
Cov(X ,Y )

σxσy
is the correlation coefficient (provided

σx and σy exist): −1 ≤ ρ(X ,Y ) ≤ 1:

ρ(X ,Y )


−1 ifY = −aX , a > 0
1 ifY = ax , a > 0
0 ifXandY are uncorrelated
−1 < c < 1 otherwise
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