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LaPS: LiDAR-assisted Placement of Wireless Sensor
Networks in Forests

SILVIA DEMETRI, GIAN PIETRO PICCO, and LORENZO BRUZZONE, University of Trento,
Italy

The deployment of a wireless sensor network (WSN) is crucial to its reliability and performance. Yet, node
placement is typically determined in-field via effort-demanding trial-and-error procedures, because existing
approaches over-simplify the radio environment; this especially holds for forests, the focus of this paper,
where trees greatly affect communication.

We present LaPS, an approach exploiting remote sensing to identify the best node placement automatically
and prior to deployment. Airborne Light Detection and Ranging (LiDAR) data acquired for the target forest are
automatically processed to estimate its properties (e.g., tree position and diameter) that, once incorporated into
a specialized path loss model, enable per-link estimates of the radio signal attenuation induced by trees. Finally,
a genetic algorithm explores placement options by evolving towards a (sub-)optimal solution while satisfying
the user’s spatial and network requirements, whose formulation is very flexible and broadly applicable.

Our experiments, focused on a real forest, confirm that LaPS yields topologies of significantly higher quality
w.r.t. approaches using a regular placement or a standard path loss model. Further, the ability to quickly
explore the impact that changes in user requirements have on topology is invaluable to improve the operation
of WSNs and reduce the effort of their in-field deployment.
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1 INTRODUCTION
Wireless sensor networks (WSNs) enable in-situ, unattended monitoring of outdoor natural envi-
ronments with unprecedented density and flexibility. In the context of forests, which are the main
focus of this paper, WSNs have been employed in several applications with different goals, e.g.,
including forest fire detection, microclimate monitoring, wildlife monitoring [19, 26, 52, 60, 65].
Motivation. In this context, a major challenge is to achieve a proper node placement, as it strongly
affects the behavior of communication links [16, 24, 40, 49, 70] and therefore the connectivity of
the deployed network and the application performance and reliability at large. However, deploying
WSNs in the real world remains a very challenging task, especially in outdoor environments [24, 43,
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63]; forests further exacerbate the challenge due to the presence of trees and vegetation impairing
low-power radio communication [13, 46, 68].
In principle, a large literature on network design and node placement optimization exists [2, 8,

30, 34, 53, 69], surveyed in §2. However, the modeling of low-power wireless communication in
these approaches lacks realism, as they often neglect the specific features of the real-world target
scenario. Since the characteristics of the target environment may vary wildly, they are likely to
disrupt the model assumptions, yielding estimates that are unrealistic and of little practical use.
As a consequence, the placement problem is often tackled directly in-field, by means of effort-

demanding experimental campaigns. A common approach is to define an initial placement “guess”
based on the spatial (e.g., node density) and network (e.g., expected signal strength or number of
neighbors) requirements germane to the application, and on the nominal data found in datasheets
and derived by idealized radio communication models. Next, the quality of such placement is
evaluated in-field by means of connectivity tests, for which several supporting tools exist [14, 29, 62].
However, due to the aforementioned peculiarity of the target environment, it is rarely the case
that this initial guess is satisfactory; the position of nodes typically must be nudged based on the
outcome of the tests, which must therefore be re-executed, leading to a trial-and-error cycle that
repeats until a satisfactory network configuration is found. The effort required by this process
obviously increases with the scale of the network and the complexity of the target environment.
In this respect, the forest environment represents both a challenge and an opportunity. The

challenge is the fact that, as already pointed out, trees and vegetation impair the radio signal.
However, the opportunity is that a significant fraction of this impact is induced by trees, and
is therefore permanent, i.e., not time-variant, at least not on a short time scale; in other words,
the attenuation they induce could be in principle estimated beforehand, and form the basis for
determining a satisfactory node placement. This is precisely the goal of this paper.
Approach and contributions.We present an automatic node placement approach and companion
tool, LaPS (LiDAR-assisted Placement for wireless Sensor networks), that optimize the positions of
WSN nodes prior to deployment by accounting for the real characteristics of the target forest.

The node placement identified by LaPS is subject to a set of simple user-defined spatial and
network requirements (§3) specifying desired properties about the placement of nodes and the
resulting network connectivity. In this work, the quality of the network layout output by LaPS is
assessed in terms of the overall number of communication links and their average expected receive
power; however, alternative formulations can be easily encoded, thanks to our flexible design.
A second input to LaPS is information about the forest structure, for which we rely on remote

sensing (§4) and specifically airborne Light Detection and Ranging (LiDAR). This technology has
been extensively used [5, 27, 33, 44, 50, 61] for accurate estimation of forest attributes (e.g., tree
position, trunk diameter, tree density), and LiDAR data is increasingly available. Further, even if
the acquisition of airborne LiDAR data is quite expensive, in many cases these data are already
acquired for other forest or urban applications, and therefore available at no additional cost.
User requirements and raw LiDAR data are fed to the LaPS toolchain, for which we provide

an overview in §5. The first component of the toolchain transforms the raw LiDAR data into a
higher-level representation of forest attributes we call a tree map (§6). This information provides
the crucial parameters of a specialized radio model (§7) that enables accurate per-link estimates of
communication quality by taking into account the attenuation induced by trees.
The tree map representing the target forest area and the radio model configured with this

information are both input, along with user requirements, to an evolutionary optimization method
(§8) that constitutes the last component of the toolchain. Specifically, we exploit genetic algorithms
to explore the space of possible placement solutions and evolve towards an optimized placement.
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This is done by evaluating the fitness of placement configurations in terms of quality and number
of the communication links available to network nodes, while honoring the spatial and network
requirements set by the user. Genetic algorithms cannot guarantee to identify a global optimum of
the fitness function, which is nonetheless very hard to compute given the non-linearity and many
dimensions of the problem. In turn, genetic algorithms are of practical relevance as they provide
very good sub-optimal solutions with acceptable computational overhead.

To the best of our knowledge, we are the first to exploit LiDAR information with the goal to
i) characterize1 the attenuation induced by trees, and ii) exploit this and the acquired knowledge
about tree positions to identify an efficient placement of WSN nodes.

We validate the LiDAR-based radio model in a real forest (§9), and show that it provides higher
accuracy than other coarser-grained approaches found in the literature. Before moving to the
evaluation of our placement approach, we discuss the configuration of the LaPS tool (§10) we use
for it. This entails not only providing specific examples of user constraint, but also the identification
of two parameters, the expected received power and the distance of nodes from trunks, whose
minimum value has a relevant impact on the quality of the output solutions and whose value must
be determined experimentally.

Finally, we evaluate the quality of the node placements output by LaPS (§11). We analyze various
performance metrics, including the overall average expected received power and number of links in
the network, along with topological properties quantifying its degree of connectivity and therefore
intrinsic robustness. We compare against i) a grid-based approach that “blindly” places nodes in
each spatial cell without taking into account the presence of trees, and ii) a line-of-sight approach
that uses the first portion of our LaPS toolchain to determine the links that are unencumbered
by trees and for which the standard path loss radio model applies. In essence, the first baseline
disregards both the information about the forest structure and the corresponding customized radio
model, while the second disregards only the latter. By showing that the placements output by LaPS

are significantly better than both baselines we confirm that the additional complexity introduced
by LaPS is indeed worthwhile. This becomes even more evident when we introduce a four-fold
scale-up of the test network, in which the baselines above cannot even find an acceptable solution.

We conclude our evaluation by quantifying the improvement in quality between the placement
solution output by LaPS and the average one. The latter effectively provides a measure of the
placement that in-field campaigns are likely to identify. Our results confirm that the improvement
attainable by LaPS is significant, thanks to its ability to quickly explore several alternate place-
ments. Therefore, LaPS can provide solutions that i) are of higher quality, and ii) do not require
the significant effort of in-field campaigns. Further, and along the same lines, LaPS enables the
exploration of slightly different network and/or performance parameters, to an extent that would
be simply prohibitive if performed in-field.

The paper ends in §12 with brief concluding remarks including opportunities for future work.

2 RELATEDWORK

Genetic algorithms and WSN node placement. In the last two decades, several studies ex-
ploited genetic algorithms towards the planning of mobile networks, in particular for cellular base
stations placement and configuration [39, 45, 48]. The effectiveness of these approaches inspired
the application of this technique also in the context of WSNs placement optimization.
However, many of the approaches (e.g., [3, 8, 9, 22]) adopt a grid or some other regular pattern

(e.g., a tessellation) as the reference network layout, and select candidate positions for node
placement only among the vertexes of this regular pattern (e.g., at the crossing of grid lines).

1The LiDAR-based radio model was originally published in [17].
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This intuitive abstraction simplifies the mathematical treatment of the problem and reduces the
search space. However, while it is of practical relevance for some applications (and therefore we
consider it hereafter), it is at odds with several other real scenarios, as it neglects specific, and often
irregular, placement requirements of applications. In contrast, our approach supports arbitrary
spatial requirements where nodes must be deployed in designated areas; the requirements we
consider include the common case where nodes must be fastened to trees, yielding an intrinsically
irregular structure of the resulting network and search space.
Another significant idealization of the placement problem concerns the communication range,

typically assumed perfectly isotropic. In part, this stems from the fact that the majority of WSN
approaches aim at jointly optimizing energy consumption and sensing coverage, i.e., minimizing
the former without compromising the latter [8, 31, 53]. In this respect, modeling the range of both
communication and sensing as a perfect circle is a natural abstraction that, again, greatly simplifies
the mathematical treatment. The price to pay, however, is the inability to transfer these approaches
in the real world, where communication range is known to be far from isotropic [70].

For instance, the authors of [8] exploit genetic algorithms to optimize a cluster-based approach by
determining the best clustering scheme, the operational mode of nodes (e.g., active vs. inactive, slave
vs. cluster-head), and their transmission power. However, candidate node positions are restricted
to those belonging to a regular grid layout. Communication range is one of the design parameters
considered in the optimization; however, it is assumed to depend only on the transmission power,
and the impact of the deployment environment is neglected. Similarly, the multi-objective approach
presented in [31] optimizes sensor coverage and lifetime, with the additional assumption of a fixed
communication and sensing range. Another multi-objective optimization technique is presented
in [22] in the context of precision agriculture. Again, the focus is on the selection of node status by
taking into account application-specific requirements related to the operation mode, but no effect
of the agricultural field is considered in evaluating the connectivity of the network. Analogous
considerations hold for the approach in [66], where the optimization of sensing coverage and
connectivity is centered around the sleep intervals scheduling for energy conservation while
providing different degrees of coverage through their dynamic reconfiguration. However, the
connectivity estimation is, once again, unrealistic. The same holds for [53] that, after explicitly
mentioning the challenges of real deployments and the difficulty of acquiring prior information
about the environment, proceeds to optimize radio coverage and energy consumption based on a
circular communication range of fixed radius.

The same idealistic assumption is shared also by the multi-objective optimization of node position
and transmission power presented in [34]. This work has an additional point of contact with ours,
in that it introduces a k-connectivity constraint on the resulting network, aimed at ensuring some
degree of robustness. However, we consider this along with other networking constraints, and
analyze their impact on a wider notion of robustness based both on topological properties and
considerations common in the design of WSN networking protocols.

Krause et al. [35, 36] also propose a placement approach that simultaneously optimizes commu-
nication and sensing quality but, in contrast with the works above, do not rely on the simplistic
assumption of fixed communication range. Sensing quality (i.e., the informativeness of sensor
positions) and communication cost (i.e., the expected number of retransmissions) are defined by
probabilistic models based on Gaussian processes and learned via an initial small pilot deployment.
Despite providing strong theoretical guarantees, the approach is not suitable for a forested envi-
ronment, due to its intrinsic inhomogeneity. The variability in the forest structure strongly affects
communication quality, and makes it hard to learn a realistic probability distribution of link quality
through a small pilot deployment, which is also very costly to perform in such harsh environment.
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In general, LaPS sharply departs from the aforementioned idealized approaches by i) taking into
account the peculiarity of communication range in WSN with a specialized attenuation model, and
ii) estimating the model parameters directly from the characteristics of the forest area targeted by
the deployment, automatically derived via our LiDAR-based toolchain.
Modeling the non-isotropic communication range ofWSNs. As already mentioned, the prob-
lem of radio range irregularity is well-known. Some works addressed it by adapting the idealized
range with a Degree of Irregularity (DOI), defined in [25] as the maximum range variation per
unit degree change in the direction of radio propagation. DOI was later refined into the Radio
Irregularity Model (RIM) [71], which represents the random variance experimentally observed at
each direction via a random weight based on a Weibull distribution.
In contrast, other works attempted to directly model connectivity by describing the statistical

behavior of the reception rate. Zuniga et al. [70] identified three regions with different communica-
tion quality, depending on link distance: i) links in the connected region are stable and symmetric,
featuring high reception rate ii) links in the disconnected region are almost completely lossy and
unreliable iii) links in the intermediate transitional region are highly variable and unpredictable.
Unfortunately, the transitional region is quite large and includes a significant fraction of the dis-
tances typically found in real deployments. Cerpa et al. [15] characterize communication links via
non-parametric statistical models that describe the probability density function of the reception rate
together with its confidence interval. More precisely, these models relate the reception likelihood
with features characterizing both links and groups of links (e.g., distance, asymmetry, uniformity
of transmitters and receivers). Again, greater stability is observed in the links belonging to the
connected and disconnected regions, which show very high or very low reception rate, respectively.
However, although both studies consider different deployment environments (e.g., indoor and
outdoor), they do not explicitly take into account their specific characteristics in the analysis. In
other words, although these models are derived from experimental evidence, they represent an
attempt to generalize a behavior intrinsically determined by the specific deployment scenario.

In this paper, we make a step forward in reconciling the intrinsic generality of modeling and the
specificity of the environment at hand, by exploiting the peculiarity of the forest setting and defining
a specialized radio propagation model that is the cornerstone of our approach. Although we cannot
reproduce every aspect of the target environment affecting communication (e.g., temperature,
humidity), we exploit the fact that its quality is severely impacted by the presence of trees, whose
position does not change over a short time scale. Therefore, the attenuation introduced by trees
can be itself modeled and taken into account when searching for an optimal node placement.
Modeling the signal attenuation induced by vegetation. Over the last decades, several radio
propagation models accounting for the presence of vegetation have been presented. The theoretical
approach at the base of mechanistics models [58] involves the solution of Maxwell’s equations with
boundary conditions for each source of scattering along the propagation path. This approach is
complex and often not applicable in practice. Therefore, several approximate and simpler empirical
models have been developed, notably including the Weissberger [67] and COST 235 [47] models.
However, these models assume scenarios where communication links are distant from the ground
and traverse the canopy. Consequently, as shown in our evaluation (§9), they are not appropriate
for the applications we target, where links are comparatively closer to the ground and traverse the
forest at the level of its tree trunks.

Another conventional approach is based on the log-normal path loss model [56], further described
in §7. The critical aspect in its application is the estimation of its parameters, whose values are
strictly dependent on the specific environment being considered. These parameters are usually
determined empirically by regression analysis of in-field measurements. As a consequence, results
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are site-specific and suitable only for environments very similar to those where measurements
were performed [64]. This approach has been applied for instance in [23], which focuses on the ISM
radio bands used by WSNs, and considers propagation paths relatively near to the ground, mainly
affected by tree trunks. The authors explicitly consider situations where trees are obstructing the
line of sight between transmitters and receivers, deriving distinct models for different obstruction
configurations. Nevertheless, these models still lack generality, as their are based on regressions
from location-specific measurements.
The work by Azevedo et al. [6] significantly improved the state of the art by explicitly relating

the parameters of the log-normal path loss model with a vegetation index whose value depends on
the average tree density and average trunk diameter in the specific target forest area. This approach
is more general, as it clearly identifies the key additional parameters necessary to characterize
attenuation in a forest. Nevertheless, the problem then becomes how to determine the vegetation
index. In [6], the authors provide values for several type of forests, based on an impressive and effort-
demanding in-field campaign. In this paper, we build upon this work and significantly improve it
by i) providing a methodology, based on LiDAR data (§6), to determine automatically (i.e., without
in-field campaigns) the vegetation index, and ii) extending and refining the attenuation model
in [6] to consider the impact of vegetation on a per-link basis (§7) instead of across the entire target
area, ultimately yielding more accurate estimates (§9).
Exploiting digital models of the environment. The idea of exploiting digital models of a target
area and incorporating them in network planning approaches to increase their realism has been
applied almost two decades ago by Krzanowsky et al. [37]. Digital Elevation Models (DEMs) and
land cover maps were included in a genetic process to tune the expected signal attenuation and
compute a more realistic cell coverage, therefore improving the positioning of base stations in
wireless networks. More recently, the authors of [49] presented a connectivity model that takes into
account topographic and vegetation features, similarly derived from a DEM and land cover maps.
However, this model relies on a machine learning algorithm whose training requires the collection
of a significant amount of in-field connectivity measures in the target deployment environment.
DEMs are often obtained from satellite or airborne remote sensing systems, whose capabilities

have also been explored in this context. In [59] the authors describe how to extract building
footprints from LiDAR data with the goal of supporting the design of wireless communications
systems in urban areas. These urban features are incorporated in microcell ray tracing models and
exploited to assess the visibility status between transmitter and receiver (i.e., visible or obstructed),
therefore enabling the selection of a proper radio model (i.e., free space loss vs. single-knife edge
diffraction). Similarly, in [38] the line of sight between the satellites and the receiver in a GPS
system is evaluated using LiDAR and 3D ray tracing, to assess the positioning accuracy. The work
we present here is inspired by these works, in the sense that we similarly exploit the high accuracy
of LiDAR to build a detailed model of the environment, and incorporate it into a propagation model.
However, these approaches are not directly applicable to our case, as they focus on an urban setting
instead of a forest one; further, the peculiarity of the latter, and specifically the need to take into
account the attenuation induce by each tree, requires a much more fine-grained approach than
these works offer.
On the other hand, only few studies in the WSN literature attempted to increase the degree of

realism by considering the target scenario and its impact on the effectiveness of node placement.
In [2], DEMmodels are used to estimate the line of sight of PIR sensors in a mountainous region, and
determine via an evolutionary approach the placement maximizing sensing coverage. The approach
in [30] similarly takes into account coarse-grained elements of the environment (e.g., the presence
of vegetation or rivers) known to degrade the sensing capabilities by a given percentage. In [20] an
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optimal sensor placement is derived by explicitly accounting for the impact of monsoon seasons
and the presence of buildings, with the goal of enabling the prediction of surface wind distribution
over a urban water reservoir by relying on a limited number of sensor measurements. However, the
impact of the environment on network connectivity is not considered, as the latter relies entirely on
GSM—a reliable option in an urban context, but not in a forest. Another attempt to explicitly reckon
with the specific environment where the WSN is deployed is presented in [4], which also includes a
radio model that i) estimates the range on quantized directions around the node by accounting for
the presence of obstacles, and ii) introduces time-variant environment-dependent components (e.g.,
a climate factor and an environmental attenuation factor). The results obtained through simulations
show that the average range indeed varies based on these factors. However, these are not quantified
and the estimation of the corresponding coefficients not discussed; global knowledge about the
environmental factors and their impact on communication is instead implicitly assumed.

In contrast, the radio attenuation model at the core of LaPS is validated by in-field experiments;
further, to the best of our knowledge, we are the first to exploit remote sensing and specifically
LiDAR to derive the fine-grained model of the environment enabling an accurate estimation of
attenuation and, ultimately, a significantly better node placement.

3 REQUIREMENTS AND GOALS
We focus on the deployment of WSNs in forests, typically to directly monitor their environment or
the animals dwelling in it. Given that the target location is typically harsh and not easy to reach,
simplifying the WSN deployment process is crucial, as discussed in §1.
Two factors determine the effectiveness of a WSN deployment in our context. First, spatial

requirements must be honored, determining how to distribute nodes in the environment to fulfill
application needs. Second, a node placement that satisfies only these constraints is not sufficient;
network requirements must also be fulfilled, to ensure good connectivity among nodes and other
properties to be exploited by network protocols towards reliable and efficient communication.
In principle, both spatial and network requirements strongly depend on the application at

hand; our approach and associated tools are general enough to accommodate a wide spectrum of
requirements. However, in this paper, we focus on common requirements we informally state next.

3.1 Spatial Requirements

Global: regular vs. irregular. In some applications, e.g., including forest fire detection and
microclimate monitoring [19, 24, 26], it is desirable to place nodes in a way that guarantees a
spatially uniform sensing with a desired and controlled density. In principle, this could be achieved
by organizing nodes in a regular grid, which is indeed a popular choice in placement approaches [69].
In practice, however, an exact grid is often not feasible (e.g., due to irregularity of the target
environment) or even desirable (e.g., network concerns may suggest a slightly different placement).
For these reasons, deployments typically exploit a tessellation of the target area [3, 9, 69] into tiles
(e.g., triangles or squares); each node must be contained in one of the tiles. Hereafter, we refer to
this deployment scenario as regular.

Other applications are driven by different spatial requirements. For instance, in wildlife monitor-
ing [54, 55] biologists are often interested in monitoring specific sites in the target area (e.g., close
to water and feeding sources, or where animal traces are frequently found). Nodes are typically
required to be placed near these sites (e.g., within a given radius around a position); in some cases,
however, a node may be required to be placed in a designated, geo-referenced position. Moreover,
extra relay nodes may be required, whose position is not subject to strict spatial requirements. We
refer to this deployment scenario as irregular.
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Node: free vs. trunk. In addition to the global spatial requirements above, some applications
pose also constraints w.r.t. the physical placement of nodes themselves. More precisely, in what
we refer to as the free placement, nodes can be placed anywhere in the target area, e.g., on the
ground or atop poles. However, this option is not viable in some locations, e.g., to avoid that
nodes are relocated by weather events or animals, or due to the danger of damaging the tree roots,
respectively. Therefore, a common alternative is to fasten the nodes directly to the trees; we refer
to this placement as trunk. Clearly, these two options implicitly define two different search spaces
for node placement, as trunk admits acceptable node positions only in correspondence of trees.

3.2 Network Requirements
Network requirements ultimately depend on the specific network stack adopted. However, the
reliability of the latter is in turn directly affected by the connectivity of the network, which we
capture by posing requirements on two fundamental metrics on each network node:

• Minimum expected received power. This metric effectively defines, in the most basic (and there-
fore general) way, the minimum acceptable quality of a link. By enforcing this requirement
globally, we ensure that all links in the network are “good enough”. We further elaborate on
this notion in §10.1.

• Minimum number of neighbors. This metric builds on the previous one by considering, among
all node neighbors, only those with good links. By guaranteeing that a minimum num-
ber of these neighbors are available, this metric ensures that each node has enough good
communication options—a critical factor for reliability, e.g., in routing protocols.

3.3 Goal: Optimal Node Placement
The goal of our approach is to find an optimal node placement, defined informally as a positioning
assignment for all nodes of the network that

• satisfies both the spatial and network requirements above, and
• maximizes the quality of the resulting communication network.

Again, several formulations are possible for the latter aspect. Hereafter, we rely on the same
basic notions of received power and number of neighbors we exploited in §3.2, and identify the
desired placement as the one that maximizes:

• the total number of acceptable links in the network, and
• the average expected received power across all of these acceptable links.

Although these metrics are very basic, when their values are jointly optimized by our approach
(§5) they bear a direct effect in shaping the topological characteristics of the network, e.g., how
connected is the resulting network graph or how many source-to-sink paths exist in a potential
routing topology, as we show in the evaluation (§11).

4 BACKGROUND: REMOTE SENSING AND LIDAR
Remote sensing is an extremely powerful technology to achieve high-precision estimation of tree
and forest features [5, 27, 33, 44, 50, 61]. Remote sensing systems measure the electro-magnetic
radiation reflected by objects in a scene by sensors mounted, e.g., on satellites, airplanes or UAVs,
therefore acquiring data and images over wide areas. By processing these data, many properties of
the reflecting objects can be retrieved automatically, and therefore with a limited cost in comparison
to ground campaigns. Passive optical systems and active LiDAR systems are the remote sensing
techniques most commonly used for forest analysis. Optical systems (either multispectral or
hyperspectral) measure mostly the horizontal structure of forests, and are therefore suited for the
identification of forest areas and for the classification of tree species. In contrast, airborne LiDAR
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provides detailed three-dimensional information about the forest structure [27, 33, 44, 50], therefore
enabling the accurate estimation of the structural parameters of trees; for this reason, in the rest of
the paper we focus on LiDAR only.

Fig. 1. Airborne LiDAR acquisition mechanism.

Airborne LiDAR systems generate laser pulses that
are transmitted from the airplane towards the scene
under investigation, in our case a forest area (Figure 1).
The pulses hit trees at different heights during their
propagation, generating a reflection (called return)
at every hit that backpropagates towards the pulse
source. The sensor, placed at the same location of the
source, measures the time of flight between the trans-
mission of the pulse and the reception of its reflected
component; this time interval can then be converted
into distance. The raw LiDAR data consists of a 3D
cloud of measurement points, each containing: i) the
georeferenced 3D coordinates of the point, ii) a return
number whose value (ranging from 1 to 4 in our dataset) depends on the time of flight and therefore
the level of the forest, and iii) a backscattering value, denoting the intensity of the reflected signal.
This data enables the 3D reconstruction of the trees in a forest, and therefore the retrieval of
information about their position, shape, and size, whose precision is strictly dependent on the
spatial density of the emitted laser pulses in the data acquisition phase. High-density (>5 points/m2)
LiDAR data yield the most accurate estimates; Figure 4a shows an example. The estimation of
vegetation parameters can be done automatically both w.r.t. individual trees (e.g., height or diameter
at breast height) or aggregates (e.g., tree density) depending on the spatial density of available data.
In this paper we exploit both, as we further discuss in §6.

5 LIDAR-ASSISTED NODE PLACEMENT: AN OVERVIEW
We now provide the reader with a bird’s eye view of the approach we employ to achieve an efficient
node placement, for which we exploit the availability of LiDAR information. Figure 2 offers a
pictorial representation of the key components and their relationships.

We exploit in combination three main building blocks:

(1) LiDAR-based forest representation (§6). It takes as input the geographical representation of
the target forest area and the associated LiDAR data and determines a tree map encoding,
among others, the position of trees and the diameter of their trunks.

LiDAR-based 
radio attenuation 

model

evolutionary optimization

LiDAR-based
forest

 representation 
tree map

node 
placement 

number 
of nodes 

requirements 
and constraints

LiDAR data
for the

target forest area 

Fig. 2. LiDAR-assisted node placement.
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Fig. 3. LiDAR-based forest representation: Data processing chain.

(2) LiDAR-based radio attenuation model (§7). It enables a priori estimation of the received power
of the radio signal based on the aforementioned tree map.

(3) Evolutionary optimization (§8). It is the last and most important step, whose inputs are the
key parameters of the placement problem, namely, the number of nodes and the spatial and
network requirements and constraints (§3). These are combined with the above knowledge
about tree positions and their impact on radio propagation and exploited by a genetic
algorithm that efficiently explores the search space of feasible placements (i.e., those satisfying
spatial and network requirements) and selects the best one.

We next describe in detail each of these building blocks.

6 LIDAR-BASED FOREST REPRESENTATION
We automatically process high-density raw LiDAR data to obtain a tree map in which each individual
tree in the dominant layer of the forest is represented in terms of its position and other structural
attributes, notably including the diameter of its trunk [27, 44]. These information are key to
determine the attenuation induced on the radio signal (§7). The data processing chain (Figure 3) takes
as input the raw LiDAR data points and performs a sequence of three steps, using a combination of
commercial software (e.g., LASTools) and custom tools developed by our research group:
(1) Extraction of the Canopy Height Model (CHM), a raster representation of the height of trees;
(2) Identification of individual trees, achieved by properly segmenting the CHM raster image to

determine the tree crown;
(3) Estimation of individual tree attributes, i.e., tree height, crown radius, and trunk diameter.

Extraction of the Canopy Height Model (CHM). The height of the tree canopy is determined
and represented in three stages. First, the terrain morphology is derived from the LiDAR data and
mapped into a Digital Elevation Model (DEM) as a discrete surface [5]. The DEM is often available
along with the raw LiDAR data; otherwise, it can be derived from the LiDAR 3D point cloud with
dedicated tools. The height of the terrain is then subtracted from each raw LiDAR data point to
recover its actual elevation from the ground. This elevation, which represents the height of the
tree canopy, is then encoded into the CHM with a predefined geometrical resolution (50 cm in our
case) that defines the ground area covered by each pixel of the CHM (50 × 50 cm2). The encoding
assigns to each pixel the maximum height value of the corrected data points belonging to the
corresponding ground area.
Identification of individual trees. To automatically identify and isolate each tree in the CHM
we first identify the tree tops and then delineate each tree crown by segmentation. The former task
is achieved by applying a convolutional filter to the CHM raster image to emphasize local maxima;
local peaks are then detected via the set level method [33]. The noise generated by grass and other
low vegetation is removed by a simple pre-processing; points below a minimum height threshold
(2 m in our case) are not considered as belonging to trees. The output of this first phase is a set of
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(a) Section of a 3D cloud of points

from high-density LiDAR data.

(b) LiDAR points for a single tree

and their use in the tree map.

(c) Tree map.

Fig. 4. Representing the forest and tree structure: From raw LiDAR data to the tree map.

pixels representing the tree tops. These constitute the seeds input to the region growing algorithm
we use for image segmentation in the second phase, yielding the profile of the tree crowns. This
algorithm proceed iteratively, by incrementally expanding the region around each seed with the
neighboring pixels until i) their canopy height value is below 80% of the seed value, or ii) the region
diameter exceeds the maximum acceptable value we set at 15 m.
Estimation of individual tree attributes. The two processing steps above yield a tree map in
which each tree is represented by i) the position of its trunk, corresponding to the position of the
tree top, and ii) the horizontal projection of the area covered by the tree crown. Figure 4b shows an
example of the relation between the raw LiDAR data and these attributes for a single tree; a sample
tree map is depicted in Figure 4c.

The last step of the processing in Figure 3 further refines and completes the information in the
tree map by enriching it with dendrometric attributes for each tree. The tree height HL is directly
obtained from the CHM value corresponding to the tree top pixel. Further, the tree crown radius
KL is approximated by the radius of the circle whose area is equivalent to the area of the segment
representing the crown. Finally, the Diameter at Breast Height (DBH) of each tree trunk can be
estimated as a function of HL and KL [27]:

D = b0 + b1HL + b2KL + b3HL
2 + b4KL

2

The coefficients {b0, · · · ,b4} can be estimated via multi-regression by exploiting a small set
of ground truth measurements (i.e., tree height, crown radius, and trunk diameter), in our case
provided by the local forest service. However, these measurements are not strictly necessary, as
alternate approaches exist that do not rely on ground truth. One prominent example are the height-
diameter allometric equations widely adopted for forest inventories, which represent the relation
between the diameter and the other tree dimensions according to the tree species at hand [44].

7 LIDAR-BASED RADIO ATTENUATION MODEL
We now describe how to exploit the information in the tree map towards a radio attenuation model
that enables fine-grained estimation of the expected received signal power in a target forest by
accounting for its local characteristics. We assume that communication occurs at the tree trunk
level, a common choice in several scenarios of concern [24, 54].

In general, the expected received power Prx [dB] can be estimated, for a given frequency, by

Prx = Ptx +Gtx +Grx − PL
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where Ptx is the transmission power, and Gtx and Grx are the receiving and transmitting antenna
gains, respectively. In this expression, the last term (i.e., the path loss) can be defined by the widely
adopted log-normal path loss model [56], which describes the logarithmic decay of the average
signal power as a function of the distance d from a transmitter, along with random variations of
this received power around the average. In this model, the path loss

PL[dB] = PL(d0) + 10 · n · loд

(
d

d0

)
+ Xσ

depends on three quantities: i) PL(d0), the path loss at a reference distance d0 in the far field ii) n,
the path loss exponent defining the attenuation rate w.r.t. distance iii) σ , the standard deviation of
a zero-mean Gaussian random variable X representing the variation around the average.
The values of these quantities strictly depend on the environment, and are therefore difficult

to determine in general. Nevertheless, the authors of [6] observed that, in the context of forests,
these parameters of the path loss model are linearly related with local vegetation characteristics,
expressed via a vegetation index VD that depends on the average density TD [trees/m2] of trees in
the target deployment area and the average diameter D [cm] of their trunks:

VD = TD · D (1)

For instance, for the 2.4 GHz frequency of interest here, the path loss parameters are:

PL(d0) = − 0.82 · VD + 40.1
n = 0.1717 · VD + 2.2043 (2)
σ = 4.4

The accurate estimation of VD is clearly crucial to this approach. To this end, the authors of [6]
do not provide a methodology, rather they rely on data acquired via effort-demanding in-field
campaigns. In contrast, the toolchain we illustrated in §6 provides accurate estimates of TD and
D in an automated fashion, therefore enabling a practical and cost-effective application of the
specialized path loss model above.
Indeed, the tree map derived from LiDAR data contains the position and diameter of each tree.

Therefore, the average density TD is easily obtained by counting the number of trees in the region
of interest divided by its area; similarly, D is simply the average of the trunk diameters in the same
area. We refer to this direct, yet automated, application of the model in [6] as area, as it accounts for
the forest structure only in average terms over the entire target area. Unfortunately, the underlying
implicit assumption that vegetation and its effect on communication are homogeneous does not
hold in practice in real forest environments [40, 64].
For this reason, empowered by the fine-grained information available from our LiDAR-based

toolchain, we define a more accurate model that, in contrast, is able to capture the attenuation
induced by trees on a per-link level; we refer to this second, improved approach as link.

The first step towards this goal is the definition of a vegetation index

VDi j = TDi j · Di j (3)

that is specific to each link li j , instead of being uniform across the target area. In this expression,
TDi j and Di j are the density of trees and the average diameter of their trunks in the rectangular
area whose length is the line connecting the nodes i and j constituting the link. We refer to this
rectangular area as link area and set its width to the pixel resolution used to generate the CHM
from raw LiDAR data, i.e., 50 cm in this paper. A sample link area is shown in Figure 5.
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Fig. 5. Determining the presence of trees on the line of sight.

The knowledge about the value of VDi j can be used to determine, on a per-link basis, whether
communication occurs on a clean line of sight (clean-LOS) or instead is obstructed by the presence
of trees (obstructed-LOS), and select accordingly the path loss model that better captures the
corresponding situation. Specifically:
(1) if VDi j = 0, this means that the link area associated to li j does not contain any tree trunk, and

therefore li j enjoys a clean line of sight, as in the example of Figure 5a. The corresponding
signal attenuation is therefore better estimated by the free space path loss model:

PLfree[dB] = 20loд(d) + 20loд(f ) − 27.55 (4)

where d [m] is the distance and f [MHz] the central frequency.
(2) otherwise, if VDi j , 0, this means that trees are present in the link area, e.g., as shown in

Figure 5b. In this case, the behavior of link li j is better estimated by a “localized” version
of Eq. (2), where the average vegetation index VD for the target area is replaced by the
link-specific VDi j defined in Eq. (3).

According to these definitions, a link may be obstructed even if no tree is actually sitting on the
line connecting the two nodes, as in the case where tree t did not exist in Figure 5b. On the other
hand, the resulting processing is very simple, as it consists of checking whether the set of pixels
belonging to the link area intersects the set of pixels in which the positions of trunks are mapped.

8 EVOLUTIONARY OPTIMIZATION
As shown in Figure 2, the last component of our approach is the evolutionary optimization, which
combines the knowledge derived with the techniques in §6 and §7 with user-defined requirements
(§3) about the number and position of nodes, and outputs a (sub-)optimal placement satisfying
these requirements in the target forest area.
This best placement cannot be found simply by exhaustive search, which rapidly becomes

unfeasible as the number of nodes and/or size of the target area increase. Therefore, we exploit
genetic algorithms, a well-known class of numerical optimization procedures inspired by biological
evolution that proved effective in optimization problems similar to ours [8, 22, 30, 31, 34, 37].

This class of approaches examines a search space by manipulating and evaluating a set of possible
solutions, i.e., a population of individuals. In our case, an individual is a candidate placement
configuration, represented by simply concatenating all node positions; we describe how the latter
are determined and in general how the forest area is modeled in §8.1. An individual represents a
viable solution only if it satisfies the constraints representing the problem at hand; §8.2 provides
a formalization of the constraints for our problem, which descend from the spatial and network
requirements outlined in §3. Further, an individual is associated with a fitness value, a measure of
the quality of the individual (and therefore the placement solution it represents) determined by an
application-specific function; we describe the one we use in §8.3.
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Fig. 6. Evolutionary optimization of placement via genetic algorithms.

The initial population is created by randomly generating a predefined number of individuals,
30 in our current implementation. New populations are created by applying genetic operators to
selected individuals, identified by a parent selection procedure. The operators are crossover, which
recombines individuals, and mutation, which introduces random variations on individuals based
on a predefined probabilistic criterion. Populations evolve iteratively through so-called generations;
after each iteration, the fitness of each individual is recomputed and becomes the basis for parent
selection in the next generation. Eventually, the process converges to a (sub-)optimal solution
compliant with the constraints; a global optimum is not guaranteed, but the effect of local optima
is mitigated thanks to the random component in the parent selection and application of genetic
operators, as described in §8.4.

Figure 6 illustrates our evolutionary optimization based on genetic algorithms.

8.1 System model
The problem is defined starting from the deployment reference scenario (§3.1) and two initial
variables: i) the node set N = {n1, · · · ,nN }, with cardinality N = |N|, and ii) a target forest area A,
for which LiDAR data are available.
By processing raw LiDAR data (§6), we first estimate position and diameter of tree trunks and

then represent A by a 2D tree map with size h ×w . A sample forest area A and the corresponding
tree map are shown in Figure 7a and 7b, respectively. A uniform quantization is applied to A, based
on cells defined by the resolution of the tree map (i.e., 50 × 50 cm2). The size of cells represents the
spatial granularity we adopt in the analysis, with one quantization cell approximating one possible
position where a node can be placed, if constraints are fulfilled.
Then, we consider N target spatial tiles, i.e., areas where one and only one node can be placed.

The size of the tile depends on the reference scenario and on the application requirements (§3.1):
• regular: the target area is divided into N equal-size square tiles. Their size is application-
dependent and chosen to cover the whole target area with N nodes. Figure 7c shows an
example of 9 tiles covering a sample target area, along with trunk positions derived from the
tree map.

• irregular: the N tiles are sub-areas of A arbitrarily shaped and sized according to the
application requirements. An example is reported in Figure 7d.

The design variables are the positions of each network node in the target area. The set of these
positions describes the overall node placement, encoded in a 2D scalar vector

P = {(x1,y1), (x2,y2), · · · , (xi ,yi ), · · · , (xN ,yN )}

where the position of a node ni is defined by its scalar coordinates (xi ,yi ) in the target area.
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Fig. 7. Division of a sample forest area into 9 spatial tiles: equal-size for regular and arbitrary for irregular.

A placement P implicitly identifies also a set of links L(P). A network link li j ∈ L(P) connects
node ni in position (xi ,yi ) with nj in (x j ,yj ), i , j . L(P) represents all links connecting the nodes in
P, and therefore |L(P)| = N (N−1)

2 . In practice, however, only a subset of these links are interesting
towards our problem, i.e., those whose nodes are in communication range. We denote with Prx(li j )
the expected received signal power for link li j , computed based on the link approach (§7) as a
function of the distance between ni and nj , the presence of trunks on the link line-of-sight, and
the transmission power. Since in our radio attenuation model Prx(li j ) = Prx(lji ), hereafter we do
not distinguish between li j and lji ; they represent the same link. Prx is at the core at one of the
constraints of our placement problem, as described next.

8.2 Constraints
Along the lines of §3, we define separately the spatial and network constraints characterizing the
placement problem. Unless otherwise noted, the constraints hold ∀i, j,k ∈ {1, · · · ,N }. Interestingly,
these constraints are fundamental not only to capture application and system requirements, but
also to narrow the search space and consequently reduce the computational overhead.
Spatial constraints. We impose the presence of exactly one node in each target spatial tile:

A1 : (xi ,yi ) ∈ tilei (5)

regardless of the shape of the tile (i.e., a square for regular, an arbitrary shape for irregular).
Apart from this fundamental constraint, others can be defined that further control the placement.

For instance, we introduce the following constraints for regular:

A21 : dist((xi ,yi ), tilei) ≥ δt ile (6)
A22 : dist((xi ,yi ), (x j ,yj )) ≥ δl ink (7)

where dist returns the Euclidean distance2, and δt ile and δl ink are threshold values. Essentially,
these constraints aim at preserving some degree of uniform coverage: A21 avoids node positions too
close to the tile boundary, and A22 imposes a minimum distance between nodes.

Similar constraints can be defined for the irregular scenario, as shown in Figure 7d. However,
their precise definition is not particularly interesting, and therefore omitted. In general, alternative
and application-dependent constraints are possible. These can be concerned with sensing coverage
(opposed to the communication coverage, the focus of this paper), based on information about the
specific characteristics of the sensor like its directionality, as in the case of PIR sensors or cameras.
Alternately, they can exploit specifics of the deployment at hand. For example, in the context of a
forest fire detection application it may be desirable to place temperature sensors where trees are
2For simplicity we assume that dist can return also the (minimum) distance of (xi , yi ) from any of the sides of tilei .
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dense and instead measure wind speed in clearings. These constraints can be easily formulated
based on the tree map, and automatically accounted for in the companion tool.
Network constraints.We formalize the requirements in §3.2 with the following constraints:

C1 : Prx(li j ) ≥ Pmin (8)
C2 : |Lk | ≥ Lmin , Lk = {li j ∈ Lacc(P) | i = k}} (9)

C1 sets the minimum expected received power Pmin that defines when a link yields acceptable
communication quality; we investigate the appropriate value of Pmin in §10.1. C2 defines the
minimum number Lmin of well-connected neighbors required for each node.
The definition of the latter constraint relies on the set of acceptable links, which in principle

contains all links satisfying C1, Lacc(P) = {li j ∈ L(P) | C1}. In practice, however, an additional
constraint is needed to set the minimum distance δtrunk of a node from a trunk, along the link
line-of-sight:

C3 : dist((xi ,yi ), (xt ,yt )) ≥ δtrunk ∧ dist((x j ,yj ), (xt ,yt )) ≥ δtrunk , ∀(xt ,yt ) ∈ trees(li j )

where trees(li j ) returns the position of all tree trunks that intersect link li j . The set of acceptable
links is accordingly defined as

Lacc(P) = {li j ∈ L(P) | C1 ∧C3}

The additional constraint C3 is necessary to exclude from the candidate placement situations
where tree trunks are on the link line-of-sight and very close to one of the communicating nodes.
In these extreme cases, communication quality is significantly degraded; further, this significant
degradation is also less accurately captured by the propagation model. We further elaborate on
these topics and provide a value for δtrunk in §10.2.
Note how C3 holds regardless of the node spatial placement, i.e., free vs. trunk, as it is a

condition on the link and not on the node. Specifically, recall from §3.1 that in a trunk scenario
nodes are latched on trees, and their distance from the trunk is therefore 0 m. As a consequence,
given a node, all links “behind” the trunk it is attached to violate C3 and are discarded, while all
links “in front” are candidates for further evaluation.

8.3 Fitness Function
We now illustrate the definition of the fitness function F (P) that is the basis for evaluating and
comparing the candidate placement solutions fulfilling the constraints.

We define F (P) based on two components, which descend from the requirements and goals in §3.
The first one is the total number of acceptable links in the network

Lacc = |Lacc(P)| (10)

while the second component is the average expected received power across all acceptable links

P rx =
∑

li j ∈Lacc(P)

Prx(li j )

|Lacc(P)|
(11)

Maximizing the first value increases the chances to build a network that is connected as well as
robust, while maximizing the second increases the overall communication quality. As we show in
our evaluation (§11.2), their joint optimization yields significantly better placements w.r.t. using
either component alone. Therefore, we take both components into account in the fitness function:

F (P) = Lacc + λP rx (12)
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Both terms are normalized between 0 and 1, based on the minimum and maximum values
attainable. A tuning parameter λ determines which term is predominant and how strongly. A
preliminary analysis showed that the best performance is achieved when λ = 1, yielding a range
[0, 2] of variation for the fitness value.

8.4 Parent Selection and Genetic Operators
An individual (P, F (P)) is represented by the combination of a candidate placement P and the
corresponding value of the fitness function, F (P). New populations are generated by iteratively
applying a parent selection procedure and a genetic operator, and recomputing the fitness value.

The parent selection procedure selects parent individuals for reproduction, to generate offsprings.
We apply the binary tournament selection [57] approach, where two individuals are selected at ran-
dom and their fitness compared; the individual with better fitness is selected as parent. Tournament
selection is executed until a pool of parents of predefined size (e.g., half the population) is selected.
The genetic operator performs crossover and mutation [57] on the pool of selected parents to

produce offsprings, specifically:
• one-point crossover randomly selects two different parents, randomly selects a crossover point
(i.e., an index in the vector P of positions associated to an individual), and swaps the node
positions beyond this point between the two parents.

• uniform mutation applies the following mutation to a single parent chosen at random: each
node position in its P is replaced, with probability 1

N , with another position in the same
spatial tile, uniformly chosen at random among acceptable ones.

We execute them with probability 0.9 and 0.1, respectively; these values favor the exploration of
the possible combinations of node positions currently considered as parents before introducing
new random ones. The offsprings are then checked against constraints; individuals that do not
comply with the constraints are discarded, while the fitness value is recomputed for the others.
The latter compliant offsprings are merged with their parents into an intermediate population, from
which a number (equal to the population size) of individuals with the best fitness is selected, and a
new generation is created. Elitism is included, i.e., the current best individual of each generation
always survives into the next one.

9 VALIDATION OF THE RADIO SIGNAL ATTENUATION MODEL
The LiDAR-based radio attenuation model presented in §7 is validated on real connectivity traces
collected in the field. The validation is based on the comparison between the model predictions and
real RSSI measurements collected in two small scale WSN deployments, under these experimental
conditions: i) absence of snow or rain ii) low temperature and humidity iii) absence of leaves in the
understory vegetation iv) almost flat terrain morphology. These conditions implicitly define the
assumptions underpinning the evaluation shown here and in §11.

In the following, we describe the forest location used for our study and the setup for RSSI traces
collection. We then compare the measurements against the predictions and discuss the results.

9.1 Experimental Setting

Location. The deployment area we are targeting is a typical alpine forest site in Val di Sella
(Trentino, Italy), 1000 m above sea level. It is a single-layer forest area (i.e., one single layer of
canopy is present) composed of trees belonging to two main species: European beech (Fagus
sylvatica) and Norway spruce (Picea Abies). As this area is a site of interest for the local forest
service, we exploit the availability of high-density LiDAR data (≥5 points/m2) acquired by an
Optech ALTM 3100EA sensor mounted on an airborne platform [17].
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A WSN composed of 9 nodes is deployed in two different land plots in the target forest, as
shown in Figure 8a. The internal plot is in the middle of the forest, centered at 46◦ 0′ 53.64′′N,
11◦ 22′ 2.51′′ E. The edge plot is at the fringe of the forest, close to a clearing, with center at
46◦ 0′ 47.45′′N, 11◦ 25′ 52.16′′ E. Each land plot covers ∼1700 m2.

(a) (b)

Fig. 8. Experimental setting: (a) location and network

topologies and (b) node setup.

Hardware and software. The hardware plat-
form we use is the popular TMote Sky, oper-
ating in the ISM 2.4 GHz frequency band ac-
cording to the IEEE 802.15.4 standards. The ra-
dio module is a ChipCon 2420, which includes
a digital Direct Sequence Spread Spectrum
(DSSS) baseband modem coupled with a dig-
ital offset-QPSK modulator, providing an ef-
fective data rate of 250 kbps. We use the in-
tegrated inverted-F microstrip antenna, which
is pseudo-omnidirectional with gain of 3.1 dBi.
The software platform supporting the in-field
data collection is TRIDENT [29], a tool devel-
oped in our group for the untethered execution of communication experiments and collection of
connectivity traces. The tool automatically produces the TinyOS code to be installed on the motes,
based on the experiment configuration input by the user.
Setup. The same 9-nodes WSN was deployed in a 3 × 3 grid topology first in the internal plot
and then in the edge plot, as shown in Figure 8a. Nodes were placed into waterproof boxes with
the same vertical mounting (i.e., antenna orientation), as shown in Figure 8b. Boxes were then
latched to tree trunks at 1.7 m from the ground. To probe the communication link the network
nodes broadcast messages in a round-robin fashion: each network node broadcasts in turn one
message every 9 s while the other nodes are listening to the radio channel, i.e., one message is sent
every second by a different node. When all of the network nodes have sent 200 messages (i.e., after
∼30’) one experimental round is completed and a new round is started with a different transmission
power. More precisely, we alternate transmission power −1 dBm and −8 dBm, which we refer to
as high power and low power, respectively. We use channel 18, i.e., 2.44 GHz with a bandwidth of
3 MHz. Every received message is recorded together with the corresponding RSSI value. The noise
floor level is also sampled and recorded. The measurement campaign was performed in November
2013. The weather was sunny, with temperature and humidity ranges of 2.5 − 4℃ and 25 − 45%,
respectively. Overall, we ran 8 experimental rounds and collected 41,794 RSSI samples.
The RSSI values in our traces are the sum of the received radio signal power and the noise

power. Therefore, we can convert those values to a received power indicator, comparable with
the predictions of the models, and compute the corresponding Prx by subtracting, in Watt scale,
the noise floor level from RSSI . This step also makes our analysis independent from hardware
differences between nodes w.r.t. noise.
Automatic acquisition of forest parameters. The LiDAR data for the internal and edge forest
areas are processed (§6) to obtain the vegetation attributes TD, D and VD characterizing them; the
resulting values are reported in Table 1.

Table 1. Vegetation parameters in our sites.

site D [cm] TD [trees/m2] VD
internal 24.2 0.0355 0.8598
edge 25.2 0.0372 0.9366

We quantitatively evaluate the accuracy of the tree
map and of the extracted tree attributes by exploiting
the availability of a set of measurements gathered
in our internal study site by the local forest service,
which performed forest inventory by surveying trees
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in sample locations. One of these surveys targets a circular land plot with a 20 m radius, enclosed
in our internal site. The forest service mapped 35 trees in this plot, noting their species along with
height and trunk diameter at breast height. In comparison, in the same circular plot our processing
chain detected 37 trees, of which 32 correspond to an actual one; 91% of trees are therefore correctly
detected. More precisely, we obtained 5 wrong detections (or false positives, i.e., tree tops that do
not correspond to real trunks) and 3 missed detections (or false negatives, i.e., real tree tops/trunks
we did not detect). For the same set of trees, the multi-regression we applied for the estimation of
trunk diameters (§6) gives a coefficient of determination R2 = 0.7 and a Root Mean Squared Error
RMSE = 2.75 cm w.r.t. ground truth values.

These errors generate a difference between the estimated and ground truth values of TD, D and
VD of 0.0016 trees/m2, 0.45 cm, and 0.02, respectively. This affects the estimated received signal
power with an error that, at the link distances up to 60 m we consider, is <0.05 dBm. This error
is well below the RSSI reading accuracy of the radio chip, and therefore can be safely considered
negligible. We conclude that our LiDAR toolchain allows us to estimate the relevant vegetation
parameters with adequate accuracy.

9.2 Results

areamodel. These forest parameters are used to apply the areamodel and estimate the expected
received signal power as a function of link distance, as described in §7.

We quantitatively evaluate the accuracy of the area model by comparing its estimated (average)
received power P rx for the reference distances of our links against data from our in-field traces, by
considering separately the low-power and high-power traces as well as the internal and edge sites.
Figure 9 shows the curve generated by the area model, along with the average RSSI measured on
links of the same distance in the internal and edge forest areas. We show only the low-power case,
as results are similar in the high-power one. The chart confirms that area is a good approximation
for the real traces. For instance, the average estimation error for the internal site at low power is
4.06 [dBm] with a standard deviation of 3.31 (min. 0.25, max. 12.1). A complete account of estimation
errors for both sites and power settings is shown in Table 2.

As a term of comparison, Figure 9 shows also the results from other empirical models often used
to estimate the attenuation due to vegetation, i.e., the COST 235 model [47] in its in-leaf (IL) and
out-of-leaf (OL) variants, and the Weissberger model [67]. The comparison shows that these models
provide significantly worse estimates; this is not surprising, as they are essentially “one-size-fits-all”
models assuming homogeneous vegetation, while area is based on the actual forest structure in
our sites, derived automatically by the LaPS toolchain. Moreover, the chart shows that these models
underestimate the actual received power; therefore, if used to guide a WSN deployment, they would
likely lead to significant overprovisioning and therefore unnecessary costs.
linkmodel. The reasonable accuracy of area, obtained by an aggregate characterization of the
forest area, can be further improved by the per-link characterization offered by the link model,
and its ability to consequently distinguish between clean and obstructed line-of-sight.

Figure 10 reports the Prx measured on the clean-LOS (triangles) and obstructed-LOS links (dots)
identified by exploiting the tree map (§7). The received power estimated with the free space path
loss model is also depicted, confirming that it better represents the behavior of clean-LOS links,
for which the overall average error is reduced from 6.22 dBm to 1.86 dBm at low power, and from
14.21 dBm to 2.71 dBm at high power. Table 2 offers the complete error statistics across models,
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deployment sites, power settings, and line-of-sight situation. By automatically identifying clean-
LOS and obstructed-LOS links and applying our diversified strategy accordingly, we significantly
and systematically reduce the estimation error for all locations and power settings considered.

Figure 11 provides further evidence by comparing the Prx measured from traces against the one
estimated by area and link. The diagonal of the charts is the perfect estimate with zero error; the
dashed lines on its sides mark the ±6 dBm error bands, where this value is the accuracy of the RSSI
readings provided by the CC2420 radio chip we use. These charts confirm that link predictions are
more accurate than area predictions, for both types of sites and of line-of-sight scenarios.

Figure 11a shows that area consistently underestimates the received power for clean-LOS points,
as these are incorrectly penalized by the aggregate vegetation index VD; as a consequence of its
removal in link, the same points are effectively “shifted” closer to the diagonal, all within the
±6 dBm error band. As for the obstructed-LOS, area instead overestimates the effect of vegetation,

Table 2. Experimental results.

avg error std dev min max % in ±6 dBm % in ±1 dBm

site area link area link area link area link area link area link

l
o
w

p
o
w
e
r

internal 4.06 2.52 3.31 1.99 0.25 0.03 12.10 7.20 76.64 96.67 20.00 33.33
clean-LOS 6.48 1.97 2.18 2.08 4.21 0.03 9.40 4.94 50.00 100.00 0.00 50.00

obstructed-LOS 3.18 2.72 3.25 1.97 0.25 0.14 12.1 7.20 86.36 95.54 27.27 27.27
edge 5.57 3.11 3.32 3.02 0.39 0.40 15.04 12.50 56.67 86.67 6.67 26.67

clean-LOS 6.07 1.80 1.91 1.48 3.55 0.39 8.77 4.27 57.14 100.00 0.00 35.71
obstructed-LOS 5.11 4.33 4.27 3.58 0.39 0.39 15.04 12.50 56.25 75.00 12.54 18.75

all 4.81 2.81 3.38 2.55 0.25 0.03 15.04 12.50 66.67 90.00 13.33 30.00
clean-LOS 6.22 1.86 1.97 1.68 3.55 0.03 9.40 4.94 54.55 100.00 0.00 40.91

obstructed-LOS 3.29 3.37 3.76 2.81 0.25 0.14 15.04 12.50 73.68 86.84 21.05 23.68

h
i
g
h
p
o
w
e
r

internal 8.20 2.73 4.72 1.69 0.77 0.26 17.58 5.49 36.67 100.00 6.67 13.33
clean-LOS 14.49 2.94 2.08 2.06 12.33 0.83 17.58 5.49 0.00 100.00 0.00 12.50

obstructed-LOS 5.91 2.65 2.97 1.58 0.77 0.26 10.19 5.39 50.00 100.00 9.09 13.64
edge 10.18 4.15 4.89 4.97 0.73 0.43 17.11 14.12 30.00 83.33 3.33 23.33

clean-LOS 14.06 2.57 1.94 1.66 11.00 0.43 17.11 5.23 0.00 100.00 0.00 28.57
obstructed-LOS 6.79 5.53 4.08 6.40 0.73 0.42 14.60 14.12 56.25 68.75 6.25 18.75

all 9.19 3.44 4.87 3.75 0.73 0.26 17.58 14.12 33.33 91.67 5.00 18.33
clean-LOS 14.21 2.71 1.96 1.77 11.00 0.43 17.58 5.49 0.00 100.00 0.00 22.73

obstructed-LOS 6.28 3.86 3.46 4.48 0.73 0.26 14.60 14.12 52.63 86.84 7.90 15.79
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(a) Line of sight: Clean vs. obstructed.
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(b) Deployment site: Internal vs. edge.

Fig. 11. Prediction accuracy of area and link w.r.t. a ±6 dBm error band.

while link generally provides better estimates. The superior accuracy of link is confirmed also
across the two deployment sites, as shown in Figure 11b. This is confirmed also by the coefficient
of determination R2 ∈ [0, 1], quantitatively determining how well the estimates represent the
measurements, whose value increases from 0.16 for area to 0.64 for link. As a consequence, the
fraction of estimates within a ±1 dBm error significantly increases in link (Table 2).

It is interesting to observe that the highest errors (≥6 dBm) in link estimates occur in situations
where trunks are very close to the nodes; in these cases, link tends to overestimate Prx . This aspect
is analyzed in more detail in §10.2, via additional experiments in the field.

10 CONFIGURING SPATIAL AND NETWORK CONSTRAINTS
The node placement approach in §5 is based on constraints modeling spatial and system require-
ments, which are in turn based on configuration parameters whose values we discuss here.
We devote particular attention to constraints C1 and C3 in §10.1 and §10.2, as determining

their thresholds Pmin and δtrunk strictly depends on experimental evidence. We offer quantitative
considerations based on our own experimental setup that, due to the characteristics of the hardware
and environment, is likely to cover a broad spectrum of applications. On the other hand, the
methodology we describe can be used to replicate ad hoc examples for different hardware and/or
forest environments, enabling one to easily determine the appropriate values for Pmin and δtrunk .
Finally, in §10.3 we discuss the other parameters that instead depend on generic network and

spatial requirements. The values chosen, used in the evaluation (§11), are meant solely to exemplify
the flexibility and usefulness of our tool. Table 3 provides a summary of these values in the context
of the constraints in which they are used.

10.1 Determining the Minimum Expected Received Power
Constraint C1 relies on a threshold Pmin meant to filter out communication links likely to be too
unreliable. In ideal conditions, the value of Pmin is simply the receiver sensitivity threshold. For

Table 3. Configuring application and network constraints.

constraint parameter value definition
A21 δt ile 10 m minimum distance of a node from the tile boundary
A22 δl ink 25 m minimum link length
C1 Pmin −85 dBm minimum expected received power at a node
C2 Lmin 3 minimum number of acceptable links per node
C3 δtrunk 5 m minimum trunk-node distance
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example, the CC2420 datasheet specifies a value of −94 dBm; indeed, this was the minimum power
level measured for received packets in the experimental campaign described in §10.2.
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Fig. 12. PRR vs average received power.

However, outdoor environments are far from ideal, due to
several environmental factors (e.g., temperature and humidity
or multipath effects) that affect the radio signal; using the
value above is known to lead to unreliable results, as shown
by several empirical studies (e.g., [7, 46, 63, 70]). Small signal
variations can cause abrupt changes in the ability to receive
packets, rendering links unstable. The metric commonly used
in these studies is Packet Receipt Ratio (PRR), computed as the
number of packets received on a link over the number of those
sent. It has been shown [70] that when the reception power
is close to the receiver sensitivity threshold, links belong to
a transitional region with highly variable PRR; instead, when
the reception power is well above threshold, links belong to a connected region where they exhibit
high PRR. Hereafter, we aim at ensuring the highest communication quality, therefore retaining
only links that belong to the connected region. Other, less conservative choices are easily supported
by setting a different value for the threshold Pmin .

The relation between PRR and received power (RSSI ) is analyzed in several experimental observa-
tions in the literature. In [32], for instance, a good PRR is observed for an average RSSI > −87 dBm.
The measurements we reported in §10.2 confirm these findings. Figure 12 shows the PRR as a
function of the average received power, computed every 100 packets sent. The charts shows no
packet loss for RSSI ≥ −85 dBm; we therefore select Pmin = −85 dBm as the threshold for C1.

10.2 Determining the Minimum Trunk-Node Distance
Constraint C3 specifies the minimum distance δtrunk between the nodes composing a link and the
trees on the link line-of-sight. Indeed, when nodes are too close to a tree, the attenuation induced
by the latter increases abruptly; further, this increase is not captured accurately by the model in §7.

node

5m 5m

5m5m5m

30m 30m

60m

60m

60m

. . .

. . .

. . .

trunk

Fig. 13. Determining the minimum trunk-node dis-

tance δtrunk : experimental setup.

To determine the threshold value δtrunk be-
yond which these phenomena occur, we run ded-
icated in-field experiments in Monte Bondone,
near Trento, using TMote Sky motes as in the
validation of the LiDAR-based radio attenuation
model (§9). The experimental setup is described
in Figure 13. We select an isolated trunk and
place two nodes at different distances on its op-
posite sides; the trunk is therefore on the line
of sight of the communication link between the
nodes. We consider a maximum link length of
60 m, and explore different positions of the trunk
inside the link by varying i) the distance of the
tree from one of the nodes, and ii) the link length,
i.e., the distance between the two nodes. More precisely, the trunk “moves” w.r.t. one of the nodes
in 5 m increments, from 0 to 30 m; at the latter distance, the trunk is in the center of the link. The
link length varies from 5 to 60 m; this is achieved in 5 m increments, except for lengths >40 m, for
which the increment is 10 m. For each configuration of trunk distance and link length, 100 packets
are sent by each node by alternating its packet transmissions (TX) at 1 pkt/s with the other node;
overall, one packet is sent on the link every 500 ms. We repeated this process with two TX powers,
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(a) Trunk diameter: 20 cm.
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(b) Trunk diameter: 40 cm.

Fig. 14. Average and standard deviation of the error ϵ between the link attenuation model in §7 and our

measurements when a tree trunk is near to one of the communicating nodes.

−1 and −8 dBm, obtaining similar results; here, we report only those with the higher TX power.
Moreover, we repeated experiments with two isolated trees of different diameter, 20 and 40 cm.
Overall, we collected ∼29600 data points.
We report the average and standard deviation of the error ϵ between our measurements and

the estimates of the link model in §7, as a function of the distance d between the trunk and the
communicating node; further, we separate the cases in which the latter node (which can be on
either side of the tree) is transmitting or receiving. ϵ is computed for a given distance d on all the
link lengths involved; e.g., the value ϵ computed for d = 5m in TX mode is the average of the values
for all links in which either node is transmitting at 5 m from the trunk. However, each individual
model estimate depends on the link length; therefore, we compare each link measurement against
its corresponding distance-dependent estimate, and obtain the error averaged across all link lengths.
The specific diameter at hand is similarly accounted by the model for individual estimates.

Figure 14 shows the results. We observe that the communicating status of a node does not affect
significantly the estimation error: whether the trunk is at distance d from a transmitter or a receiver,
the effect is approximately the same. On the other hand, the trunk diameter affects the relationship
between estimation error ϵ and distance d ; however, the error ϵ is overall in line with the results
we obtained in §9, except when d < 5 m. In this case, our model significantly overestimates the
received power by failing to account for the severe attenuation induced by the trunk, regardless of
its diameter. The experiments with trunk diameter 40 cm show that this strong attenuation holds
not only when the trunk is immediately in front of the communicating node (d = 0 m) but also
at distance 1 and 2 m; unfortunately, we were not able to gather additional measurements due to
logistical reasons.

Based on these considerations, hereafter we conservatively set δtrunk = 5 m in constraint C3.

10.3 Other Parameters
The other parameters in Table 3 are set as follows. The minimum number Lmin of acceptable links
for a given node (C2) is key to build a robust network, as it bears a direct impact on the connectivity
of the network graph, analyzed quantitatively in §11. We set Lmin = 3, based on the consideration
that lower values may easily lead to the creation of several “branches” off the graph. However,
in §11.4 we also show that relaxing this constraint may be useful to cope with scale.

As for spatial constraints, we set in A21 the minimum distance of a node from the tile border to
δt ile = 10 m, and in A22 the minimum link length to δl ink = 25 m. These values, respectively 1

5 and
1
2 of the tile side, are generally reasonable based on our direct experience in real-world deployments.
However, here they are mostly meant to be illustrative, as they clearly depend on the application at
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hand. Further, as discussed in §8.2, we show the constraint definition only for the case of a regular
placement; irregular ones can be similarly defined.

11 EVALUATING THE QUALITY OF NODE PLACEMENT
We now evaluate the performance of our toolchain, configured as described in §10. We consider
spatial constraints stemming from the uniformity of the deployment (regular vs. irregular)
and the mechanics of node positioning (free vs. trunk), as described in §3. We exploit the same
LiDAR dataset acquired for the forest location described in §9, in which we consider the entire
150 × 150 m2 area shown in Figure 8a, with center at N 46◦ 0′ 48.546′′, E 11◦ 25′ 52.122′′.

We define the performance metrics and comparison baselines in §11.1, followed in §11.2 by a
quantitative analysis of the fitness function F (P) confirming that the linear combination of P rx and
Lacc indeed yields better results w.r.t. the independent use of these components. We then evaluate
the performance of our approach in a 9-node deployment inside the aforementioned area (§11.3),
followed by a 36-node deployment that allows us to investigate the effect of scaling up the network
(§11.4). Finally, we offer a summary of results and a discussion of the main benefits of LaPS (§11.5).

11.1 Performance Metrics and Comparison Baselines

Performance metrics. We analyze quantitatively the networks output by our placement tool
based on the same core metrics of our optimization approach (§3.3), i.e., the total number Lacc of
acceptable links and the average expected received power P rx across them.

Moreover, we also evaluate the robustness of these network from a topological standpoint i) based
on well-known connectivity and centrality metrics from graph theory, and ii) in terms of average
number of paths to the sink. The latter is a relevant metric in, e.g., data collection applications
based on a tree overlay, as it quantifies the options available to a routing protocol in building (and
reconfiguring) routes from each source to the sink.

Connectivity is defined as the minimum number of elements (i.e., nodes or links) that, if removed,
disconnect the remaining nodes from each other; the higher the connectivity, the more robust
the network. We measure this variable by reporting the average number |Lk | of neighbors with
acceptable quality, and computing [18]: i) the binary connectivity (or connectedness) k . Its value is 1
if at least one path exists between all pairs of nodes, 0 otherwise. ii) the vertex connectivity kv and
edge connectivity ke . They denote, respectively, the minimum number of vertexes and edges that, if
removed, disconnect the graph.

An alternative view on robustness is offered by the notion of betweenness centrality, defined as

bx =
N∑
i=1

N∑
j=i+1

si j (x)

si j

where si j (x) is the number of shortest paths between i and j passing through x and si j is the total
number of shortest paths between i and j [21]. We use the value normalized between 0 and 1,
obtained by dividing bx by the total number (N−1)(N−2)

2 of node pairs (x excluded). Betweenness
centrality quantifies the extent to which each node lies on the shortest paths between other nodes,
and therefore expresses the disruption induced by the removal of such node on the communications
among other nodes. We report directly this metric and also exploit it in a force-based representation
of the network layout which visually conveys information about the fragility of the network.
Comparison baselines. As mentioned in §2, existing placement approaches for WSNs largely
neglect the impact of the environment on communication, let apart taking into account the presence
of trees. Therefore, we compare the solutions found by our approach against two closely-related
baselines: i) a blind regular placement where nodes are organized in an exact grid without taking
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Fig. 15. Evolution of the genetic search for P rx , Lacc , and their linear combination. Curves show the perfor-

mance metric associated to the best individual in the corresponding generation.

into account the forest characteristics, and ii) a line-of-sight placement in which no link is obstructed
by tree trunks, and therefore the standard path loss model can be applied (§7).

The blind regular placement is a common choice in the literature [8, 9, 22, 69] as it is intuitive and,
in principle, of straightforward application in real deployments. Comparing against this placement
strategy allows us to assess whether detailed knowledge of the tree positions is at all useful.

In contrast, the line-of-sight placement exploits precisely this information, derived from LiDAR
data via our toolchain, towards a different goal. Indeed, this variant uses alternate constraints
w.r.t. those in §8.2, aimed at selecting only those network topologies whose links are unobstructed
by trees; in this situation, the specialized radio attenuation model in §7 becomes superfluous, and
the standard path loss model can be used instead. Therefore, comparing against this line-of-sight
placement allows us to assess whether a specialized radio model is truly necessary. Interestingly,
however, even in the case of a negative answer the proposed toolchain still constitutes a novel
asset, enabling the selection of the topologies, if any, whose links enjoy a free line of sight.

11.2 A Closer Look at the Fitness Function
We begin our evaluation by providing quantitative evidence that our definition of the fitness
function F (P) as a linear combination of P rx and Lacc yields better performance than using either
component alone. To better elicit trends, we refer to the scenario regular free and neglect the
spatial constraints A21 and A22. Figure 15 and 16 show the evolution of the genetic search and the
resulting network layouts when F (P) is P rx , Lacc , or their linear combination in Eq. 12.

By optimizing only the average reception power we obtain, as expected, a placement with very
high overall communication quality (P rx = −71.95 dBm) in only 121 generations; Figure 15a shows
the evolution of the genetic search. However, the price to pay is that the total number of acceptable
links is only3 Lacc = 16. Figure 15b shows the evolution of Lacc during the search; we observe
that this value actually decreases as better configurations optimizing P rx are found. Moreover,
the resulting network layout in Figure 16a shows two node clusters connected by only one link;
constraint C2 on the minimum number of neighbors is satisfied, although by means of a fragile
topology prone to partitioning. On the other hand, by optimizing only the number of acceptable
links, we more than double their number (Lacc =36, Figure 15b) after only 84 generations, and

3Remember from §8.1 that links li j and lji are not distinguished, and counted as one.
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50 m

(a) (b) (c)

Fig. 16. Network layouts obtained by optimizing (a) P rx (b) Lacc (c) their linear combination (λ = 1). Black
dots are trunk positions, red squares are node positions, black lines are acceptable links.

Table 4. Core metrics for all scenario combinations and baselines: 9 nodes.

F (P) Lacc P rx |Lk | k kv ke
LaPS

regular free 1.39 34 -77.58 7.55 1 6 6
trunk 1.34 34 -78.32 7.55 1 6 6

irregular free 1.36 34 -78.05 7.55 1 6 6
trunk 1.31 34 -78.79 7.55 1 6 6

blind regular

regular free — 17 -78.37 3.77 1 2 2
trunk — 11 -79.62 2.44 0 0 0

line-of-sight

regular free 1.29 32 -77.67 7.11 1 6 6
trunk 1.15 28 -76.91 6.22 1 5 5

irregular free 1.29 31 -76.98 6.88 1 5 5
trunk 1.11 28 -77.57 6.22 1 5 5

remove the clustering effect from the resulting network topology (Figure 16b). However, this time
the price to pay is a significant decrease in the overall link quality (P rx = −76.88 dBm, Figure 15a).

The definition of F (P) in Eq. 12, which combines P rx and Lacc with equal weight, strikes a good
balance between the two extremes above. Figure 15c reports the value of F (P) ∈ [0, 2] (§8.3),
monotonically increasing as generations elapse, while Figure 15a and 15b show separately the
evolution of its two components. The best solution is found after 136 generations, yielding Lacc = 35
and P rx = −75.43 dBm; one link less w.r.t. optimizing only Lacc , but with slightly higher overall
power. Further, Figure 16c shows that the clustering effect observed when optimizing only P rx
is absent here, as when optimizing Lacc . However, in comparison with Figure 16b, we observe a
marked tendency to concentrate the nodes in the center of the target area and place them very
close to each other, as this increases the quality of the resulting links. Nevertheless, this undesirable
effect is mitigated precisely by the spatial constraints A21 and A22 we neglected here, but consider
in the following sections.
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Fig. 17. Evolution of the value of the fitness function and of its components in all scenario combinations.
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Fig. 18. Network layouts obtained with free node placement.

11.3 Analyzing and Comparing Node Placements
We now analyze the performance of our placement approach when applied to a 9-node network
similar to the one we used in §9, and compare it to the blind regular and line-of-sight baselines
defined in §11.1. We consider all scenario combinations of regular vs. irregular and free vs.
trunk placement, subject to all constraints in §3. For irregular, as shown in Figure 18b we defined
a mix of circular and squared regions examplifying spatial tiles required by the application, along
with a point F representing a geo-referenced position for which no spatial tolerance is allowed.

Core metrics. Table 4 shows the final outcome in terms of fitness value F (P), total number of
acceptable links Lacc , and average received power P rx on these links, while Figure 17 shows the
evolution of these values over generations. We observe that the evolution of these metrics is
comparable across the various scenarios. The fitness value (Figure 17a) is similar in all cases; the
highest value of F (P) = 1.39 is achieved in the case regular free, i.e., the least constrained scenario.
Similarly, the resulting topologies have the same number of links in the network (Lacc = 34) and, on
average, per node (|Lk | = 7.55). This is somewhat surprising considering that the constraints of the
four scenarios considered are quite different and, as shown in Figure 18a–18b and Figure 19a–19b,
yield network layouts of different shape. On the other hand, the different complexity of the four
scenarios is reflected to some extent in the average received power, which is higher in regular
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(a) LaPS regular
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(b) LaPS irregular (c) blind regular (d) line-of-sight

Fig. 19. Network layouts obtained with trunk node placement.
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Fig. 20. Evolution of the value of the fitness function and of its components: LaPS vs. line-of-sight in a

regular global placement with free and trunk node placement.

and free w.r.t. their irregular and trunk counterparts. Interestingly, the value of P rx remains
relatively stable across generations (Figure 17c), unlike the value of Lacc that increases rapidly
(Figure 17b); this is likely due to the constraint A22 on the minimum link length distance.

In comparison, the commonly-used and intuitive blind regular placement yields significantly
worse results. We obtain this placement by forcing each node exactly in the barycenter of each
tile when allowed by a free placement or, for a trunk placement, next to the tree closest to the
barycenter. However, the blind regular placement guarantees the fulfillment of C2 neither in free
nor in trunk; the value of F (P) cannot therefore be computed. This is shown also in the resulting
network layouts of Figure 18c and 19c; in the trunk case, one of the nodes is not even connected,
and other two are connected via a single link. Finally, the acceptable links are only one half and one
third of those obtained by LaPS in free and trunk, respectively, and with lower P rx in both cases.

In contrast, the performance of the line-of-sight placement is significantly better and approaches
that of LaPS. The average received power P rx is actually higher than LaPS (except for the regu-
lar free case), since the line-of-sight placement enjoys communication links unobstructed by trees.
On the other hand, the number of acceptable links is lower, both for the network as a whole and for
individual nodes; the resulting topologies are shown in Figure 18d and 19d. Finally, it is interesting
to compare the evolution of fitness for LaPS and line-of-sight (Figure 20). In the free case, the
values of F (P) are similar although line-of-sight has a slightly worse performance at convergence.
However, in the more restrictive trunk case, the search problem becomes more complex and the
genetic optimization is unable to find valid solutions for more than 300 generations.
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(a) LaPS free (b) blind regular free (c) LaPS trunk (d) blind regular trunk

Fig. 21. Betweenness centrality. The graphs layout emphasize readability and do not reflect the real topology.

Table 5. Number of paths to the sink for the different placement solutions and scenarios: overall number of

paths, overall number of paths with cost ≤ 3 hops and ≤ 2 hops.

sink #paths #paths
≤3 hops

#paths
≤2 hops sink #paths #paths

≤3 hops
#paths
≤2 hops

LaPS

regular free central 65890 350 60 upper left 82200 300 48
trunk central 52516 324 58 upper left 59105 307 53

irregular free central 74371 331 55 upper left 76705 321 51
trunk central 68108 348 60 upper left 69206 332 58

blind regular

regular free central 390 59 19 upper left 511 27 8
trunk central 19 12 8 upper left 23 9 4

line-of-sight

regular free central 42078 298 56 upper left 46536 280 50
trunk central 16320 204 44 upper left 18032 190 38

Connectivity metrics. From Figure 18 and 19 we can visually ascertain that the resulting network
topologies are “well connected”. We now quantitatively assess this aspect, which significantly
affects the robustness of the network, by exploiting the graph-based metrics outlined in §11.1,
whose values are shown in Table 4.

LaPS always yields connected networks (k = 1); to partition them, at least 6 nodes or links
(kv = ke = 6) must fail simultaneously. In contrast, the blind regular placement yields a very
vulnerable network in the free case, where the loss of only two nodes or links is sufficient to cause
a partition; further, the network is not connected in the trunk case, as already noted. The line-
of-sight placement yields networks that are only marginally less connected than those generated
by LaPS. In the regular free case the only difference is a slightly lower number of neighbors
(|Lk | = 7.11), while in the other scenarios only 5 failing nodes or links suffice to partition.

Figure 21 offers an alternative view based on the value of the normalized betweenness centrality.
We can observe that this value is similar for all nodes of the networks generated by LaPS, yielding
a very robust topology; on the contrary, the blind regular placement yields highly unbalanced
topologies in which a handful of nodes are critical, both in terms of reliability (e.g., causing a
partition upon crash) and performance (e.g., as potential routing bottlenecks). The corresponding
analysis for the line-of-sight placement yields values similar to LaPS, and is therefore omitted.
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Table 6. Core metrics for all scenario combinations and baselines: 36 nodes.

F (P) Lacc P rx |Lk | k kv ke
LaPS

regular free 0.56 161 -78.04 8.94 1 5 5
trunk 0.54 143 -77.49 7.94 1 4 4

LaPS, Lmin = 2
regular trunk 0.53 141 -77.48 7.83 1 4 4

line-of-sight

regular free — 79 -77.81 4.38 1 1 1
trunk — 68 -77.51 3.77 0 0 0

line-of-sight, Lmin = 2
regular trunk 0.35 104 -76.95 5.77 1 2 2

On the other hand, the performance of the two approaches diverges when the network scale is
increased, as discussed in §11.4.
Paths to the sink. We conclude our analysis by investigating the effectiveness of placement
solutions from a different point of view, closer to the routing layer, and explicitly compare the
number of paths to a sink node. Indeed, the more paths available the more options a protocol can
exploit to build and reconfigure the routing topology, increasing resilience to failures and link
dynamics. For each network layout hitherto examined we compute all possible (acyclic) paths from
each node to one identified as a sink. We study two sink positions yielding different path lengths:
in the center and in the upper left corner.
Table 5 reports the overall number of possible source-to-sink paths for all combinations of

placement modes and scenarios, along with the number of short paths (i.e., up to 2 and 3 hops)
particularly desirable for routing purposes. We observe how LaPS yields the highest number of
available paths to the sink in all scenarios, both in absolute and w.r.t. short paths. Interestingly, this
metric is not directly considered in the genetic evolution; therefore, its high quality is an indirect
result of our definition of the fitness function F (P).

The number of paths does not follow a clear trend across scenarios, as it strongly depends on the
specific constraints (e.g., in irregular) and the particular displacement of tree trunks. The only
clear trend is the expected increase in the number of paths when the sink is in the upper left corner.

On the other hand, the aforementioned weakness of the blind regular placement is evident, as it
yields two orders of magnitude fewer available paths than LaPS. The line-of-sight placement also
consistently generates fewer paths to the sink, as a consequence of its slightly lower connectivity.

11.4 Scaling the Network
We showed that, even in a small 9-node network, LaPS brings remarkable advantages w.r.t. the
commonly-used blind regular placement. This confirms that the knowledge and modeling of the
forest structure, acquired via LiDAR data and the LaPS toolchain, plays a key role. On the other
hand, the difference with a line-of-sight placement that leverages the same information to avoid
trees, rather than taking their attenuation into account with our specialized radio model (§7), was
less marked. We show next that the difference between these two placement approaches becomes
substantial as the size of the target network increases.
Settings.We consider 36 nodes deployed in 300 × 300 m2—a fourfold increase in both network size
and target area. To minimize the bias and enable a direct comparison with the results in §11.3 we
simulate the larger area by replicating and spatially recombining the 9 square tiles composing the
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Fig. 22. Evolution of the fitness function and of its components for 36 nodes in a 300×300 m2
forest area,

scenario regular.

(a) LaPS free (b) line-of-sight free (c) LaPS trunk (d) line-of-sight trunk

Fig. 23. Network layouts for 36 nodes in a 300×300 m2
forest area, scenario regular.

smaller target area previously used. The resulting target area (Figure 23) is therefore four times
larger than the previous one (Figure 18) but has, by design, the same tree density.
Hereafter, we focus only on the regular scenario but consider both free and trunk variants.

However, unlike §11.3, we do not report about the overall number of paths because, at this scale,
an exhaustive search of all possible paths from each node to the sink cannot be performed in
polynomial time (#P-complete problem).
free node placement. At the scale considered, the placement problem becomes significantly
more challenging, even in the less constrained free case. Indeed, the line-of-sight approach is
unable to find a solution in 1000 generations, as shown in Figure 22; the fitness value cannot be
computed, and the genetic search essentially becomes a random search, since no solution fulfilling
all constraints is found. This is a consequence of our strict formulation of the genetic search;
solutions unable to fulfill the constraints are discarded to avoid misguiding the evolution process.
In contrast, LaPS converges to a solution fulfilling all constraints, characterized by Lacc = 161

links and an average reception power of P rx = −78.04 dBm, as shown in Table 6. This demonstrates
that, as the scale of the network and/or target area increases, it may become impossible to find a
solution in which all links enjoy a free line of sight. LaPS removes this assumption and, thanks to
its specialized radio model, can take the tree attenuation into account to identify the best topology.
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Fig. 24. Betweenness centrality for 36 nodes in a 300×300 m2
forest area, scenario regular.

The latter is shown in Figure 23a, evidencing a balanced structure without clusters. For compari-
son, Figure 23b reports the network layout corresponding to the line-of-sight placement providing
the largest number of links, Lacc = 79. However, this topology fails to fulfill constraintC2 about the
minimum number of acceptable neighbors.
The connectivity metrics in Table 6 also show that the line-of-sight placement, although con-

nected, is quite fragile: a single node or link failure is enough to cause a partition. On the contrary,
LaPS yields a rather robust network where kv = ke = 5 simultaneous failures are required to
disconnect the network. This aspect can be better appreciated by comparing Figure 24a and 24b,
which visualizes the betweenness centrality using a force-based approach, as in Figure 21. The
line-of-sight topology is noticeably less uniform; not only three of the nodes are linked to others
via a single connection, but two of the “internal” nodes are significantly more central than others,
potentially becoming a traffic bottleneck or a point of failure.
trunk node placement. Next, we move to the trunk node placement mode, which makes the
problem even more challenging at this scale because the overall number of possible node positions
is significantly reduced w.r.t. the free case.

As shown in Figure 22, the line-of-sight approach is again unable to find acceptable solutions in
1000 generations. In contrast, LaPS begins finding solutions fulfilling all constraints at the 876th
generation, and yields a final, high-quality topology as shown in Table 6 and Figure 23c. Although
the average power P rx achieved is comparable to the line-of-sight case, the number of links in
the network (143 vs. 68) and per node (7.94 vs. 3.77) are significantly higher in LaPS. As a result,
the network is well-connected (kv = ke = 4), balanced, and uniform (Figure 24c), while in the
line-of-sight case two nodes are isolated and one “internal” node shows a very high betweenness
centrality score, leaving the network prone to further partitioning (Figure 24d).
Weakening the constraints. An open question remains as to whether a line-of-sight placement
could be achieved with weaker constraints, therefore accepting a compromise between the ability
to find a solution and its quality. If a solution can be found, then the related question is what would
be the performance of LaPS in the same weakened setting. We investigate these questions next.
In principle, any of the spatial and network constraints we defined in §10 could be relaxed: the

ability to quickly explore different tradeoffs is precisely one of the strengths of our approach. To
provide an example, we compare the solutions found by LaPS and the line-of-sight approach when
constraint C2 is weakened by reducing the minimum number of acceptable neighbors to Lmin = 2;
we focus on the more restrictive trunk node placement.
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(a) LaPS (b) line-of-sight

Fig. 25. Network layouts for 36 nodes in a 300 × 300
m
2
forest area, scenario regular trunk, Lmin = 2.

(a) LaPS (b) line-of-sight

Fig. 26. Betweenness centrality for 36 nodes in a 300×
300 m2

forest area, scenario regular trunk, Lmin = 2.

With this weakened constraint, the line-of-sight approach converges to a placement solution
containing Lacc = 104 links. The corresponding network is connected, as shown in Figure 25b;
however, Figure 26b shows that it is more sparse and fragile than those found by LaPS, both with the
weakened constraint (Lmin = 2, Figure 26a) and the original one (Lmin = 3, Figure 24c). Connectivity
metrics show that it is sufficient to remove two nodes or links (kv = ke = 2) to partition the network;
further, some nodes appear to be critical to performance and reliability (Figure 26b). With the
same configuration, LaPS yields the network layout in Figure 25a with Lacc = 141 acceptable links
(Table 6), only slightly fewer than those obtained with the original constraint Lmin = 3; the average
received power and, most important, robust connectivity (Figure 26a) obtained with the two values
of Lmin are similarly comparable.

An interesting observation is that, although the weakerC2 allows nodes with Lmin = 2 acceptable
neighbors, in practice this situation occurs in the line-of-sight case only for 2 nodes (24 and 30);
the remaining ones have at least 3 neighbors, and the average |Lk | = 5.77 is relatively high. The
situation in LaPS is even more stark: all nodes have at least 3 neighbors.

This highlights how i) the constraints actually specify only a lower bound on the desired solutions,
that can be overcome during the evolutionary search, and ii) the lower is the bound the higher
is the number of acceptable topologies explored. In other words, as shown in the case of LaPS,
relaxing a constraint may still lead to a very efficient solution, depending on the constraint and
specific forest at hand. Once more, the ability to explore several different configurations options
offline is a remarkable asset of our approach.

11.5 Summary and Discussion
The analysis we presented in this section confirms that LaPS is a powerful tool to understand
and examine, automatically and prior to the in-field deployment, what are the tradeoffs between
the application and network requirements and the effectiveness of the placement achievable in
the target forest. Further, it also shows that LaPS is able to find very good placements that would
be impractical, if not impossible, to find with the trial-and-error approach typically applied in
these cases, due to the necessarily limited exploration; the placements yielded by the latter in-field
campaigns are therefore more prone to inefficiency and over-provisioning.

However, are these in-field topologies significantly worse than the best one output by LaPS? This
aspect can be quantified via the fitness function F (P), assuming that the in-field network topologies
are contained in the search space. By looking at the range of F (P) values generated during the
evolutionary search, we can therefore have a measure of the “distance” from the best case.
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Fig. 27. Statistics and empirical CDF of F (P) values across all scenario combinations (450 generations).

To this end, we focus on the 9-node network analyzed in §11.3, as this represents a rather
simple scenario where one would expect that the benefits provided by LaPS are somehow reduced—
although our comparison against a common blind regular placement already showed this is not
the case. Figure 27 reports, for all acceptable solutions (i.e., fulfilling all constraints) and across all
combinations we considered, the maximum (best) value of F (P) corresponding to the final output
placement, along with the average and standard deviation; the chart at the bottom also shows the
empirical cumulative distribution function (CDF) of F (P) values.

Table 7. Quality of placement for specific

values of F (P) (regular free).

F (P) P rx (dBm) Lacc |Lk |

0.7 (min) −78.72 21 4.2
0.94 (median) −78.63 26 5.6
1.39 (max) −77.58 34 7.55

These statistics show that, for all considered scenarios,
the final solutions to which LaPS converges are signifi-
cantly better than the average of all those explored. In
other words, the distribution of F (P) values is rather broad,
and therefore the probability to select, with an in-field
deployment, a severely under-performing placement is
quite high; for instance, Figure 27 shows that the prob-
ability of obtaining F (P) < 1 is higher than 50% for all
scenarios. Table 7 further analyzes the quality of placements for given values of F (P), using the
combination regular free as an example; it is easy to see that the difference between the best
value and the others is significant. Finally, it is worth noting that the F (P) values we report are
computed only for network topologies that fulfill all constraints; ensuring that this is the case in
an in-field deployment is a rather laborious task in itself, even for the small-scale 9-node network
considered.
Of course, there is a computational overhead associated to LaPS. On a rather low-scale laptop

(Apple MacBook 2008, MacOSX 10.7.5) computing a single generation for the 9-node setup we
considered takes about 3 minutes, which become 15 minutes for the 36-node one. These figures
are the consequence of the many variables at stake, which in turn witness the complexity of the
problem. However, we observe that the current implementation can be significantly optimized, as
our goal was simply to build a prototype to demonstrate the feasibility and effectiveness of our
techniques. In particular, a distributed implementation, amenable for exploiting parallelism on
multiple servers in a data center or in the cloud, can be devised by leveraging the vast literature on
distributed genetic algorithms [42]. In any case, we observe that the offline, unsupervised computing
time required by LaPS, even on the scale we reported, is a negligible cost when compared with the
human effort currently required by in-field deployments.

Based on these considerations, we argue that the availability of LiDAR data, properly processed
in LaPS via the synergistic application of several techniques, constitutes a formidable asset in
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effectively and efficiently exploring the space of alternative placement before tackling an effort-
demanding in-field deployment. Interestingly, finding the best placement is not the only possible
use of LaPS, and not necessarily the most interesting or useful. Indeed, LaPS can be exploited also
to quickly explore the implications of slight changes in the spatial or network constraints, as we
exemplified at the end of §11.4, therefore navigating the space of inherently conflicting tradeoffs.
Again, a similar analysis would be prohibitive to perform in-field, and impossible to carry out
offline in the absence of precise information about the tree positions and a specialized radio model
exploiting it.

12 CONCLUSIONS AND FUTUREWORK
The effective deployment of WSNs in forests is known to be difficult and costly to achieve. Methods
of practical applicability, capable of providing realistic placement guidelines while ensuring a
connected and efficient network, are essentially lacking. Deployments are often performed in-field
via trial and error, a process likely to yield networks with a quality inferior to what potentially
achievable, and involving a very high effort.
In contrast, in this paper we presented LaPS, a node placement approach that exploits the

increasing availability of LiDAR data in the context of forestry applications to provide an informed
node placement layout automatically and prior to the deployment, accounting for both the actual
forest structure and its effect on the network.

LaPS enables off-line automatic exploration and evaluation of placement options in a target forest
via three main components: i) a representation of the forest derived from LiDAR data, yielding
the position and diameter of each tree ii) a specialized radio attenuation model exploiting this
knowledge to predict the power received on each link iii) an optimization strategy based on a
genetic evolution process that, along with the other two components, drives the exploration of
candidate node placements towards an efficient (sub-)optimal solution. We have shown how, in a
real forest scenario, LaPS outperforms alternative placement strategies based on a regular placement
or a purely topological free line-of-sight by yielding networks that are significantly more connected
and robust. Our results also show that the LiDAR-based forest representation and the specialized
radio model are key in achieving this superior performance, especially as the problem size scales, as
they drive the search for the best placement with fundamental variables of the target environment.
Further, our tool is flexible and open, as it allows great expressiveness in specifying application and
network constraints, as well as the desired quality of the solution, encoded in the fitness function.
More generally, the ability to quickly explore the impact of changes in the constraints provided by
LaPS is an invaluable asset in improving the quality of WSN operation while minimizing the effort
of its in-field deployment.
Nevertheless, the work presented here is only an initial, albeit significant, step that can be

regarded as a foundation for future research along at least two dimensions. The first dimension
concerns the extent to which LaPS is currently capable to model the environment. For instance,
we currently consider only the (common) case where network nodes are all at the same height.
However, forests can grow on the slope of hills and mountains, and in general on uneven terrain,
whose presence on the line of sight among nodes can hinder communication. These aspects could
be accounted for by leveraging the accurate LiDAR-based knowledge of the terrain morphology
encoded in DEM models (§6).
However, terrain morphology is still a static feature of the environment, analogous to the

presence of trees we focused on throughout the paper. A more fundamental leap along the same
research dimension is instead constituted by the modeling of dynamic parameters, e.g., temperature,
humidity, or weather conditions like rain and fog. These parameters are known to significantly affect
communication, as shown by several experiences and empirical models [10, 11, 46, 68]. In principle,
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these findings could be integrated into LaPS since its flexibility in (re)defining the constraints
and the fitness function can be exploited to take these dynamic parameters into account when
determining a good node placement. However, the intricacies inherent in measuring and dealing
with these dynamic quantities, in combination with the complexity of the forest environment,
require a dedicated and significant modeling and validation effort. This is well beyond the scope of
this paper, which however offers a solid foundation towards this ultimate goal.

The other dimension for future work concerns instead the conceptual contribution put forth in
this paper, namely, the observation that the vagaries of low-power wireless communication can be
tamed, or at least mitigated, automatically and prior to deployment with the help of remote sensing
technology. We showed concretely that this can be achieved for the short-range low-power radios
that have been commonplace in the last decade. Nevertheless, new radios are appearing that offer
different tradeoffs between range, bandwidth, and energy consumption. An example is LoRa [41],
whose sensitivity to the environment in general, and vegetation in particular, has already been
observed [12, 28, 51]. The surge of 5G [1] may further exacerbate this problem. These contexts
are clearly different from the specific ones we tackled in this paper. However, we argue that the
contributions we put forth can be adapted and in general serve as inspiration for techniques that
similarly exploit remote sensing to reduce the human effort involved in deploying in-field several
low-power wireless devices and, at the same time, improve the expected quality of the resulting
placement.
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