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Random Early Detection Gateways
for Congestion Avoidance

Sally Floyd and Van Jacobson

Abstract-This paper presents Random Early Detection (RED)
gateways for congestion avoidance in packet-switched networks.
The gateway detects incipient congestion by computing the av-
erage queue size. The gateway could notify connections of con-
gestion either by dropping packets arriving at the gateway or
by setting a bit in packet headers. When the average queue
size exceeds a preset threshold, the gateway drops or marks
each arriving packet with a certain probability, where the exact
probability is a function of the average queue size.

RED gateways keep the average queue size low while allowing
occasional bursts of packets in the queue. During congestion, the
probability that the gateway notifies a particular connection to
reduce its window is roughly proportional to that connection’s
share of the bandwidth through the gateway. RED gateways
are designed to accompany a transport-layer congestion control
protocol such as TCP. The RED gateway has no bias against
bursty traffic and avoids the global synchronization of many con-
nections decreasing their window at the same time. Simulations
of a TCP/IP network are used to illustrate the performance of
RED gateways.

1. lNTRODucTION

IN high-speed ne!works with connections with large delay

bandwidth products. gateways are likely to be designed
with correspondingly large maximum queues to acccomo-
date transient congestion. In the current Internet, the TCP
transport protocol detects congestion only after a packet has
been dropped al the gateway. However, it would clearly be
undesirable to have large queues (possibly on the order of a
delay bandwidth product) that were full much of the time;
this would significantly increase the average delay in the
network. Therefore, with increasingly high-speed networks,
it is increasingly important to have mechanisms that keep
throughput high but avemge queue sizes low.

In the absence of explicit feedback from the gateway,
there are a number of mechanisms that have been proposed
for transport-layer protocols to maintain high throughput
and low delay in the network. Some of these proposed
mechanisms are designed to work with current gateways
[15],[23],[31 ].133],[34], while other mechanisms are coupled
with gateway scheduling algorithms that require per-

connection state in the gateway [20], [22 ]. In the absence of
explicit feedback from the gateway, transport-layer protocols
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could infer congestion from the estimated bottleneck service

time or from changes in throughput or end-to-end delay, as
well as from packet drops or other methods. Nevertheless,

the view of an individual connection is limited by the time
scales of the connection, the traffic pattern of the connection,
the lack of knowledge of the number of congested gateways,
the possibilities of routing changes, or other difficulties in
distinguishing propagation delay from persistent queueing
delay.

The most effective detection of congestion can occur in the

gateway itself. The gateway can reliably distinguish between

propagation delay and persistent queueing delay. Only the

gateway has a unified view of the queueing behavior over

time; the perspective of individual connections is limited by
the packet arrival patterns for those connections. In addition,
a gateway is shared by many active connections with a wide
range of round-trip times, tolerances of delay, throughput
requirements, etc. Decisions about the duration and magnitude
of transient congestion to be allowed at the gateway are best
made by the gateway itself.

The method of monitoring the average queue size at the

gateway, and of notifying connections of incipient congestion,
is based on the assumption that it will continue to be useful
to have queues at the gateway where traffic from a number of
connections is multiplexed together with FIFO scheduling. Not
only is FIFO scheduling useful for sharing delay among con-
nections and reducing delay for a particular connection during

its periods of burstiness [4], but it scales well and is easy to
implement efficiently. In an alternate approach, some conges-
tion control mechanisms that use variants of Fair Queueing

[20] or hop-by-hop flow control schemes [22] propose that
the gateway scheduling algorithm make use of per-connection
state for every active connection. We would suggest instead

that per-connection gateway mechanisms be used only in those
circumstances where gateway scheduling mechanisms without
per-connection mechanisms are clearly inadequate.

The DECbit congestion avoidance scheme [ 18], described

later in this paper, is an early example of congestion detection

at the gateway; DECbit gateways give explicit feedback when

the average queue size exceeds a certain threshold. This
paper proposes a different congestion avoidance mechanism
at the gateway, RED (Random Early Detection) gateways.
with somewhat different methods for detecting congestion and

choosing which connections to notify of this congestion.
While the principles behind RED gateways are fairly general

and RED gateways can be useful in controlling the average

queue size even in a network where the transport protocol
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cannot be trusted to be cooperative, RED gateways are in-
tended for a network where the transport protocol responds
to congestion indications from the network. The gateway
congestion control mechanism in REJ3 gateways simplifies
the congestion control job required of the transport protocol,
and should bc applicable to transport-layer congestion control

mechanisms other than the current version of TCP, such

as pro\ocols with rate-based rather than window-based flow
control.

However, some aspects of RED gateways are specifically
targeted to TCP/IP networks. The RED gateway is designed
for a network where a single marked or dropped packet is
sufficient to signal the presence of congestion to the transport-
layer protocol. This is different from the DECbit congestion

control scheme, where the transport-layer protocol computes
the ~ractiorr of arriving packets that have the congestion

indication bit set.
In addition, the emphasis on avoiding the global synchro-

nization that results from many connections reducing their
windows at the same time is particularly relevant in a network
with 4.3-Tahoe BSD TCP [14], where each comection reduces
the window to one and goes through Slow-Start in response to
a dropped packet. In the DECbit congestion control scheme,
for example, where each connection’s response to congestion
is less severe, it is also less critical to avoid this global

synchronization.
RED congestion control mechanisms can be useful in gate-

ways with a range of packet scheduling and packet dropping
algorithms. For example, RED congestion control mechanisms
could be implemented in gateways with drop preference,
where packets are marked as either “essential” or “optional;”
“optional” packets are dropped first when the queue exceeds
a certain size. Similarly, for a gateway with separate queues
for real-time and nonreal-time traffic, RED congestion control
mechanisms could be applied to the queue for one of these

traffic classes.
The RED congestion control mechanisms monitor the aver-

age queue size for each output queue and, using randomization,
choose connections to notify of that congestion. Transient
congestion is accommodated by a temporary increase in the
queue. Longer-lived congestion is reflected by an increase
in the computed average queue size, and results in random-
ized feedback to some of the connections to decrease their
windows. The probability that a connection is notified of

congestion is proportional to that connection’s share of the
throughput through the gateway.

Gateways that detect congestion before the queue overflows
are not limited to packet drops as the method for notifying
connections of congestion. RED gateways can mark a packet
by dropping it at the gateway or by setting a bit in the
packet header, deWnding on the transport protocol. When the

average queue size exceeds a maximum threshold, the RED
gateway marks every packet that arrives at the gateway. If
RED gateways mark packets by dropping them rather than
by setting a bit in the packet header when the average queue
size exceeds the maximum threshold, then the RED gateway
controls the average queue size even in the absence of a
cooperating traqsporf protocol.

One advantage of a gateway congestion control mechanism
that works with current transport protocols, and that does
not require that all gateways in tbe Internet use the same
gateway congestion control mechanism, is that it could be
deployed gradually in the current Iptemet. RED gateways are
a simple mechanism for congestion avoidance that could be
implemented gradually in current TCP/lP networks with no

changes to transport protocols.
Section H discusses previous research on Early Random

Drop gateways and other congestion avoidance gateways.
Section 111 outlines design guidelines for RED gateways.
Section IV presents the RED gateway algorithm, and Section
V describes simple simulations. Section VI discusses in detail

the parameters used in calculating the average queue size, and

Section VII discusses the algorithm used in ca]cqlating the
packet-marking probability.

Section VIII examines the performance of RED gateways,
including the robustness of RED gateways for a range of traffic
and parqeter values. Simulations in Section IX demonstrate,
among other things, the RED gateway’s lack of bias against
bursty traffic. Section X describes how RED gateways can
be used to identify those users that are using a large fraction
of the bandwidth through a congested gateway. Section XI
discusses methods for efficiently implementing RED gateways.
Section XII gives conclusions and describes areas for future
work.

11. PREVIOUS WORK ON CONGESTION AVOIDANCE GATEWAYS

A. Early Random Drop Gateways

Several researchers have studied Early Random Drop gate-
ways as a method for providing congestion avoidance at the
gateway. 1

Hashem [11] discusses some of the shortcomings of Ran-
dom Drop* and Drop Tail gateways, and briefly investigates
Early Random Drop gateways. In the implementation of Early
Random Drop gateways in [11], if the queue length exceeds a
certain drop level, then the gateway drops each packet arriving
at the gateway with a fixed drop probability. This is discussed
as a rough initial implementation. Hashem [11] stresses that,
in future implementations, the drop level and drop probability
should be adjusted dynamically depending on network tsaffic.

Hashern [11] points out that, wi~ Drop Tail gateways, each
congestion period introduces glob~ synchronization in the
network. When the queue overflows, packets are often dropped
from several connections, and these connections decrease their
windows at the same time. This results in a loss of throughput

1Jacobson [14] proposed gateways to monitor the average queue size to
detect incipient congestion and to randomly ~ ~ackets when congestion
is detected. These proposed gateways are a precursor to the Early Random
Drop gateways that have hem studkd by sev@ au~ors [11],[36]. We refer
to the gateways in this paper as Random Early Detection or RED gateways.
RED gateways differfrom the earlier Early RWdom Drop gateways in severat
respects: the averagequeue size is meaaur@ the gateway is not limited to
dropping packets; and the packet-marking probability is a function of the
average queue size.

Zwith R~dom Drop gateways, when a packet arrives at the gate waY ~d

the queue is full, the gateway randomly chooses a packet from the gateway
queue to drop.
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at the gateway. The paper shows that Early Random Drop
gateways have a broader view of traffic distribution than Drop

Tail or Random Drop gateways and reduce global synchroniza-

tion. The paper suggests that, because of this broader view of
tmtlic distribution, Early Random Drop gateways have a better
chance than Drop Tail gateways of targeting aggressive users.
The conclusions in [ I I ] are that Early Random Drop gateways
deserve further investigation.

For the version of Early Random Drop gateways used in

the simulations in [36], if the queue is more than half full

then the gateway drops each arriving packet with probability

0.02. Zhang [36] shows that this version of Early Random
Drop gateways was not successful in controlling misbehaving
users. In these simulations, with both Random Drop and
Early Random Drop gateways, the misbehaving users received
roughly 75% higher throughput than the users implementing
standard 4.3 BSD TCP.

The Gateway Congestion Control Survey [2 I ] considers the
versions of Early Random Drop described previously. The

survey cites the results in which the Early Random Drop

gateway is unsuccessful in controlling misbehaving users [36].
As mentioned in [32], Early Random Drop gateways are not
expected to solve all of the problems of unequal throughput
given connections with different round-trip times and multiple
congested gateways. In [2 I ]. the goals of Early Random
Drop gateways for congestion avoidance are described as
“uniform, dynamic treatment of users (streams/flows), of low
overhead, and of good scaling characteristics in large and

loaded networks.” It is left m an open question whether or

not these goals cm be achieve~i.

Early descriptions of 1P Source Quench messages suggest

that gateways could send Source Quench messages to source
hosts before the buffer space at the gateway reaches capacity
[26], and before packets have to be dropped at the gateway.

One proposal [27] suggests that the gateway send Source
Quench messages when the queue size exceeds a certain
threshold, and outlines a possible method for flow control at
the source hosts in response to these messages. The proposal
also suggests that, when the gateway queue size approaches
the maximum level. the gateway could discard arriving packets
other than ICMP packets.

The DECbit congestion avoidance scheme, a binary feed-

back scheme for congestion avoidance. is described in [29]. In
the DECbit scheme, the gateway uses a (wngesfion indication

bit in packet headers to provide feedback about congestion
in the network. When a packet arrives at the gateway, the
gateway calculates the average queue length for the last (busy
+ idle) period plus the current busy period. (The gateway is
bus-y when it is transmitting packets, and idle otherwise.) When
the average queue length exceeds 1. then the gateway sets
the congestion indication bit in the packet header of arriving
packets.

The source uses window flow control and updates its
window once every two round-trip times. If at least half of

the packets in the last window had the congestion indication

bit set, then the window is decreased exponentially. Otherwise,

the window is increased linearly.
There are several significant differences between DECbit

gateways and the RED gateways described in this paper. The
first difference concerns the method of computing the average
queue size. Because the DECbit scheme chooses the last (busy
+ idle) cycle plus the current busy period for averaging the

queue size, the queue size can sometimes be averaged over
a fairly short period of time. In high-speed networks with
large buffers at the gateway, it would be desirable to explicitly

control the time constant for the computed average queue size;
this is done in RED gateways using time-based exponential
decay. In [29], the authors report that they rejected the idea of
a weighted exponential running average of the queue length
because when the time interval was far from the round-trip
time, there was bias in the network. This problem of bias

does not arise with RED gateways because RED gateways
use a randomized algorithm for marking packets, and assume
that the sources use a different algorithm for responding to

marked packets, In a DECbit network, the source looks at
the fraction of packets that have been marked in the last
round-trip time. For a network with RED gateways, the source
should reduce its window even if there is only one marked
packet.

A second difference between DECbit gateways and RED
gateways concerns the method for choosing connections to

notify of congestion. In the DECbit scheme, there is no con-
ceptual separation between the algorithm to detect congestion

and the algorithm to set the congestion indication bit. When
a packet arrives at the gateway and the computed average
queue size is too high, the congestion indication bit is set in
the header of that packet. Because of this method for marking
packets, DECbit networks can exhibit a bias against bursty
traffic [see Section IX]; this is avoided in RED gateways by
using randomization in the method for marking packets. For
congestion avoidance gateways designed to work with TCP, an
additional motivation for using randomization in the method
for marking packets is to avoid the global synchronization that

results from many TCP connections reducing their window
at the same time. This is less of a concern in networks
with the DECbit congestion avoidance scheme, where each
source decreases its window fairly moderately in response to
congestion.

Another proposal for adaptive window schemes, where
the source nodes increase or decrease their windows ac-

cording to feedback concerning the queue lengths at the

gateways, is presented in [251. Each gateway has an upper
threshold UT indicating congestion, and a lower threshold
LT indicating light load conditions. Information about the
queue sizes at the gateways is added to each packet. A
source node increases its window only if all the gateway
queue lengths in the path are below the lower thresholds.
If the queue length is above the upper threshold for any
queue along the path, then the source node decreases its
window. One disadvantage of this proposal is that the net-
work responds to the instantaneous queue lengths. not to the
average queue lengths. We believe that this scheme would be
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vulnerable to traffic phase effects and biases against bursty
traffic, and would not accommodate transient increases in the
queue size,

HI. DESIGN GUIDELINES

This section summarizes some of the design goals and
guidelines for RED gateways. The main goal is to provide
congestion avoidance by controlling the average queue size.
Additional goals include the avoidance of global synchroniza-
tion and biases against bursty traffic and the ability to maintain
an upper bound on the average queue size even in the absence
of cooperation from transport-layer protocols.

The first job of a congestion avoidance mechanism at the
gateway is to detect incipient congestion. As defined in [18],

a congesricm avoidance scheme maintains the network in a
region of low delay and high throughput. The average queue
size should be kept low, while fluctuations in the actual
queue size should be allowed to accommodate bursty traffic and
transient congestion. Because the gateway can monitor the size
of the queue over time, the gateway is the appropriate agent to
detect incipient congestion. Because the gateway has a unified
view of the various sources contributing to this congestion, the
gateway is also the appropriate agent to decide which sources
to notify of this congestion.

In a network with connections to a range of round-trip times,
throughput requirements, and delay sensitivities, the gateway
is the most appropriate agent to determine the size and duration
of short-lived bursts in queue size to be accommodated by the
gateway. The gateway can do this by controlling the time
constants used by the lowpass filter for computing the average

queue size. The goal of the gateway is to detect incipient
congestion that has persisted for a “long time” (several round-

trip times),
The second job of a congestion avoidance gateway is

to decide which connections to notify of congestion at the
gateway. If congestion is detected before the gateway buffer
is full, it is not necessary for the gateway to drop packets to
notify sources of congestion. In this paper, we say that the
gateway marks a packet and notifies the source to reduce the
window for that connection. This marking and notification can

consist of dropping a packet, setting a bit in a packet header,
or some other method understood by the transport protocol.
The current feedback mechanism in TCP/IP networks is for the
gateway to drop packets, and the simulations of RED gateways
in this paper use this approach.

One goal is to avoid a bias against bursty traffic. Networks
contain connections with a range of burstiness, and gateways
such as Drop Tail and Random Drop gateways have a bias
against bursty traffic. Whh Drop Tail gateways, the more
bursty the traffic from a particular connection, the more likely
it is that the gateway queue will overflow when packets from
that connection arrive at the gateway [7].

Another goal in deciding which connections to notify of
congestion is to avoid the global synchronization that results
from notifying all comections to reduce their windows at
the same time. Global synchronization has been studied in
networks with Drop Tail gateways [37] and results in loss
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for each packet arrival

calculate the average queue size avg
if TTL2n~h< aug < TTUKCth

calculate probability pa
with probability pa :

mark the arriving packet

else if rnaXth < UVg
mark the arriving packet

Fig. 1. General algorithm for RED gateways.

of throughput in the network. Synchronization as a general
network phenomena has been explored in [8].

In order to avoid problems such as biases against bursty traf-
fic and global synchronization, congestion avoidance gateways
can use distinct algorithms for congestion detection and for
deciding which connections to notify of this congestion. The
RED gateway uses randomization in choosing which arriving
packets to mark; with this method, the probability of marking
a packet from a particular comection is roughly proportional
to that connection’s share of the bandwidth through the gate-
way. This method can be efficiently implemented without

maintaining per-connection state at the gateway.
One goal for a congestion avoidance gateway is the ability

to control the average queue size even in the absence of
cooperating sources. This can be done if the gateway drops

arriving packets when the average queue size exceeds some
maximum threshold (rather than setting a bit in the packet
header). This method could be used to control the average
queue size even if most connections last less than a round-
trip time (as could occur with modified transport protocols in
increasingly high-speed networks), and even if connections fail
to reduce their throughput in response to marked or dropped
packets.

IV. THE RED ALGORITHM

This section describes the algorithm for RED gateways. The
RED gateway calculates the average queue size using a low-
pass filter with an exponential weighted moving average. The
average queue size is compared to two thresholds: a minimum

and a maximum threshold. When the average queue size is less
than the minimum threshold, no packets are marked. When
the average queue size is greater than the maximum threshold,
every arriving packet is marked. If marked packets are, in fact,
dropped or if all source nodes are cooperative, this ensures
that the average queue size does not significantly exceed the
maximum threshold.

When the average queue size is between the minimum and
maximum thresholds, each arriving packet is marked with
probability p., where pm is a function of the average queue

size avg. Each time a packet is marked, the probability that
a packet is marked from a particular comection is roughly
proportional to that connection’s share of the bandwidth at
the gateway. The general RED gateway algorithm is given in
Fig. 1.

Thus, the RED gateway has two separate algorithms. The
algorithm for computing the average queue size determines the
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degree of burstiness that will be allowed in the gateway queue.
The algorithm for calculating the packet-marking probability

determines how frequently the gateway marks packets, given

the current level of congestion. The goal is for the gateway to
mark packets at fairly evenly spaced intervals, in order to avoid
biases and avoid global synchronization, and to mark packets
sufficiently frequently to control the average queue size.

The detailed algorithm for the RED gateway is given in
Fig. 2. Section XI discusses efficient implementations of these
algorithms.

The gateway’s calculations of the average queue size take
into account the period when the queue is empty (the idle

period) by estimating the number rtl.of small packets that could

have been transmitted by the gateway during the idle period.
After the idle period, the gateway computes the average queue
size as if m packets had arrived to an empty queue during
that period.

As wrjg varies from m ir~~h to m a.r’th, the packet-marking
probability pb varies Iineady from O to n?,a.rP:

ph - ma.rr,(wr’g – rr/i7Lth)/(n/a,rth – 7rLinth).

‘I%e final packet-marking probability p,, increases slowly as
the count increases since the last marked packet:

p,, + pb/( 1 – C(nlnt pb)

As discussed in Section VII, this ensures that the gateway does
not wait too long before marking a packet.

The gateway marks each packet that arrives at the gateway
when the average queue size aug exceeds nl,azi)j.

One option for the RED gateway is to measure the queue
in bytes rather than in packets. With this option, the average
queue size accurately reflects the average delay at the gateway.
When this option is used, the algorithm would be modified
to ensure that the probability that a packet is marked is
proportional to the packet size in bytes:

~)~ + m(i.~p((l?),() – rr],irl~}i)/(nl~,~~}, – ‘r?l~?)~h)

f)b ~ Pb Packet, Size/Maxilllu~llPacketSizc

J)a + p/,/(1 – (’O?lnt p,,)

In this case. a large FTP packet is more likely to be marked
than a small TELNET packet.

Sections VI and VII discuss in detail the setting of the
various parameters for RED gateways. Section VI discusses
the calculation of the average queue size. The queue weight
111~is determined by the size and duration of bursts in queue

size that are allowed at the gateway. The minimum and
maximum thresholds, nti~?,~h and n~a:rtf,, are determined by

the desired average queue size. The average queue size which
makes the desired tradeoffs (such as the tradeoff between
maximizing throughput and minimizing delay) depends on
network characteristics, and is left as a question for further
research. Section VII discusses the calculation of the packet-
marking probability.

In this paper, our primary interest is in the functional
operation of the RED gateways. Specific questions about
the most efficient implementation of the RED algorithm are
discussed in Section XI.

Initialization:
a?)g +-- ()

count + – 1

for each packet arrival
calculate the new average queue sizeavq:

if the queue is nonempty
al}g +- (1 — Wq)a?!,g + ?lJq q

else

m + f(tznLe – q_time)
U?Jrf+ ( 1 – Wq)mfJ,’/fg

if Wlillth < (lTs.q< TrLIL.C~},

increment courzt

calculate probability p.:
~b + ‘ma~p(at}g – m~71~h)/(rna~~k – 7n~71~~)
p. + ~}b/(1 – ~@fl’7Lt~~)

with probability pa:
mark the arriving packet
count + ()

else if ‘murth < a~)g
mark the arriving packet
courzt + 0

e 1 se co7Lnt + – 1
when queue becomes empty

q_tintc + time

Saved Variables:
a?tg : average queue size
q_timf:: start of the queue idle time

count: packets since last marked packet
Fixed parattteters:

W’.r: queue weight
7nint/~ : minimum threshold for queue
ma~th Z maximum threshold for queue
maxP: maximum value for ~h

Other:

Pa : current packet-marking probability
q: current queue size
tanle : current time
f(t): a linear function of the time t

Fig. 2. Detailed algorithm for RED gateways.

V. A SIMPLE SIMULATION

This section describes our simulator and presents a simple
simulation with RED gateways. Our simulator is a version of
the REAL simulator [19] built on Columbia’ sNest simulation
package [l], with extensive modifications and bug fixes made
by Steven McCanne at LBL. In the simulator, FTP sources
always have a packet to send and always send a maximal-
sized (1,000 byte) packet as soon as the congestion control

window allows them to do so. A sink immediately sends an
ACK packet when it receives a data packet. The gateways use
FIFO queueing.

Source and sink nodes implement a congestion control
algorithm equivalent to that in 4.3-Tahoe BSD TCP.~ Briefly,
there are two phases to the window adjustment algorithm.
A threshold is set initially to half the receiver’s advertised

30ursimulatordrxs not usethe4,3-Ttahoe TCPcode directly but we believe
it is functionally identical.
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Fig. 3. A simuladonwith four FTP connections with staggered start times.

window. In the slow-start phase, the current window is doubled
each round-trip time until the window reaches the threshold.
The congestion avoidance phase is then entered, and the
current window is increased by roughly one packet each round-
trip time. The window is never allowed to increase to more
than the receiver’s advertised window, which this paper refers
to as the “maximum window size”. In 4.3-Tahoe BSD TCP,
packet loss (a dropped packet) is treated as a “congestion ex-
perienced” signal. The source reacts to a packet loss by setting
the threshold to half the current window, decreasing the current
window to one packet, and entering the slow-start phase.

Fig. 3 shows a simple simulation with RED gateways. The
network is shown in Fig. 4. The simulation contains four FTP
connections, each with a maximum window roughly equal to
the delay bandwidth product, which ranges from 33 to 112
packets. The RED gateway parameters are set as follows:

W9 = 0.002, m~n~h = .5 packets, maxth = 15 packets, and
mazp = 1/50. The buffer size is sufficiently large that packets
are never dropped at the gateway due to buffer overtlow; in
this simulation, the RED gateway controls the average queue
size, and the actual queue size never exceeds forty packets.

For the charts in Fig. 3, the x axis shows the time in seconds.
The bottom chart shows the packets from nodes 14 Each of
the four main rows shows the packets from one of the four

connections; the bottom row shows node 1 packets, and the
top row shows node 4 packets. There is a mark for each data
packet as it arrives and departs from the gateway; at this time
scale, the two marks are often indistinguishable. The y axis is
a function of the packet sequence numbev for packet number
n from node i, the y axis shows n mod 90 + (i – 1)100. Thus,
each vertical “line” represents 90 consecutively numbered

F’P SOURCES o3

J!ifP
ml,

4
2

4m6 5M5

1 1cOM@s

1ms

IJJGATEWAY
am 45MbPS

o6

SINK

Fig. 4. Simulationnetwork.

0.4 0.6 0.8 1.0
Throughput(%)

(’triangle’forRED,square’forDropTail)

Fig. 5. ComparingDrop Tail and RED gateways.

packets from one connection arriving at the gateway. Each “X”
shows a packet dropped by the gateway, and is followed by a
mark showing the retransmitted packet. Node 1 starts sending
packets at time O, node 2 starts after 0.2 seconds, node 3 starts

after 0.4 seconds, and node 4 starts after 0.6 seconds.
The top chart of Fig. 3 shows the instantaneous queue

size q and the calculated average queue size avg. The dotted
lines show mint~ and maxtk, the minimum and maximum
thresholds for the average queue size. Note that the calculated
average queue size avg changes fairly slowly compared to q.

The bottom row of X’s on the bottom chart again shows the
time of each dropped packet.

This simulation shows the success of the RED gateway in
controlling the average queue size at the gateway in response

to a dynamically changing load. As the number of connections
increases, the frequency with which the gateway drops packets
also increases. There is no global synchronization. ‘l%e higher
throughput for the comections with shorter round-trip times is
due to the bias of TCP’S window increase algorithm in favor
of connections with shorter round-trip times (as discussed
in [6],[7]). For the simulation in Fig. 3, the average link
utilization is 76Y0. For the following second of the simulation,
when all four sources are active, the average link utilization

is 82%. (This is not shown in Fig. 3.)
Because RED gateways can control the average queue size

while accommodating transient congestion, RED gateways are
well suited to provide high throughput and low average delay
in high-speed networks with TCP connections that have large
windows. The RED gateway can accommodate the short burst
in the queue required by TCP’s slow-start phase; thus, RED
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gateways control the u~’erage queue size while still allowing
TCP connections to smoothly open their windows. Fig. 5

shows the results of simulations of the network in Fig. 6 with

two TCP connections, each with a maximum window of 240

packets, roughly equal to the delay bandwidth product. The
two connections are started at slightly different times. The
simulations compare the performance of Drop Tail and RED

gateways.
In Fig. 5, the .I axis shows the total throughput as a fraction

of the maximum possible throughput on the congested link.

The -s axis shows the average queue size in packets (as seen
by arriving packets). Five 5 second simulations were run for

each of 11 sets of parameters for Drop Tail gateways, and for
11 sets of parameters for RED gateways. Each mark in Fig. 5
shows the results of one of these simulations. The simulations
with Drop Tail gateways were run with the buffer size ranging
from 15 to 140 packets; as the buffer size is increased, the
throughput and average queue size increase correspondingly.
In order to avoid phase effects in the simulations with Drop
Tail gateways, the source node takes a random time drawn

from the uniform distribution on [0, r] seconds to prepare an

FTP packet for transmission, where t is the bottleneck service
time of 0.17 ms [7].

The simulations with RED gateways were all run with a
buffer size of 100 packets. with minth ranging from 3 to
50 packets. For the RED gateways, ?rL(L:~~his set to 3 rrtinth,
with ‘tLIq = ().()()2 and 71MLTP = 1/50. The dashed lines show
the average delay (as a function of throughput) approximated
by 1.73/(1 – r) for the simulations with RED gateways,

and approximated by O.1/(1 – X)3 for the simulations with
Drop Tail gateways. For this simple network of TCP con-
nections with large windows, the network power (the ratio
of throughput to delay) is higher with RED gateways than
with Drop Tail gateways. There are several reasons for this
difference. For Drop Tail gateways with a small maximum
queue, the queue drops packets while the TCP connection is in
the slow-start phase of rapidly increasing its window, reducing
throughput. On the other hand, for Drop Tail gateways with
a large maximum queue the average delay is unacceptable y
large. In addition, Drop Tail gateways are more likely to drop

packets from both connections at the same time, resulting in
global synchronization and a further loss of throughput.

Later in the paper, we discuss simulation results from
networks with a more diverse range of connections. The RED

gateway is not specifically designed for a network dominated
by bulk data transfer; this is simply an easy way to simulate
increasingly heavy congestion at a gateway.

ave_L

Fig. 7. {Irgf, as a function of w,, and L.

VI. CALCULATING THE AVERAGE QUEUE LENGTH

The RED gateway uses a lowpass filter to calculate the

average queue size. Thus, the short-term increases in the queue
size that result from bursty traffic or from transient congestion

do not result in a significant increase in the average queue size.

The lowpass filter is an exponential weighted moving av-
erage (EWMA):

allg + (1 – wq)av,g + ?f’qq. (1)

The weight w~ determines the time constant of the lowpass
filter. The following sections discuss upper and lower bounds
for setting ifJq. The calculation of the average queue size can

be implemented particularly efficiently when u~~is a (negative)
power of two, as shown in Section XI.

A. An Upper Bound for tIIq

If ulq is too large, then the averaging procedure will not
filter out transient congestion at the gateway.

Assume that the queue is initially empty, with an average
queue size of zero, and then the queue increases from O to L
packets over L packet arrivals. After the Lth packet arrives at
the gate way, the average queue

L

—— Ulq( 1 —?Ilq

size aIJg~ is:

‘i&#
=L+l+(l -’’’q) ;+’-;. (2).,

‘ll)q

This derivation uses the following identity [9, p, 65]:

k
X+( L,T– L – l)ZL+l

ix’ =
i=l (l-r)*

Fig. 7 shows the average queue size a~.yL for a range of
values for ?~f~and L. The .r axis shows w~ from 0.001 to
(),005, and the y axis shows L from 10 to 100. For example.
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for w~ = 0.001, after a queue increase from O to 100 packets,
the average queue size avgloo is 4.88 packets.

Given a minimum threshold min~h and given that we wish
to allow bursts of L packets arriving at the gateway, then
w~ should be chosen to satisfy the following equation for
avgL < 7TLinth:

L + ~ + (1 - W,)L+l -1< ninth
(3)

Wq

Given minth = 5 and L = 50, for example, it is necessary
to choose w~ s 0.0042.

B. A Lower Bound for Wq

RED gateways are designed to keep the calculated average
queue size avg below a certain threshold. However, this serves
little purpose if the calculated average avg is not a reasonable

reflection of the current average queue size. If w~ is set too

low, then avg responds too slowly to changes in the actual
queue size. In this case, the gateway is unable to detect the
initial stages of congestion.

Assume that the queue changes from empty to one packet
and that, as packets arrive and depart at the same rate,
the queue remains at one packet. Further assume that, ini-
tially, the average queue size was zero. In this case, it takes
– 1/ln(l – Wq) packet arrivals (with the queue size remaining

at one) until the average queue size avg reachs 0.63 = 1 – l/e
[35]. For WQ = 0.001, this takes 1,000 packet arrivals; for
Wq = 0.002, this takes 500 packet arrivals; for WQ = 0.003,

this takes 333 packet arrivals. In most of our simulations, we
use w~ = 0.002.

C. Setting 7rL’inthand ?na~th

The optimal vahtes for rninth and rna~~h depend on the
desired average queue size. If the typical traffic is fairly bursty,

then m2nth must be correspondingly large to allow the link
utilization to be maintained at an acceptably high level. For the
typical traffic in our simulations, a minimum threshold of one
packet would result in an unacceptably low link utilization.
Discussion of the optimal average queue size for a particular
traffic mix is left as a question for future research.

The optimal value for maxth depends, in part, on the
maximum average delay that can be allowed by the gateway.

The RED gateway functions most effectively when ma~th –
ninth is larger than the typical increase in the calculated
average queue size in one round-tip time. A useful rule of
thumb is to set ~laxth to at leFtSt twice mint),.

VII. CALCULATINGTHE PACKET–MARKINGPROBABILITY

The initial packet-marking probability pb is calculated as
a linear function of the average queue size. In this section,
we compare two methods for calculating the final packet-

marking probability and demonstrate the advantages of the
second method. In the first method, when the average queue
size is constant the number of arriving packets between marked
packets is a geometric random variable; in the second method,
the number of arriving packets between marked packets is a
uniform random variable.

o

Fig. 8.

The
lows:

loco 2CO0 3000 4003 Sc03
PacketNumlr%r

(toprowforMethod1. bottomrowforMethod2)

Randomly marked packets comparing two packet-marking methods.

initial packet-marking probability is computed as fol-

Pti + ~UXP(UVg – minth )/ (mUXth – 7TLZ7Lth).

The parameter maxp gives the maximum value for the packet-
marking probability pb, achieved when the average queue size
reaches the maximum threshold.

Method 1: Geometric random variables. In Method 1,
let each packet be marked with probability Pb. Let the inter-

marking time X be the number of packets that arrive, after a
marked packet, until the next packet is marked. Because each
packet is marked with probability P6,

~~ob[x = n] = (1 ‘p6)n-lpb.

Thus, with Method 1, X is a geometric random variable with
parameter pb and E[X] = l/p&

With a constant average queue size, the goal is to mark

packets at fairly regular intervals. It is undesirable to have too
many marked packets close together, and it is also undesirable

to have too long an interval between marked packets. Both
of these events can occur when X is a geometric random
variable, which can result in global synchronization, with
several connections reducing their windows at the same time.
❑

Method 2: Uniform random variables. A more desirable
alternative is for X to be a uniform random variable from (1,
2 , .... 1/pb ] (assuming, for simplicity, that 1/pb is an integer).
This is achieved if the marking probability for each arriving

packet is p~/( 1 – count . pb), where count is the number
of unmarked packets that have arrived since the last marked
packet. Call this Method 2. In this case,

n—2

Prob[X = n] = ‘b H(
1–+

1 – (7L– l)pb ~=o l–$pb )

= Pb for 1< n < l/pb,

and

Prob[X = n] = O for n > l/p~.

For Method 2, 17[X] = l/(2pb) + 1/2. ❑

Fig. 8 shows an experiment comparing the two methods
for marking packets, The top line shows Method 1, where
each packet is marked with probability p for p = 0.02. The
bottom line shows Method 2, where each packet is marked
with probability p/( 1 + i p) for p = 0.01 and i the numlxr of
unmarked packets since the last marked packet. Both methods
marked roughly 100 out of the 5,000 arriving packets. The z

axis shows the packet number. For each method, there is a dot
for each marked packet. As expected, the marked packets are
more clustered with Method 1 than with Method 2.
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For the simulations in this paper, we set mmxP to 1/50.

When the average queue size is halfway between mintt, and
m~mrtll, the gateway drops, on the average, roughly one out of
50 (or one out of 1/mu.rP ) arriving packets. RED gateways

perform best when the packet-marking probability changes
fairly slowly as the average queue size changes; this helps [o
discourage oscillations in the average queLe size and packet-
marking probability. There should never be a reason to set

mo.rp greater than 0.1, for example. When muxP = 0.1,
then the RED gateway marks close to 1/5th of the arriving

packets when the average queue size is close to the maximum
threshold (using Method 2 to calculate the packet-marking

probability). If congestion is sufficiently heavy that the average
queue size cannot be controlled by marking close to 1/5th of
the arriving packets, then after the average queue size exceeds
the maximum threshold the gateway will mark every arriving
packet.

VIII. EVALUATION OF RED GATEWAYS

b-t addition to the design goals discussed in Section HI, sev-
eral general goals have been outlined for congestion avoidance
schemes [14],[ 16]. In this section, we describe how our goals
have been met by RED gateways.

● Congestion avoidance. If the RED gateway in fact drops
packets arriving at the gateway when the average queue
size reaches the maximum threshold, then the RED gateway

guarantees that the calculated average queue size does not
exceed the maximum threshold. If the weight IIJq for the

EWMA procedure has been set appropriately [see Section VI-
B], then the RED gateway in fact controls the actual average
queue size. [f the RED gateway sers u hif in packet headers
when the average queue size exceeds the maximum threshold,
rather than dropping packets, then the RED gateway relies on
the cooperation of the sources to control the average queue
size.

● Appropriate time scales. After notifying a connection
of congestion by marking a packet, it takes at least a round-
trip time for the gateway to see a reduction in the arrival
rate. In RED gateways. the time scale for the detection
of congestion roughly matches the time scale required for
connections to respond to congestion. RED gateways do not
notify connections to reduce their windows as a result of
transient congestion at the gateway.

● NO global synchronization. The rate at which RED

gateways mark packets depends on the level of congestion.
During low congestion, the gateway has a low probability of

marking each arriving packet and, as congestion increases, the
probability of marking each packet increases. RED gateways
avoid global synchronization by marking packets at as low a
rate as possible.

● Simplicity. The RED gateway algorithm could be im-
plemented with moderate overhead in current networks, as
discussed further in Section Xl.

● Maximizing global power4. The RED gateway explicitly

controls the average queue size. Fig. 5 shows that, for simu-
lations with high link utilization, global power is higher with

4Power is defined as the ratio of throughput to delay

RED gateways than with Drop Tail gateways. Future research
is needed to determine the optimum average queue size for

different network and traffic conditions.
● Fairness. One goal for a congestion avoidance mechanism

is fairness. This goal of fairness is not well defined, so we
simply describe the perfonrnance of the RED gateway in this
regard. The RED gateway does not discriminate against partic-
ular connections or classes of connections. (This is in contrast
to Drop Tail or Random Drop gateways, as described in [7]).
For the RED gateway, the fraction of marked packets for each

connection is roughly proportional to that connection’s share

of the bandwidth. However, RED gateways do not attempt
to ensure that each connection receives the same fraction of
the total throughput, and do not explicitly control misbehaving
users, RED gateways provide a mechanism to identify the level
of congestion, and could also be used to identify connections
using a large share of the total bandwidth. If desired, additional
mechanisms could be added to RED gateways to control the
throughput of such connections during periods of congestion.

● Appropriate for a wide range of environments. The
randomized mechanism for marking packets is appropriate
for networks with connections with a range of round-trip
times and throughput, and for a large range in the number
of active connections at one time, Changes in the load are
detected through changes in the average queue size, and the
rate at which packets are marked is adjusted correspondingly.
The RED gateway’s performance is discussed further in the
following section.

Even in a network where RED gateways signals congestion

by dropping marked packets, there are many occasions in a
TCP/lP network when a dropped packet does not result in
any decrease in Ioad at the gateway. If the gateway drops a
data packet for a TCP connection, this packet drop will be
detected by the source, possibly after a retransmission timer
expires. If the gateway drops an ACK packet for a TCP
connection or a packet from a non-TCP connection, this packet

drop could go unnoticed by the source. However, even for a
congested network with a traffic mix dominated by short TCP
connections or by non-TCP connections, the RED gateway
still controls the average queue size by dropping all arriving

packets when the average queue size exceeds a maximum
threshold.

A. Parameter Sensiti~’iry

This section discusses the parameter sensitivity of RED

gateways. Unlike Drop Tail gateways, where the only free
parameter is the buffer size, RED gateways have additional
parameters that determine the upper bound on the average
queue size, the time interval over which the average queue
size is computed, and the maximum rate for marking pack-
ets. The congestion avoidance mechanism should have low
parameter sensitivity, and the parameters should be applicable
to networks with widely varying bandwidths.

The RED gateway parameters Wq, mint},, and mwrt~ are

necessary so that the network designer can make conscious
decisions about the desired average queue size and the size
and duration in queue bursts to be allowed at the gateway.
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The parameter maxp can be chosen from a fairly wide range,
because it is only an upper bound on the actual marking
probability pb. If congestion is sufficiently heavy that the
gateway cannot control the average queue size by marking at
most a fraction maxp of the packets, then the average queue

size will exceed the maximum threshold and the gateway will
mark every packet until congestion is controlled.

We give a few rules that give adequate performance of the
RED gateway under a wide range of traffic conditions and
gateway parameters.

1: Ensure adequate calculation of the average queue size:
set w~ ~ 0.001. The average queue size at the gateway is
limited by maxth, as long as the calculated average queue

size avg is a fairly accurate reflection of the actual average
queue size. The weight Wq should not be set too low, so that

the calculated average queue length does not delay too long
in reflecting increases in the actual queue length (see Section
VI). Equation (3) desctibes the upper bound on Wq required
to allow the queue to accommodate bursts of L packets without
marking packets.

2: Set minth sufficiently high to maximize network
power. The thresholds mirzth and maztk should be set
sufficiently high to maximize network power. As we stated
earlier, more research is needed on determining the optimal
average queue size for various network condhions. Because
network traffic is often bursty, the actual queue size can also
be quite bursty; if the average queue size is kept too low, then
the output link will be underutilized,

3: Make max~h – mint~ sufficiently large to avoid global
synchronization. Make mazth – minth larger than the typical
increase in average queue size during a round-trip time to
avoid the global synchronization that results when the gateway
marks many packets at one time. One rule of thumb would be
to set ma$~~ to at least twice mi~t~. If maxth – min~~ is

too small, then the computed average queue size can regularly
oscillate up to mazth. This behavior is similar to the queue
oscillations up to the maximum queue size with Drop Tail
gateways.

To investigate the performance of RED gateways in a range
of traffic conditions, this section discusses a simulation with
two-way traffic where there is heavy congestion resulting
from many FT’P and TELNET connections, each with a

small window and limited data to send. The RED gateway
parameters are the same as in the simple simulation in Fig. 3,
but the network traffic is quite different.

Fig. 9 shows the simulation, which uses the network in Fig.
10. Roughly half of the 41 connections go from one of the
left-hand nodes 14 to one of the right-hand nodes 5–8; the
other connections go in the opposite direction. The round-
trip times for the comections vary by a factor of 4 to 1.
Most of the connections are FTP connections, but there are
a few TELNET comections. (One of the reasons to keep the

average queue size small is to ensure low average delay for
the TELNET connections.) Unlike the previous simulations,
in this simulation all of the connections have a maximum
window of either 8 or 16 packets. The total number of packets
for a connection ranges from 20 to 400 packets. The starting
times and the total number of packets for each connection
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were chosen rather arbitrarily; we are not claiming to represent

realistic traffic models. The intention is simply to show RED

gateways in a range of environments.
Because of the effects of ack-compression with two-way

traffic, the packets arriving at the gateway froin each connec-
tion are somewhat bursty. When ack packets are “compressed”
in a queue, the ack packets arrive at the source node in a burst.
In response, the source sends a burst of data packets [38].

The top chart in Fig. 9 shows the queue for gateway A,

and the next chart shows the queue for gateway B. For each
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Fig, Il. A simulation network with five FTP connections.

chart, each “X” indicates a packet dropped at that gateway. The
bottom chart shows the packets for each connection arriving
and departing from gateway A (and heading toward gateway
B). For each connection, there is a mark for each packet

arriving and departing from gateway A, though at this time
scale the two marks are indistinguishable. Unlike the chart
in Fig. 3, in Fig. 9 the packets for the different connections

are displayed overlapped rather than displayed on separate
rows. The .F axis shows time and the y axis shows the packet
number for that connection, where each connection starts at
packet number 0. For example, the leftmost “strand” shows a
connection that starts at time O and sends 220 packets in all.
Each “X” shows a packet dropped by one of the two gateways.
The queue is measured in packets rather in bytes; short packets

are just as likely to be dropped as are longer packets. The

bottom line of the bottom chart shows again an “X” for each
packet dropped by one of the two gateways.

Because Fig. 9 shows many overlapping connections, it is
not possible to trace the behavior of each of the connections.
As Fig. 9 shows, the RED gateway is effective in controlling
the average queue size. When congestion is low at one of
the gateways, the average queue size and the rate of marking

packets is also low at that gateway. As congestion increases at
the gateway, the average queue size and the rate of marking
packets both increase. Because this simulation consists of
heavy congestion caused by many connections, each with a
small maximum window. the RED gateways have to drop a
fairly large number of packets in order to control congestion.
The average link utilization over the 1 second period is 61%
for the congested link in one direction, and 59% for the
other direction. As the figure shows. there are periods at the
beginning and end of the simulation when the arrival rate at
the gateways is low.

Note that the traffic in Figs. 3 and 9 in quite varied, and

in each case the RED gateway adjusts its rate of marking
packets to maintain an acceptable average queue size. For
the simulations in Fig. 9 with many short connections, there
are occasional periods of heavy congestion and a higher
rate of packet drops is needed to control congestion. In
contrast. in the simulations in Fig. 3 with a small number
of connections with large maximum windows, the congestion
can be controlled with a small number of dropped packets.
For the simulations in Fig. 9, the burstiness of the queue is

dominated by short-term burstiness as packet bursts arrive at

the gateway from individual connections. For the simulations
in Fig. 3, the burstiness of the queue is dominated by the
window increase/decrease cycles of the individual connections.

Note that the RED gateway parameters are unchanged in these
two simulations.

The performance of a slightly different version of RED
gateways for connections with different round-trip times and
connections with multiple congested gateways has been ana-
lyzed and explored elsewhere [5].

IX. BURSTY TRAFFtC

This section shows that, unlike Drop Tail or Random Drop
gateways, RED gateways do not have a bias against bursty
traffics Bursty traffic at the gateway can result from an ITP
connection with a long delay-bandwidth product but a small
window; a window of traffic will be sent. and then there will
be a delay until the ack packets return and another window
of data can be sent. Variable-bit-rate video traffic and some
forms of interactive traffic are other examples of bursty traffic

seen by the gateway.
In this section, we use FTP connections with infinite data,

small windows, and small round-trip times to model the less
bursty traffic and FTP connections with smaller windows and
longer round-trip times to model the more bursty traffic.

We consider simulations of the network in Fig. 11. Node
5 packets have a round-trip time that is six times that of the
other packets. Connections 14 have a maximum window of
12 packets, while connection 5 has a maximum window of
8 packets. Because node 5 has a large round-trip time and a

small window, node 5 packets often arrive at the gateway in a
loose cluster. By this, we mean that considering only node 5
packets, there is one long interamival time and many smaller
interarrival times.

Figs. 12— 14 show the simulation results of the network in
Fig. I I with Drop Tail, Random Drop, and RED gateways,
respectively. The simulations in Figs. 12 and 13 were run
with the buffer size ranging from 8 packets to 22 packets. The
simulations in Fig. 14 were run many times with a minimum
threshold ranging from 3 to 14 packets and a buffer size
ranging from 12 to 56 packets.

Each simulation was run for ten seconds, and each mark
represents one 1 second period of that simulation. For Figs. 12
and 13, the x axis shows the buffer size, and the y axis shows
node 5‘s throughput as a percentage of the total throughput
through the gateway. In order to avoid traffic phase effects
(effects caused by the precise timing of packet arrivals at
the gateway), in the simulations with Drop Tail gateways
the source takes a random time drawn from the uniform
distribution on [0, r] seconds to prepare an iTP packet for
transmission, where t is the bottleneck service time of 0.17
ms [7]. [n these simulations, our concern is to examine the
gateway’s bias against bursty traffic.

For each set of simulations, there is a second figure showing
the average queue size (in packets) seen by arriving packets at

5BY burS~y ~raffjc, ~ e me~ traffic from a connection where ~he mount

of data transmitted in one round-trip time is small cnmpared to the delay
bandwidth product, but where multiple packets from [hat connection arrive at
the gateway in a short period of time.
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Fig. 12. Simulations with Drop Tail gateways.

the bottleneck gateway, and a third figure showing the average
link utilization on the congested link. Because RED gateways
are quite different from Drop Tail or Random Drop gateways,
the gateways cannot be compared simply by comparing the
maximum queue size; the most appropriate comparison is
between a Drop Tail gateway and a RED gateway that maintain
the same average queue size.

With Drop Tail or Random Drop gateways, the queue is
more likely to overflow when the queue contains some packets
from node 5. In this case, with either Random Drop or
Drop Tail gateways, node 5 packets have a disproportionate
probability of being dropped; the queue contents when the
queue overflows are not representative of the average queue
contents.

Fig. 14 shows the result of simulations with RED gateways.

The x axis shows rnint~, and the y axis shows node 5’s
throughput. The throughput for node 5 is close to the max-
imum possible throughput, given node 5‘s round-trip time and
maximum window. The parameters for the RED gateway are
as follows: w~ = 0.002 and maxP = 1/50. The maximum

threshold is twice the minimum threshold, and the buffer
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Fig. 13, Simulations with Random Drop gateways.

size (which ranges from 12 to 56 packets) is four times the
minimum threshold.

Fig. 15 shows that, for the simulations with Drop Tail or
Random Drop gateways, node 5 receives a disproportionate
share of the packet drops. Each mark in Fig. 15 shows the
results from a one-second period of simulation. The boxes
show the simulations with Drop Tail gateways from Fig.
12, the triangles show the simulations with Random Drop
gateways from Fig. 13, and the dots show the simulations
with RED gateways from Fig. 14. For each one-second period
of simulation, the x axis shows node 5‘s throughput (as a
percentage of the total throughput) and they axis shows node
5’s packet drops (as a percentage of the total packet drops).
l%e number of packets dropped in one one-second simulation
period ranges from zero to 61; the chart excludes those
one-second simulation periods with less than three dropped
packets.

The dashed line in Fig. 15 shows the position where node
5’s
the
the

share of packet drops exactly equals node 5‘s share of
throughput. The cluster of dots is roughly centered on
dashed line, indicating that for the RED gateways, node
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Fig, 14, Simulations with RED gateways

5‘s share of dropped packets reflects node 5‘s share of the

throughput. In contrast, for simulations with Random Drop
(or with Drop Tail) gateways node 5 receives a small fraction
of the throughput but a large fraction of the packet drops.
This shows the bias of Drop Tail and Random Drop gateways
against the bursty traffic from node 5.

Our simulations with an 1S0 TP4 network using the DECbit
congestion avoidance scheme also show a bias against bursty
traffic. With the DECbit congestion avoidance scheme, node
5 packets have a disproportionate chance of having their con-

gestion indication bits set. The DECbit congestion avoidance
scheme’s bias against bursty traffic would be corrected by
DECbit congestion avoidance with selective feedback [28],
which has been proposed with a fairness goal of dividing
each resource equally among all of the users sharing it.
This modification uses a selective feedback algorithm at the
gateway. The gateway determines which users are using more
than their “fair share” of the bandwidth, and only sets the
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Fig. 15. Sc~t[er plot, packa drops versus throughput.

congestion indication bit in packets belonging to those users.
We have not run simulations with this algorithm.

X. IDENTIFYING MISBEHAVING USERS

In this section, we show that RED gateways provide an
efficient mechanism for identifying connections that use a
large share of the bandwidth in times of congestion. Because

RED gateways randomly choose packets [o be marked during
congestion, RED gateways could easily identify which con-
nections have received a significant fraction of the recently
marked packets. When the number of marked packets is
sufficiently large. a connection that has received a large share
of the marked packets is also likely to be a connection that
has received a large share of the bandwidth. This information
could be used by higher policy layers to restrict the bandwidth
of those connections during congestion.

The RED gateway notifies connections of congestion at the

gateway by marking packets. With RED gateways, when a
packet is marked, the probability of marking a packet from a
particular connection is roughly proportional to that connec-
tion’s current share of the bandwidth through the gateway.
Note that this property does not hold for Drop-Tail gateways,
as demonstrated in Section IX.

For the rest of this section, we assume that each time
the gateway marks a packet. the probability that a packet
from a particular connection is marked esactly equals that

connection’s fraction of the bandwidth through the gateway.
Assume that connection i has a fixed fraction p, of the
bandwidth through the gateway. Let Lf’1.,, be the number of
the n most-recently-marked packets that are from connection
i. From the previous assumptions, the expected value for Sj.,,
is np,.

From the standard statistical results given in the Appendix,
S,,. is unlikely to be much larger than its expected value for
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Fig. 16. Upper bound on probability that a connection’s fraction of marked
packets is more than C times the expected number, given 100 total marked
packets.

sufficiently large n:

Prwb(Si,n 2 cpin) < e-2n(c-1)2p:

for 1 < c g I/pi. The two lines in Fig. 16 show the upper
bound on the probability that a connection receives more than
C times the expected number of marked packets, for C = 2,4
and n = 100; the x axis shows pi.

The RED gateway could easily keep a list of the n most
recently marked packets. If some connection has a large
fraction of the marked packets, it is likely that the connection
also had a large fraction of the average bandwidth. If some
TCP connection is receiving a large fraction of the bandwidth,
that connection could be a misbehaving host that is not
following current TCP protocols or simply a connection with
either a shorter round-tip time or a larger window than other
active connections. In either case, if desired, the RED gateway
could be modified to give lower priority to those connections
that receive a large fraction of the bandwidth during times of
congestion.

XI. IMPLEMENTATION

This section considers efficient implementations of RED
gateways. We show that the RED gateway algorithm can be
implemented efficiently, with only a small number of add and
shift instructions for each packet arrival. In addition, the RED
gateway algorithm is not tightly coupled to packet forwarding
and its computations do not have to be made in the time-critical
packet forwarding path. Much of the work of the RED gateway

algorithm, such as the computation of the average queue size
and the packet-marking probability pt,, could be performed in
parallel with packet forwarding or could be computed by the
gateway as a lower-priority task as time permits. This means
that the RED gateway algorithm need not impair the gateway’s
ability to process packets, and the RED gateway algorithm can
be adapted to increasingly high-speed output lines.

If the RED gateway’s method of marking packets is to

set a congestion indication bit in the packet header rather

than dropping the arriving packet, then setting the congestion
indication bit itself adds overhead to the gateway algorithm.
However, because RED gateways are designed to mark as few
packets as possible, the overhead of setting the congestion
indication bit is kept to a minimum. This is unlike DECbit
gateways, for example, which set the congestion indication bit

in every packet that arrives at the gateway when the average
queue size exceeds the threshold.

For every packet arrival at the gateway queue, the RED
gateway calculates the average queue size. This can be imple-
mented as follows:

avg - avg + w~ (q – avg).
As long as w~ is chosen as a (negative) power of 2, this can

be implemented with one shift and two additions (given scaled

versions of the parameters) [ 14].
Because the RED gateway computes the average queue

size at packet arrivals rather than fixed time intervals, the
calculation of the average queue size is modified when a
packet arrives at the gateway to an empty queue. After the
packet arrives at the gateway to an empty queue, the gateway
calculates m, the number of packets that might have been
transmitted by the gateway during the time that the line was

free. The gateway calculates the average queue size as ~ m

packets had arrived at the gateway with a queue size of zero.
The calculation is as follows:

m + (time — q–time)/s,

avg - (1 – Wg)m avg.

where q-time is the start of the queue idle time and s is
a typical transmission time for a small packet. This entire
calculation is an approximation, as it is based on the number of
packets that might have arrived at the gateway during a certain
period of time. After the idle time (time – g-time) has been
computed to a rough level of accuracy, a table lookup could
be used to get the term (1 – wq)ttime-@imeJjs, which could
itself be an approximation by a power of 2.

When a packet arrives at the gateway and the average queue
size avg exceeds the threshold m(LXth, the arriving packet
is marked. There is no recalculation of the packet-marking
probability. However, when a packet arrives at the gateway
and the average queue size uvg is between the two thresholds
of ~2n~h and mazth, the initial packet-marking probability
Pb is calculated as follows:

for

c1 =
maxp

maxth —m~nth ‘

c~ =
maxp manth

maxth — minth “

The parameters of maxP, maxth, and min~h are fixed param-
eters that are determined in advance. The values for ma.~~h
and minth are determined by the desired bounds on the
average queue size, and might have limited flexibility. The
fixed parameter maxp, however, could easily be set to a range
of values. In particular, maxP could be chosen so that Cl is a
power of 2. Thus, the calculation of pb can be accomplished
with one shift and one add instruction.

In the algorithm described in Seetion IV, when mintlt <

avg < rnaxth a new pseudorandom number R is computed
for each arriving packet, where R = Random[O, 1] is from the
uniform distribution on [0,1]. These random numbers could be
gotten from a table of random numbers stored in memory or
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Initialization:
(Ltf,y+ ()
(’ofL?// + —1

for each packet arrival:

CalCUlate the new average queue size /L?~,q:

if
increment Cfrl(nt
J)/, - rl Ullg-cz

if (wird > 0 and rmu7tt ~ Approx[R/pb)

mark the arriving packet

(’[)’r171t + ()

if ffJilrif =0 (choosing random number)
R + Zlr17MioT7@.1]

e~Se lf ?[?aXth ~ (~?l.()
mark the arriving packet
c[)’r171t+ —1

else ccmrtt+- –1

when quetie becomes empty
q_tirrW + tirn(’

New variables:

R: a random number
New fixed parameters:

s : typical transmission time

Fig. 17. Efficient algorithm for RED gateways.

could be computed fairly efficiently on a 32-bit computer 13].
Irrthealgonthm described infection IV, the arriving packet
is marked if

h?<~~/(l-(:()?L?d~b).

Ifpb is approximatedby a negative power of 2,then this can
be efficiently computed.

h is possible to implement the RED gateway algorithm
to use a new random number only once for every marked
packet, instead of using a new random number for every
packet that arrives at the gateway when Trlir)th < a’ug <
‘I[t(i~th. As Section VII explains, when the average queue

size is constant the number of packet arrivals after a marked
packet until the next packet is marked is a uniform random
variable from {1, 2,. ... lpbj}j}. Thus, if the average queue
size was constant, then after each packet is marked the gateway
could simply choose a value for the uniform random variable
R = Z?anrhL[(),l] and mark the nth arriving packet if
?t ~ R/pb, Because the average queue size changes over

time, we recompute R/f)b each time that pb is recomputed.
[fpb is approximated by a negative power of 2, then this

can be computed using a shift instruction instead of a divide
instruction.

Fig. 17 gives the pseudocode for an efficient version of
the RED gateway algorithm. This is just one suggestion for
an efficient version of the RED gateway algorithm. The rnosr
efficient way to implement this algorithm depends, of course,
on the gateway in question.
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The memory requirements of the RED gateway algorithm
are modest. Instead of keeping state for each active connection,
the RED gateway requires a small number of fixed and variable
parameters for each output line. This is not a burden on

gateway memory.

XII. FURTHER WORK AND CONCLUSIONS

Random Early Detection gateways are ineffective mecha-
nism for congestion avoidance at the gateway, in cooperation
with network transport protocols. If RED gateways chwp

packets when the average queue size exceeds the maximum

threshold, rather than simply setting a bit in packet headers,

then RED gateways control thecalculated average queue size.

This action provides an upper bound on the average delay at
the gateway.

The probability that the RED gateway chooses a particular
connection tonotify during congestion is roughly proportional
to that connection’s share of the bandwidth at the gateway.
This approach avoids a bias against bursty traffic at the gate-
way. For RED gateways, the rate at which the gateway marks

packets depends on the level of congestion, avoiding the global

synchronization that results from many connections decreasing
their windows at the same time. The RED gateway is a
relatively simple gateway algorithm that could be implemented
in current networks or in high-speed networks of the future.

The RED gateway allows conscious design decisions to be
made about the average queue size and maximum queue size
allowed at the gateway.

There are many areas for further research on RED gateways.
The foremost open question involves determining the optimum

average queue size for maximizing throughput and minimizing
delay for various network configurations. This question is
heavily dependent on the characterization of the network traffic
as well as the physical characteristics of the network. Some
work has been done in this area for other congestion avoidance
algorithms [23], but there are still many open questions.

One area for further research concerns traffic dynamics with
a mix of Drop Tail and RED gateways, as would result from

partial deployment of RED gateways in the current Internet.
Another area for further research concerns the behavior of the

RED gateway machinery with transport protocols other than
TCP, including open- or closed-loop rate-based protocols.

As mentioned in Section X. the list of packets marked by
the RED gateway could be used by the gateway to identify
corinections that are receiving a large fraction of the bandwidth
through the gateway. The gateway could use this information

to give such connections lower priority at the gateway. We
leave this as an area for further research.

We do not specify in this paper whether the queue size

should be measured in bytes or in packets. For networks with
a range of packet sizes at the congested gateway, the difference
can be significant. This includes networks with two-way traffic
where the queue at the congested gateway contains large ITP

packets, small TELNET packets. and small control packets.
For a network where the time required to transmit a packet is
proportional to the size of the packet, and the gateway queue is
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measured in bytes, the queue size reflects the delay in seconds
for a packet arriving at the gateway.

The RED gateway is not constrained to provide strict FIFO
service. For example, we have experimented with a version of
RED gateways that provides priority service for short control
packets, reducing problems with compressed ACK’S.

By controlling the average queue size before the gateway
queue overflows, RED gateways could be particularly useful
in networks where it is undesirable to drop packets at the

gateway. This would be the case, for example, in running
TCP transport protocols over cell-based networks such as
ATM. There are serious performance penalties for cell-based
networks if a large number of cells are dropped at the
gateway; in this case, it is possible that many of the cells
successfully transmitted belong to a packet in which some
cell was dropped at a gateway [30]. By providing advance
warning of incipient congestion, RED gateways can be useful
in avoiding unnecessary packet or cell drops at the gateway.

The simulations in this paper use gateways where there is
one output queue for each output line, as in most gateways of
current networks, kED gateways could also be used in routers
with resource management, where different classes of traffic
are treated differently and each class has its own queue [6].
For example, in a router where interactive (TELNET) traffic
and bulk data (FI’P) traffic are in separate classes with separate
queues (in order to give priority to the interactive traffic), each
class could have a separate Random Early Detection queue.
The general issue of resource management at gateways will
be addressed in future papers.

APPENDfX

In this section, we give the statistical
X on identifying misbehaving users.

Let Xj, 1 s j < n, be independent
S be their sum, and let X = S/n.

result used in Section

random variables, let

Theorem /Hoe~ding, 19631 ~12, p. 155] [ 13, p. 104]: Let
xl, X2,..., X. be independent, and let O ~ Xj ~ 1 for all
Xj. Then, for O < t <1 – 23[X],

Prob[x ~ E[x] + t] (4)

+5)”+’(l:;:t)’-’-’]n
❑

Let Xi,j be an indicator random variable that is 1 if the jth
marked packet is from comection i, and O otherwise. Then,

From Theorem 4,

l%-ob(S~,n ~ pi n + t n) S e-znt’
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for Ostsl–pl. Thus,

P~06(S~,n ~ Cpin) < e-2n(c-1)2P:

for 1 < C ~ I/pi.
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