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Lime (Linda in a Mobile Environment) is a model and middleware supporting the development of
applications that exhibit physical mobility of hosts, logical mobility of agents, or both. Lime adopts
a coordination perspective inspired by work on the Linda model. The context for computation,
represented in Linda by a globally accessible, persistent tuple space, is refined in Lime to transient
sharing of identically-named tuple spaces carried by individual mobile units. Tuple spaces are also
extended with a notion of location and programs are given the ability to react to specified states.
The resulting model provides a minimalist set of abstractions that facilitate rapid and dependable
development of mobile applications. In this paper, we illustrate the model underlying Lime,
provide a formal semantic characterization for the operations it makes available to the application
developer, present its current design and implementation, and discuss lessons learned in developing
applications that involve physical mobility.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-
niques; C.2.4 [Computer-Communication Networks]: Distributed Systems
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1. INTRODUCTION

In the arena of modern distributed computing, mobility is emerging as a disruptive
new trend that challenges fundamental assumptions across the board, from theoret-
ical foundations to software engineering practices. Powerful social forces energized
by advances in wireless communication, device miniaturization, and new software
design techniques are creating a growing demand for applications that exploit and
support physical mobility of hosts moving through space while maintaining connec-
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tions with other hosts. At the same time, logical mobility has emerged as a novel
architectural style that removes the static binding between software components
and hosts, and enables run-time component migration for improved flexibility and
performance. These two forms of mobility complement each other, meaning logical
mobility can provide the fluid software fabric necessary to cope with the high dy-
namicity imposed by physical mobility. Rapid development of mobile applications
demands a new way of thinking and aggressive experimentation if a new set of best
design practices is to emerge soon. The basic premise of this paper is that coordi-
nation technology can be extended for use in mobile computing and can offer an
elegant solution to a set of difficult engineering problems.

Coordination is defined as a style of computing that emphasizes a high degree of
decoupling among the computing components of an application. As initially pro-
posed in Linda [Gelernter 1985], this can be achieved by allowing independently
developed agents to share information stored in a globally accessible, persistent,
content-addressable data structure, typically implemented as a centralized tuple
space. A small set of operations enabling the insertion, removal, and copying of
tuples provides a simple and uniform interface to the tuple space. Temporal de-
coupling is achieved by dropping the requirement that the communicating parties
be present at the time the communication takes place and spatial decoupling is
achieved by eliminating the need for agents to be aware of each other’s identity in
order to communicate. A clean computational model, a high degree of decoupling,
an abstract approach to communication, and a simple interface are the defining fea-
tures of coordination technology. The transition to mobility requires one to revisit
the basic model with a new intellectual bias. The process entails accommodating
physical and logical distribution of tuples and the movement of hosts and agents
through physical or logical spaces.

Lime (Linda In a Mobile Environment) is our response to the software engineering
challenge posed by the advent of mobility. It defines a novel coordination-based
approach to the development of mobile applications. When it appeared [Picco
et al. 1999], Lime was the first coordination model and middleware to address
the need to integrate concerns having to do with physical mobility of hosts and
logical mobility of agents. The Lime computational model assumes a set of hosts
that act as containers in which agents are located. Physical connectivity among
the hosts is supported by wired or wireless links and may be altered by mobility
or by explicit connection and disconnection. Agents can move from one host to
another reachable host of their own volition. Lime preserves the essence of the
Linda model, its simplicity and decoupled style of computing, by continuing to
channel all coordination actions through a simple interface perceived by each agent
to be merely a local tuple space. Access to the tuple space is carried out using
an extended set of tuple space operations that includes several novel constructs
designed to facilitate flexible and timely responses to changes in the contents of the
tuple space. Each agent may own multiple tuple spaces that may be shared with
other agents within communication range. Sharing is made manifest by logically
extending the contents of each tuple space to include the tuples present in all
participating tuple spaces. The set of tuples being shared changes over time as a
result of the agents’ local control regarding sharing and in response to the mobility
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of both agents and hosts. When hosts come into communication range the set of
shared tuple spaces expands and when they move apart it contracts. The net result
is a transparently managed context that expresses itself in terms of changes in the
contents of what otherwise appear to be local tuple spaces. The agent behavior
is altered both by the availability of new data and by its reactive responses to
contextual changes.

The development process of Lime entailed a close interplay between formal se-
mantic definition, implementation pragmatics, and application-driven evaluation of
the resulting model and middleware. The insistence on formalizing the model and
the semantics of the API is rooted in the conviction that precise semantics are key
to dependable development, particularly when working in a novel and demanding
setting such as mobility. Implementation considerations led to weakening of certain
constructs, to the introduction of features the formal framework did not identify,
and to the enhancement of the Lime middleware so as to ensure its applicability
in a wide range of physical and logical mobile settings. Overall, the focus on appli-
cation development and continuous empirical evaluation contributed to practically
minded additions to the model. Ultimately, the effort culminated in a Java-based
implementation of the Lime middleware [Murphy et al. 2001], currently available1

as an evolving, open source project. Several application development exercises
with programmers possessing varying skill levels reinforced our conviction that a
properly tailored model of coordination, such as Lime, can be an effective software
engineering tool in the mobile setting.

This paper constitutes a complete description of Lime, from the model to the
middleware and applications. The semantics of the Lime model is first described
informally in Section 2, and then formalized in Section 3. Based on these grounds,
Section 4 describes the Lime middleware embodying the model concepts. The
application programming interface is presented, together with an overview of the
middleware architecture. Section 5 reviews our experience with several applications
developed using Lime. Finally, Section 6 discusses lessons learned and related work,
and Section 7 ends the paper with some brief concluding remarks.

2. THE LIME MODEL

The Lime model [Picco et al. 1999] aims at identifying a coordination layer that
can be exploited successfully for designing applications that exhibit logical mobil-
ity, physical mobility, or both. The design criteria underlying Lime come from the
perspective that the problem of designing applications involving mobility can be
regarded as a coordination problem [Roman et al. 2000], and that a fundamental
issue to be tackled is the provision of good abstractions for dealing with, and ex-
ploiting, a dynamically changing context. To achieve its goal, Lime borrows and
adapts the coordination model made popular by Linda [Gelernter 1985]. After
presenting a concise Linda primer, the rest of this section discusses how the core
concepts of Linda are reshaped in the Lime model. The presentation is kept infor-
mal; the model is formalized in Section 3. Also, in this section we do not discuss
implementation issues. Instead, they are addressed in Section 4.

1http://lime.sourceforge.net
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2.1 Linda in a Nutshell

In Linda, processes coordinate through a shared tuple space that acts as a repository
of elementary data structures, or tuples. A tuple space is a multiset of tuples that
can be accessed concurrently by several processes. Each tuple is a sequence of typed
fields, such as 〈“foo”, 9, 27.5〉, and contains the information being communicated.

Tuples are added to a tuple space by performing an out(t) operation, and can be
removed by executing in(p). Tuples are anonymous, thus their selection takes place
through pattern matching on the tuple content. The argument p is often called a
template or pattern, and its fields contain either actuals or formals. Actuals are
values; the fields of the previous tuple are all actuals, while the last two fields of
〈“foo”, ?integer, ?float〉 are formals. Formals act like “wild cards”, and are matched
against actuals when selecting a tuple from the tuple space. For instance, the tem-
plate above matches the tuple defined earlier. If multiple tuples match a template,
the one returned by in is selected non-deterministically. Tuples can also be read
from the tuple space using the non-destructive rd(p) operation. Both in and rd

are blocking, i.e., if no matching tuple is available in the tuple space the process
performing the operation is suspended until a matching tuple becomes available.
A typical extension to this synchronous model is the provision of a pair of asyn-
chronous primitives inp and rdp, called probes, that allow non-blocking access to
the tuple space2. Moreover, some variants of Linda (e.g., [Rowstron 1998]) provide
also bulk operations, which can be used to retrieve all matching tuples in one step.
In Lime we provide a similar functionality through the ing and rdg operations,
whose execution follows that of probes.

2.2 Lime: Linda in a Mobile Environment

Linda characteristics resonate with the mobile setting. In particular, coordination
among processes in Linda is decoupled in time and space, i.e., producers and con-
sumers do not need to be available at the same time, and mutual knowledge of their
identity or location is not necessary for data exchange. This form of decoupling
is of paramount importance in a mobile setting, where the parties involved change
dynamically due to their migration or connectivity patterns. Moreover, the notion
of tuple space provides a straightforward and intuitive abstraction for representing
the computational context perceived by the coordinating processes. On the other
hand, decoupling is achieved thanks to the properties of the Linda tuple space,
namely its global accessibility to all the processes, and its persistence—properties
that are clearly hard if not impossible to maintain in a mobile environment. This
is especially true in a mobile ad hoc environment, where components move in and
out of range and there is no single location for a tuple space repository to be placed
such that it will always remain accessible to all components.

Our approach, as explained in the following, moves Linda into the mobile envi-
ronment while retaining the core of the original Linda philosophy.

2Linda defines also an eval operation that provides dynamic process creation and enables deferred
evaluation of tuple fields. For the purposes of this work, however, we do not consider this operation
further.
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2.2.1 The Core Idea: Transparent Context Maintenance. In Linda, the data
accessible through the tuple space represents the data context available during
process interaction. In the model underlying Lime, the shift from a fixed context
to a dynamically changing one is accomplished by breaking up the Linda tuple
space into many tuple spaces, each permanently associated to a mobile agent, and
by introducing rules for transient sharing of these individual tuple spaces based on
connectivity.

The individual tuple space, permanently and exclusively attached to a mobile
agent, is referred to as the interface tuple space (its) because it provides the only
access to the data context for that mobile agent. Each its contains the tuples
the mobile agent is willing to make available to other agents, and access to this
data structure uses standard Linda operations, whose semantics remain basically
unaffected. These tuples represent the only context accessible to a mobile agent
when it is alone.

When multiple mobile agents are able to communicate, either directly or tran-
sitively, we say these agents form a Lime group. For example, two agents on the
same host can form a group. If two hosts can communicate with one another,
all the agents on those hosts form a group. Although the notion of group can be
based on more than just communication, for the purposes of this paper we consider
only connectivity. Conceptually, the contents of the itss of all group members are
merged, or transiently shared, to form a single, large context that is accessed by
each agent through its own its. The sharing itself is transparent to each mobile
agent, however as the members of the group change, the content of the tuple space
each member perceives through operations on the ITS changes in a transparent
way.

The joining of a group by a mobile agent, and the subsequent merging of its local
context with the group context is referred to as engagement, and is performed as a
single, atomic operation. A mobile agent leaving a group triggers disengagement,
that is, the atomic removal of the tuples representing its local context from the
remaining group context. In general, whole groups can merge, and a group can
split into several groups due to changes in connectivity.

In Lime, agents may have multiple itss distinguished by a name since this is rec-
ognized [Carriero et al. 1995] as a useful abstraction to separate related application
data. The sharing rule in the case of multiple tuple spaces relies on tuple space
names: only identically-named tuple spaces are transiently shared among the mem-
bers of a group. Thus, for instance, when an agent a owning a single tuple space
named X joins a group including an agent b that owns two tuple spaces named X
and Y , only X becomes shared between the two agents. Tuple space Y remains
accessible only to b, and potentially to other agents owning Y that may join the
group later on.

Transient sharing of the its constitutes a very powerful abstraction, as it provides
a mobile agent with the illusion of a local tuple space that contains all the tuples
coming from all the agents belonging to the group, without any need to know
the members explicitly. The notion of transiently shared tuple space is a natural
adaptation of the Linda tuple space to a mobile environment. When physical
mobility is involved, and especially in the radical setting defined by mobile ad hoc
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Fig. 1. Transiently shared tuple spaces encompass physical and logical mobility.

networking, there is no stable place to store a persistent tuple space. Connections
among machines come and go and the tuple space must be partitioned in some way.
Analogously, in the scenario of logical mobility, maintaining locality of tuples with
respect to the agent they belong to may be complicated. Lime enforces an a priori
partitioning of the tuple space in subspaces that are transiently shared according
to precise rules, providing a tuple space abstraction that depends on connectivity.

2.2.2 Encompassing Physical and Logical Mobility. In Lime, mobile hosts are
connected when a communication link is available. Availability may depend on a
variety of factors, including quality of service, security considerations, or connection
cost; however in this paper we limit ourselves to availability determined by the
presence of a functioning link. Mobile agents are connected when they are co-
located on the same host, or they reside on hosts that are connected. Changes in
connectivity among hosts depend only on changes in the physical communication
links. Connectivity among mobile agents may depend also on arrival and departure
of agents, with creation and termination of mobile agents being regarded as a special
case of connection and disconnection, respectively. Figure 1 depicts the model
adopted by Lime. Mobile agents are the only active components; mobile hosts
are mainly roaming containers that provide connectivity and execution support
for agents. In other words, mobile agents are the only components that carry a
“concrete” tuple space.

The transiently shared itss belonging to multiple agents co-located on a host
define a host-level tuple space. The concept of transient sharing is also applied
to the host-level tuple spaces of connected hosts, forming a federated tuple space.
When a federated tuple space is established, a query on the its of an agent returns
a tuple that may belong to the tuple space carried by that agent, to a tuple space
belonging to a co-located agent, or to a tuple space associated with an agent residing
on some remote, connected host.

In this model, physical and logical mobility form two different tiers of abstrac-
tion. Nevertheless, many applications do not need both forms of mobility, and
straightforward adaptations of the model are possible. For instance, applications
that do not exploit mobile agents but run on a mobile host can employ one or
more stationary agents, i.e., programs that do not contain migration operations.
In this case, the design of the application can be modeled in terms of mobile hosts
whose its is a fixed host-level tuple space. Applications that do not exploit physical
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mobility—and do not need a federated tuple space spanning different hosts—can
exploit only the host-level tuple space as a local communication mechanism among
co-located agents.

It is interesting to note that mobility is not dealt with directly in Lime, i.e., there
are no constructs for instructing either a host or agent to move to a new location.
Instead, the effect of mobility is indirectly manifest only in the changes observed
in the tuples forming the host-level and federated tuple spaces. This choice, that
sets the nature of mobility aside, keeps our model as general as possible.

2.2.3 Controlling Context Awareness. Thus far, Lime appears to foster a style
of coordination that reduces the details of distribution and mobility to content
changes in what is perceived as a local tuple space. This view is very powerful, and
has the potential for greatly simplifying application design in many scenarios by
relieving the designer from the chore of maintaining explicitly a view of the context
consistent with changes in the configuration of the system. On the other hand, this
view may hide too much in domains where the designer needs more fine-grained
control over the portion of the context that needs to be accessed. For instance,
the application may require control over the agent responsible for holding a given
tuple, something that cannot be specified only in terms of the global context. Also,
performance and efficiency considerations may come into play, as in the case where
application information would enable access aimed at a specific host-level tuple
space, thus avoiding the greater overhead of a query spanning the whole federated
tuple space. Such fine-grained control over the context perceived by the mobile
agent is provided in Lime by extending the Linda operations with tuple location
parameters that operate on user-defined projections of the transiently shared tuple
space. Further, all tuples are implicitly augmented with two fields, representing
the tuple’s current and destination location. The current location identifies the
single agent responsible for holding the tuple when all agents are disconnected, and
the destination location indicates the agent with whom the tuple should eventually
reside.

The out[λ] operation extends out with a location parameter representing the
identifier of the agent responsible for holding the tuple. The semantics of out[λ](t)
involve two steps. The first step is equivalent to a conventional out(t), the tuple t
is inserted in the its of the agent3 calling the operation, say ω. At this point the
tuple t has a current location ω, and a destination location λ. If the agent λ is
currently connected, the tuple t is moved to the destination location in the same
atomic step. On the other hand, if λ is currently disconnected the tuple remains
at the current location, the tuple space of ω. This “misplaced” tuple, identified as
such because its current and destination values are not equal, if not withdrawn4,
remains misplaced unless λ becomes connected. In the latter case, the tuple will
migrate to the tuple space associated with λ as part of the engagement, changing
its current location to λ. By using out[λ], the caller can specify that the tuple is

3For notational convenience, out[λ](t) and out(t) are equivalent when the agent issuing the op-
eration is λ.
4Note how specifying a destination location λ implies neither guaranteed delivery nor ownership
of the tuple t to λ. Linda rules for non-deterministic selection of tuples are still in place; thus,
some other agent may withdraw t from the tuple space before λ, even after t reached λ’s its.
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Current Destination Defined projection
location location

unspecified unspecified Entire federated tuple space

unspecified λ Tuples in the federated tuple space and destined to λ

ω unspecified Tuples in agent ω’s tuple space

Ω unspecified Tuples in Ω’s host-level tuple space,
i.e., belonging to any agent at Ω

ω λ Tuples in agent ω’s tuple space and destined to λ

Ω λ Tuples in Ω’s host-level tuple space and destined to λ

Table I. Accessing different portions of the federated tuple space by using location parameters. In
the table, ω and λ are agent identifiers, while Ω is a host identifier.

supposed to be placed within the its of agent λ. This way, the default policy of
keeping the tuple in the caller’s context until it is withdrawn can be overridden,
and more elaborate schemes for transient communication can be developed.

Variants of the in and rd operations that exploit location parameters are al-
lowed as well. These operations, of the form in[ω, λ](p) and rd[ω, λ](p), enable the
programmer to refer to a projection of the current context defined by the value of
the location parameters, as illustrated5 in Table I. The current location parame-
ter enables the restriction of scope from the entire federated tuple space (no value
specified) to the tuple space of all agents on a given host, Ω, or even a given agent,
ω. The destination location is used to identify misplaced tuples.

2.2.4 Reacting to Changes in Context. In the fluid scenario we target, the set of
available data, hosts, and agents change frequently according to the reconfiguration
induced by mobility. Reacting to changes constitutes a significant fraction of an
application’s activities. At first glance, the Linda model would seem sufficient to
provide some degree of reactivity by representing relevant events as tuples, and
by using the in operation to execute the corresponding reaction as soon as the
event tuple appears in the tuple space. Nevertheless, in practice this solution has
a number of drawbacks. For instance, programming becomes cumbersome, since
the burden of implementing reactive behavior is placed on the programmer rather
than the system. Moreover, enabling an asynchronous reaction would require the
execution of in in a separate thread of control, hence adding overhead.

Therefore, Lime explicitly extends the basic Linda tuple space with the notion of
reaction. A reaction R(s, p) is defined by a code fragment s that specifies the actions
to be executed when a tuple matching the pattern p is found in the tuple space. The
semantics of reactions are based on the Mobile Unity reactive statements [McCann
and Roman 1998], described formally in a later section. Informally, a reaction can
fire if a tuple matching pattern p exists in the tuple space. After one of these
regular tuple space operations, a reaction is selected non-deterministically and,
if it is enabled, the statements in s are executed in a single, atomic step. This
selection and execution continues until no reactions are enabled, at which point
normal processing resumes. Blocking operations are not allowed in s, as they may

5The non-annotated version of in(p) and rd(p) are equivalent to the annotated versions with
current and destination unspecified.
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prevent the execution of s from terminating.
Lime reactions can be explicitly registered and deregistered on a tuple space,

and hence do not necessarily exist throughout the life of the system. Moreover, a
notion of mode is provided to control the extent to which a reaction is allowed to
execute. A reaction registered with mode once is allowed to fire only one time, i.e.,
after its execution it becomes automatically deregistered, and hence removed from
the reactive program. Instead, a reaction registered with mode oncepertuple is
allowed to fire an arbitrary number of times, but never twice for the same tuple.
Finally, reactions can be annotated with location parameters keeping the same
meaning discussed earlier for in and rd. Hence, the full form of a Lime reaction is
R[ω, λ](s, p, m), where m is the mode.

Reactions provide the programmer with very powerful constructs. They enable
the specification of the appropriate actions that need to take place in response to
a state change and allow their execution in a single atomic step. In particular,
it is worth noting how this model is much more powerful than many event-based
ones [Rosenblum and Wolf 1997], including those exploited by tuple space middle-
ware such as TSpaces [Lehman et al. 2001] and JavaSpaces [Freeman et al. 1999],
which are typically stateless and provide no guarantee about the atomicity of event
reactions.

Nevertheless, this expressive power comes at a price. In particular, when multiple
hosts are present, the content of the federated tuple space depends on the content of
the tuple spaces belonging to physically distributed, remote agents. Thus, maintain-
ing the requirements of atomicity and serialization imposed by reactive statements
requires a distributed transaction encompassing several hosts for every tuple space
operation on any its—very often, an impractical solution. For specific applications
and scenarios, e.g., those involving a very limited number of nodes, these kind of
reactions, referred to as strong reactions, would still be reasonable and therefore
they remain part of the model. For practical performance reasons, however, our
implementation currently limits the use of strong reactions by restricting the cur-
rent location field to be a host or agent, and by enabling a reaction to fire only
when the matching tuple appears on the same host as the agent that registered
the reaction. As a consequence, a mobile agent can register a reaction for a host
different from the one where it is residing, but such a reaction remains disabled
until the agent migrates to the specified host. These constraints effectively force
the detection of a tuple matching p and the corresponding execution of the code
fragment s to take place (atomically) on a single host, and hence does not require
a distributed transaction.

To strike a compromise between the expressive power of reactions and the prac-
tical implementation concerns, we introduce a new reactive construct that allows a
form of reactivity that spans the whole federated tuple space but exhibits weaker
semantics. The processing of a weak reaction proceeds as in the case of a strong
reaction, but detection and execution do not happen atomically: instead, execution
is guaranteed to take place only eventually, after a matching tuple is detected. The
execution of s takes place on the host of the agent that registered the reaction.

2.2.5 Exposing System Configuration. It is interesting to note that the exten-
sion of Linda operations with location parameters, as well as the other operations
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discussed thus far, foster a model that hides completely the details of the sys-
tem (re)configuration that generated those changes. For instance, if the probe
inp[ω, λ](p) fails, this simply means that no tuple matching p is available in the
projection of the federated tuple space defined by the location parameters [ω, λ]. It
cannot be directly inferred whether the failure is due to the fact that agent ω does
not have a matching tuple, or simply agent ω is currently not part of the group.

Without awareness of the system configuration, only a partial context aware-
ness can be accomplished, where applications are aware of changes in the portion
of context concerned with application data. Although this perspective is often
enough for many mobile applications, in many others the portion of context more
closely related to the system configuration plays a key role. For instance, a typical
problem is to react to the departure of a mobile agent, or to determine the set of
agents currently belonging to a Lime group. Lime provides this form of aware-
ness of the system configuration by using the same abstractions discussed thus
far: through a transiently shared tuple space conventionally named LimeSystem to
which all agents are permanently bound. The tuples in this tuple space contain
information about the mobile agents present in the group and their relationship,
e.g., which tuple spaces they are sharing or, for mobile agents, on which host they
reside. Insertion and withdrawal of tuples in LimeSystem is a prerogative of the
run-time support. Nevertheless, applications can read tuples and register reactions
to respond to changes in the configuration of the system.

Together, the LimeSystem tuple space and the other application-defined tran-
siently shared tuple spaces enable the definition of a fully context aware style of
computing.

3. A FORMAL SEMANTICS FOR LIME

The ultimate goal of our research is rapid development of dependable mobile appli-
cations. We contend that a precise understanding of the underlying model and its
implementation is essential to achieving a high level of dependability. Of course,
highly complex formal specifications may be ignored or may actually become a
source of confusion for the middleware user. For this reason we opted in favor of
modeling the semantics of Lime by using an existing operational model called Mo-
bile Unity [McCann and Roman 1998; Roman et al. 1997], a state-based model
consisting of a notation system and associated proof logic, which extends the origi-
nal Unity [Chandy and Misra 1988] model. Mobile Unity was specifically designed
to express mobility in all its forms and to enable one to reason formally about sys-
tems of mobile components, and it has been successfully applied to this end [Picco
et al. 2001; McCann and Roman 1999].

The formal definition of the semantics of Lime was a fundamental constituent
of its development, done in close connection with the actual implementation of the
middleware. Formalization and implementation continuously contributed one to
the other. The former inspired novel programming constructs (e.g., the notions
of transient sharing and reaction borrowed from Mobile Unity) with well-founded
semantics; the latter checked the feasibility of these constructs against the reality
of development, uncovering pragmatic needs (e.g., the need for weak reactions). In
a sense, the Lime middleware has been shaped by the formal semantics of the Lime
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model—and vice versa.
The formal semantics we defined, however, is also valuable per se. First, by

providing a precise specification of the middleware behavior, it helps understanding
even the smaller semantic details without having to resort to the source code. As
such, it can be exploited as a common language and a stepping stone for similar
research efforts. Indeed, in our group we used it as such for some of the evolutions
of Lime. Second, the Mobile Unity proof logic, in combination with the Lime

specification and an application specification allow one to reason formally about
the behavior of a complex, mobile application.

The remainder of this section is divided in two parts. In Section 3.1 we present
a formal specification of the Linda model which Lime builds upon. Section 3.2
defines the semantics of Lime. Despite reliance on Mobile Unity, the presentation
is self-contained and does not require any prior knowledge of this formal language.

3.1 Formalizing Linda

This section progressively introduces the formal semantics for Linda. It begins with
a high level view and an example, then drops down to a brief description of the
syntax and semantics of Mobile Unity, and finally describes formally the Linda
data structures and operations.

Figure 2 shows a Mobile Unity specification6 for a Linda-based producer-con-
sumer system where jobs are exchanged through the tuple space. The producer
randomly and continuously generates jobs of different names (a and b), putting
the job name (randomly determined at initialization time) and its description into
a tuple space called jobs. Each of the two consumers removes jobs one at a time
from the tuple space, and performs the corresponding actions.

To understand the Linda components of the example, it is first necessary to un-
derstand the structure given by Mobile Unity. The Program sections describe
the behavior of each kind of concurrent program7. The Components section de-
fines the program instances (or agents) that make up the system. Instances of the
same program are distinguished by an identifier that is set at creation time, and the
statements of the program are essentially duplicated for each component instance.
Each program contains a declare section for naming variables and declaring their
types, and an initially section for defining the allowed initial values of the vari-
ables. Variables that are not explicitly assigned an initial value in the initially

section assume an arbitrary value compatible with the type. The assign section
specifies the guarded assignments that define the state transitions of the system.
System execution involves non-deterministically selecting a statement in a weakly
fair manner from one of the component programs, and evaluating its guard. If it is
true, the statement is executed, otherwise it is skipped. Statements are separated
by the [] operator. The ‖ operator is used to construct multiple assignments to be
executed in a single atomic step. For example, the consumer program contains two

6In the following, we use different fonts for improving the readability of our semantics, by dis-
tinguishing among constructs that are available to the specifier as part of Lime or Mobile Unity

(e.g., in and reacts-to), auxiliary macros used for structuring the specification but not available
to the programmer (e.g., copy), types (e.g., Tuple), constants and labels (e.g., cur), and normal
variable names (e.g., events).
7For now we ignore the λ variable on each program.
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System ProducerConsumer
Program Producer(i) at λ

declare

jobs : TupleSpace
jobName : {ε,a,b}
jobInfo : String

initially

jobs = {} [] jobName = ε

assign

jobName := a ‖ jobInfo := newInfo(a)
[] jobName := b ‖ jobInfo := newInfo(b)
[] (out(jobs , createTuple(jobName, jobInfo)) ‖ jobName = ε)

if jobName 6= ε

end

Program Consumer(i) at λ

declare

jobs : TupleSpace
curJob : Tuple
jobName : {a, b}

initially

jobs = ∅ [] curJob = ε

assign

curJob := in(jobs, createTuple(jobName, String)) if curJob = ε

[] curJob := ε ‖ doJob(curJob) if curJob 6= ε

end

Components

Producer(0) [] Consumer(1) [] Consumer(2)
Interactions

〈∀ a, b, T : a, b ∈ C, T ∈ T :: a.T ≈ b.T 〉
end

Fig. 2. A Linda producer-consumer specified in Mobile Unity.

statements; the first removes a job tuple from the tuple space, while the second
simulates the performance of a job through a function doJob, whose details are not
relevant here, and resets the value of curJob to ε in the same atomic step. The
guard in the first statement prevents the consumer from taking a new job before
the previous one is completed (i.e., before curJob is reset to ε).

In Mobile Unity, different from the original Unity, variables with the same
name in different programs are distinct. For example, the tuple space variable
jobs in the producer is distinct from the one in either of the consumers. Nev-
ertheless, in Linda these tuple spaces should always be the same. To accom-
plish this in Mobile Unity, we exploit the sharing construct ≈, which allows one
to express symmetric and transitive sharing between variables belonging to dif-
ferent programs. Let us assume that C is the set of all component names and
T is the set of names of all the variables of type TupleSpace. In our example,
C = {Producer(0), Consumer(1), Consumer(2)}, and T = {jobs}.

ACM Transactions on Software Engineering, Vol. X, No. X, X 2006.



Lime: A Coordination Model and Middleware Supporting Mobility of Hosts and Agents · 13

Hence, by stating8 in the Interactions section that:

〈∀ a, b, T : a, b ∈ C, T ∈ T :: a.T ≈ b.T 〉

we force any tuple spaces with the same variable name to be shared, even if they are
declared within the name spaces of different agents. In our example, the jobs tuple
spaces of the producer and consumers become shared by virtue of this statement;
hence, when the producer writes a tuple to its tuple space it is immediately available
in the consumers’ tuple space. Moreover, in this case sharing is unconditional, that
is, the tuple spaces are always shared. When describing Lime, we remove this
assumption and specify the conditions under which transient sharing is enabled, by
exploiting more sophisticated forms of the sharing construct.

Placement of the above statement in the Interactions section is intentional.
This section of the specification is reserved in Mobile Unity for statements that
involve more than one component. The formal semantics of Linda, and next of
Lime, is hence constituted by two parts. The first one is the statements we place
in the Interactions section, which effectively capture a significant part of the
run-time communication among programs, as enabled by the middleware. The
Interactions section of every specification exploiting the Lime model must contain
the Interactions statements we describe in the Lime formal semantics. The second
part is the definition of the various constructs, such as the Linda operations in

and out appearing in the example, that are available to the programmer. These
constructs are technically defined as macros, whose meaning is represented in terms
of the basic Mobile Unity statements. The examples we use here for Linda and next
for Lime provide the reader with the opportunity to see how these two constituents
of our formal semantics are exploited in the specification of an application.

In this section, we begin the formal description of Linda by focusing first on the
essential data structures, then on the operations.

Data Structures. The fundamental data structures used in Linda are tuples and
tuple spaces. Tuples are represented by the type Tuple, instances of which are
generated by using the createTuple function. Parameters to this function can
include actual values, as in the producer of Figure 2, or any combination of actuals
and formals (types), as in the consumer. The result returned by this function is a
tuple that is augmented by some fields that were not present in the tuple originally
written by the specifier, but that are necessary to the semantics of the operations.
In formalizing Linda, the only field added by createTuple is a unique identifier;
when formalizing Lime in the next section, createTuple is modified to add also
fields for the current and destination location. These fields remain part of the tuple,
accessible to the operations defined in our formalization, but not accessible to the
specifier.

8This statement uses a Unity-like three part notation of the form 〈op quantifiedVariables :
range :: expression〉. The variables from quantifiedVariables take on all possible values permitted
by range. If range is missing, the first colon is omitted and the domain of the variables is restricted
by context. Each such instantiation of the variables is substituted in expression producing a
multiset of values to which op is applied, yielding the value of the three-part expression. If no
instantiation of the variables satisfies range, the value of the three-part expression is the identity
element for op, e.g., true when op is ∀.
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Although we do not provide a formal definition of createTuple, as it is tedious
and not interesting, we define here a general notation for setting and accessing these
added tuple fields. The tuple identifier is associated to a field label id; later on,
we use the labels cur and dest for the current and destination location fields, re-
spectively. These field labels are used to create template expressions. For instance,
[id: ID]⊕ t sets the identifier field of tuple t to the formal ID, while [id: 42]⊕ t sets
it to the actual 42. Moreover, field labels are also used to retrieve the field value.
Hence, t.id returns the current location of the tuple or, in conformance with the
semantics of Linda, undefined if the field is currently set to a formal.

Having augmented each tuple with an extra identifier field allows us to formalize
the tuple container as a set of type TupleSpace (as opposed to a multiset), as long
as the identifier value is set properly. This definition presents the specifier with
constructs that allow for multiple tuples with identical data to exist in the tuple
space, as in Linda, but allows us to exploit set operations in the specification of the
underlying semantics.

Constructs. The final statement of the producer program demonstrates the use
of the operation out(T, t) to insert a tuple into the tuple space. Because a process
can access multiple tuple spaces, the tuple space variable appears as a parameter
of the operation. The formal definition describes the tuple space change resulting
from the execution of the out operation, namely the insertion of the tuple t:

out(T, t) , T := T ∪ {[id: newId()] ⊕ t}

In addition to inserting the tuple into the tuple space, the uniqueness of the tuple
is established by setting the identifier field to a system-wide unique tuple identifier,
returned by the function newId(). It should also be noted that by the assignment
semantics of Mobile Unity, the value in braces is actually the value of the tuple,
and thus a copy of the tuple is effectively made and inserted into the tuple space.

Before turning to the formal definitions of the in and rd operations for retriev-
ing data from the tuple space, we introduce a few auxiliary definitions. First, to
formally express the fact that a tuple θ matches a template p, we use the no-
tation M(θ, p). We do not provide a fully formal definition for the semantics
of matching since it is not fundamental to our model. Moreover, we extend the
definition of formal fields to allow the specification of subtypes. For example,
〈“foo”, Integer i : 1 ≤ i ≤ 10〉 requires a matching tuple to have, in its second field,
an integer value between 1 and 10. While we do not use this functionality directly
in our example program, it is used in the definitions of several Lime constructs in
the next subsection9

Next we define a predicate that identifies whether a tuple matching a pattern
exists in a given tuple space, and two macros that identify a matching tuple in a

9Moreover, while this feature is used in the formal semantics, matching on subtypes (e.g., using
the inheritance relationship) is currently not supported by the middleware.
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given tuple space and either remove or copy it:

matchExists(T, p) ≡ 〈∃ θ : θ ∈ T :: M(θ, [id: ID] ⊕ p)〉

t := remove(T, p) , 〈‖ θ : θ = θ′.(M(θ′, [id: ID] ⊕ p) ∧ θ′ ∈ T )

:: T, t := T − {θ}, θ〉

t := copy(T, p) , 〈‖ θ : θ = θ′.(M(θ′, [id: ID] ⊕ p) ∧ θ′ ∈ T ) :: t := θ〉

In both the remove and copy macros, the value of the returned tuple is bound to the
variable t, leaving the pattern p with its original value. These macros model non-
deterministic tuple selection by means of non-deterministic assignment [Back and
Sere 1990]. In a non-deterministic assignment of the form x := x′.Q, the variable x is
assigned a value x′, selected non-deterministically among those satisfying condition
Q. In our case, we use a similar notation to select non-deterministically a single
matching tuple θ′, bind it to the tuple θ, and use it to quantify the three-part
notation. Because a single tuple is selected and bound, the parallel operator in the
three-part notation serves the purpose of creating a quantified statement, and does
not entail parallel execution of multiple statements.

With these helper functions, the definitions of the rd and in constructs follow
naturally:

t := in(T, p) , t := remove(T, p) if matchExists(T, p)

t := rd(T, p) , t := copy(T, p) if matchExists(T, p)

The previous definitions describe the blocking forms of the in and rd operations.
In Linda, a process that encounters a blocking operation suspends itself until a
matching tuple is found. Instead, in Mobile Unity there is no direct notion of
process blocking: statements are selected non-deterministically. Nevertheless, if
a statement is selected when no matching tuple exists in the tuple space, it is
equivalent to a skip. Thus, it is as if the statement to remove the tuple was blocked

waiting for a matching tuple. In the example, when no tasks exist in the tuple
space the consumer is effectively blocked waiting for the in operation to become
enabled. With this in mind, it is possible and meaningful to put these blocking
operations in parallel with other statements. For example:

t := in(T, p) ‖ count := count + 1

is expected to count the number of tuples removed. However, after the macro
expansion of the in operation, the semantics of this statement are such that each
time it is selected for execution, the counter increments even if no matching tuple
is taken from the tuple space. This is because only the assignment to the left of
the parallel bar is inhibited until a match is found. To allow the more meaningful
style of parallel assignment in which both assignments are inhibited until a match
is found, we expose the matchExists predicate, enabling the following assignment
statement with the correct counting semantics:

(t := in(T, p) ‖ count := count + 1) if matchExists(T, p)

It should be noted that the same parameters, namely (T, p), must be used for the
in operation and the matchExists to have the desired effect.
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Additional constructs. While the above constructs define the basic Linda oper-
ations, there are a number of extensions that have been shown to be useful when
programming with Linda, some of which we exploit in Lime. In contrast to the
blocking version of the in and rd the non-blocking operations should return ε if
no matching tuple exists in the tuple space at the moment when the statement is
selected. Their formal definition builds upon the blocking operations:

t := inp(T, p) , t := remove(T, p) if matchExists(T, p)
‖ t := ε if ¬matchExists(T, p)

The definition of the probing read rdp is identical to inp except the copy macro is
used in place of remove, leaving the tuple space unchanged after the execution of
the operation involving a successful match. The group operations that remove or
copy all matching tuples (e.g., ing and rdg) can be formalized in a similar manner.

3.2 Formalizing Lime

In this section, we build upon the formalization presented thus far and extend it
to encompass transiently shared tuple spaces and the other constructs that are
peculiar to Lime. The constructs defined in the previous section, namely out, in,
rd, inp, and rdp, are used in the formalization of the Lime constructs, but this
section provides new semantics that deal with the current and destination location
fields. The functions createTuple and matchExists are modified respectively to
include the creation of the cur and dest fields and to match tuples using these
additional fields. While the overall semantics remain the same, operations work
with tuple spaces that are transiently, rather than permanently, shared.

Components and connectivity. In a Mobile Unity specification, as shown in
Figure 3, a program is the unit of execution and migration. In our Lime specifica-
tion, a program represents the specification of the behavior of a mobile agent. In
Mobile Unity, each program component has a special location variable λ, which we
use to identify the host where the mobile agent is executing. The structure of this
location variable is completely application-dependent, and for our purposes it can
safely be assumed to contain the IP address or the symbolic name of a host. Agents
migrate by assigning a new value to this location variable, e.g., λ := lime.sf.net.
We formally express connectivity among agents as a symmetric and transitive re-
lation κ. Two agents a and b are connected when they are on the same host, when
the hosts they reside on are directly connected, or when the hosts they reside on
are transitively connected. This is expressed by the predicate a κ b. When an
agent migrates, the κ relation changes to reflect the new configuration. Changes
in connectivity among hosts are intentionally left outside of the specification, but
nevertheless contribute to the κ relation. This is merely a consequence of choosing
agents as the only active components in the system.

In applications involving physical and/or logical mobility, it is often necessary
to gain information about the current connectivity of the mobile components. The
natural course of action to support this need during the specification phase would
be to expose the κ relation to the specifier. However, this would actually grant the
specifier more power than can actually be realized in the mobile environment. For
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System ProducerConsumer
Program Producer(i) at λ

declare

jobs : TupleSpace
jobName : {ε,a,b}
jobInfo : String

initially

jobs = {} [] jobName = ε

assign

jobName := a ‖ jobInfo := newInfo(a)
[] jobName := b ‖ jobInfo := newInfo(b)
[] (out(jobs , createTuple(jobName, jobInfo)) ‖ jobName = ε)

if jobName 6= ε

[] (out[Consumer(1)](jobs , createTuple(jobName, jobInfo)) ‖ jobName = ε)
if jobName 6= ε

[] out(jobs , createTuple(priority, newInfo(priority))
end

Program Consumer(i) at λ

declare

jobs : TupleSpace
curJob , priorityTemplate : Tuple
jobName : {a, b}

initially

curJob = ε [] priorityTemplate = createTuple(priority, String)
[] isEnabled(pri)

assign

curJob := in(jobs, createTuple(jobName, String)) if curJob = ε

[] curJob := ε ‖ doJob(curJob) if curJob 6= ε

[] pri :: doJob(τ ) weakReaction[AgentID, AgentID](jobs,
priorityTemplate ,

oncepertuple)
end

Components

Producer(0) [] Consumer(1) [] Consumer(2)
Interactions

;; Transient sharing dependent on connectivity
〈∀ a, b, c, T : a, b, c ∈ C ∧ T ∈ T :: a.T ≈ b.T when a κ b

engage a.T ∪ b.T

disengage 〈∪ c : c κ a :: c.T ↓ c〉,
〈∪ c : c κ b :: c.T ↓ c〉〉

;; Migration of misplaced tuples
[] 〈‖ θ, a, b, T : a, b ∈ C ∧ T ∈ T ∧ θ = θ′.(θ′ ∈ b.T ∧ θ′.cur = a ∧ θ′.dest = b)

:: b.T := b.T − {θ} + {[cur: b] ⊕ θ}〉 reacts-to true

end

Fig. 3. A Lime producer-consumer in Mobile Unity.

instance, consider10 the case where an agent a queries whether agent b is connected

10Here and in the following we use agent names like a also to refer to the corresponding agent
identifier. While this constitutes a stretch of the notation, it greatly simplifies formulas. Moreover,
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to agent c by directly using the predicate b κ c. If b and c are out of range of a,
there is no reasonable way for a to resolve the query about components it cannot
communicate with. However, it is both useful and reasonable to allow queries about
a’s current connectivity state, e.g., a κ b. In our model, the latter predicate can
be expressed, from the perspective of agent a, as isConnected(b). The use of
isConnected effectively restricts access to the κ relation, limiting its range only
to a’s current connectivity context. Based on this function and the other Lime

constructs described in the following, the formal semantics of the LimeSystem tuple
space can be modeled straightforwardly.

Transient sharing of tuple spaces. In Lime, as opposed to Linda, identically-
named tuple space variables defined in different agents must be shared transiently,
only when connectivity is available. This is expressed in our formalization by using
the sharing construct ≈, as in the formalization of Linda. The full form of this
construct allows one to specify the condition enabling sharing (when), the value
the shared variable assumes when this condition is established (engage), and the
value each variable takes when the condition is falsified (disengage). In our case,
the condition for sharing is the existence of connectivity, the engagement value is the
union of the content of the tuple spaces, and the disengagement values partition
the content of the shared tuple space according to tuple location and the new
connectivity.

For notational convenience we define an operator, ↓, to generate a set containing
all tuples from a tuple space T whose current location field refers to an agent a.
Intuitively, T ↓ a selects all tuples for which a is responsible:

T ↓ a , 〈set θ : θ ∈ T ∧ θ.cur = a :: θ〉

where cur is the field label needed to access the current location field, with a no-
tation similar to the one we used in the previous section for the tuple identifier.
With this definition, transient sharing can be expressed by substituting the uncon-
ditional sharing clause in the Interactions section of the Linda semantics, with
the following:

〈∀ a, b, c, T : a, b, c ∈ C ∧ T ∈ T :: a.T ≈ b.T when a κ b
engage a.T ∪ b.T
disengage 〈∪ c : c κ a :: c.T ↓ c〉,

〈∪ c : c κ b :: c.T ↓ c〉〉

where C and T have the meaning described earlier. According to this expression,
the two tuple space variables named T belonging to agents a and b become shared
when connectivity is established between the agents, i.e., when a κ b is true. The
shared variable T is assigned the set union of the content of the tuple spaces.
Correctness of the engagement clause relies on the commutativity of the union
operator to generate the same value whether a.T ≈ b.T or b.T ≈ a.T , and on the
fact that the tuple space is a set (rather than a multiset), thus ensuring that no
tuple duplication takes place when a.T ≈ a.T . On disengagement, i.e., when aκb is
falsified, the content of the shared tuple space variable is partitioned such that the

the context in which the variable is used is sufficient to remove ambiguity.
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contents of the tuple spaces of each agent reflect the tuples available under the new
connectivity. In other words, after a disconnection the visible tuples are only those
whose responsible agents are still connected to one another. In our example, the
result of transient sharing is that either of the consumers can remove jobs created
by the producer only when the two components are connected.

Managing misplaced tuples. In Figure 3, the out operation is used with a
location parameter to specify that a job tuple should be migrated to the tuple space
of Consumer(1). While this does not guarantee that Consumer(1) will process the
tuple, the migration makes it possible for Consumer(1) to process the tuple even
after it is disconnected from the producer. The semantics of this extended operation
can be modeled by the following:

out[d](T, t) , out(T, [cur: a,dest: d] ⊕ t)

which stores the tuple t with a (the agent that executed the operation) as the current
location and d as the destination. In this definition we rely on the definition of out

given earlier for Linda, but we modify the tuple parameter by extending it with
location fields. The setting of the identifier field and the change in the tuple space
content is performed by the out described in Section 3.1, while the values of the
cur and dest fields are set explicitly. Note that this relies on the aforementioned
redefinition of the createTuple function to ensure the existence of these two fields.
Finally, for notational convenience we allow the specifier to leave out the values for
some or all locations, as shown in Table I of Section 2.2. When missing, they are
assumed to be the identifier of the agent performing the out.

Since this statement is not guarded, it is executed independently of whether the
destination d is connected to a or not. In the case where the writing and the desti-
nation agents are connected when the out is issued, tuple migration is immediate.
In the case where connectivity does not immediately exist, the migration occurs as
soon as connectivity becomes available. This opportunistic action is modeled by
an additional statement that employs the reactive construct reacts-to provided by
Mobile Unity.

Reactive statements extend Mobile Unity statements with the capability to spec-
ify actions that must be executed immediately after a given condition is established
rather than eventually as dictated by the fair interleaving semantics. Reactive
statements can appear within an individual program specification or within the
Interactions section. The reactive statements of the entire system are logically
combined to form a single reactive program that is executed to fixed point after the
execution of every conventional (non-reactive) statement. It is the responsibility of
the specifier to ensure fixed point of the reactive program is actually reached11. In
our model this condition is guaranteed by construction, except for the case when
a reaction generates a tuple that triggers another reaction—a condition that is
nonetheless easy to analyze at the application level.

For specifying tuple migration, we define the following reactive statement in the

11The introduction of reactive statements is reflected in the Mobile Unity logic, and proper
inference rules are needed to prove the correctness of reactive programs. The interested reader
can find details in [McCann and Roman 1998].
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Interactions section:

〈‖ θ, a, b, T : a, b ∈ C ∧ T ∈ T ∧ θ = θ′.(θ′ ∈ b.T ∧ θ′.cur = a ∧ θ′.dest = b)

:: b.T := b.T − {θ} + {[cur: b] ⊕ θ}〉 reacts-to true

Although connectivity is not explicitly mentioned in this formula, it is implicit
that tuples can migrate from a to b only when connectivity is available. The
interpretation of the above formula from the perspective of agent b shows that b
selects a misplaced tuple (with current location a and destination b) from its own
tuple space, b.T . Since b.T is shared with the other tuple spaces, the presence
of a tuple belonging to a inside b’s tuple space guarantees that a is connected.
Stated differently, a tuple cannot exist in a tuple space if the agent specified in the
tuple’s current location field is not present (i.e., connected). In the formula above,
the misplaced tuple is then “migrated” by removing it from the tuple space, and
reinserting it with the cur field properly reset to agent b.

The semantics of reactions guarantee that tuples migrate immediately when con-
nectivity is available. If a tuple is written while the current and destination agents
are connected, the reaction fires immediately after the out operation. Alternately,
when components holding misplaced tuples come into range, the reaction above
executes in the same atomic step that engages the tuple space variables. In both
cases, agents perceive an instantaneous tuple migration to the destination agent.

Formalizing location-extended query constructs. The location-extended
variants of the other operations can be modeled by using the earlier defined Linda
operations along with the cur and dest tuple fields. Here, we focus on the for-
malization of in:

t := in[a, b](T, p) , t := in(T, [cur: a,dest: b] ⊕ p)

The formalizations of inp, ing, and the rd variants directly follow. In the above
formula, the values in square brackets are the current and destination location
parameters, and any of the tuple space projections defined in Section 2 can be
defined easily. Agents can be named explicitly using their identifier; the formal
AgentID is used to match any agent. To express queries ranging over an entire
host, we use the subtype matching definition described in Section 3.1. For example,
the query necessary to remove a tuple destined to agent b from the host-level tuple
space named jobs of the co-located agent a is:

in[〈AgentID i : i.λ = a.λ〉, b](jobs , p)

Care must be taken to ensure that the predicate is computable given the connectiv-
ity constraints of the system. For example, it is not reasonable to write a predicate
that specifies for the dest field all agents residing on a host that is not accessible.
Both predicates used here are computable, and are available in the implementation
of Lime. For notational convenience, we allow the specifier to use a non-augmented
version of these operations, with the default meaning to query the current feder-
ated tuple space. As discussed in Section 4.2, the cur field of the probe and group
operations should be restricted to a single host, although this is not enforced by
the formalization.

Strong and weak reactions. The example in Figure 3 extends the producer and
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the consumers to handle high priority jobs. These are generated by the producer
and should be performed by any of the consumers “as soon as possible”, i.e., as
allowed by connectivity. If the producer and a consumer are connected when the job
is generated, the consumer should immediately remove the corresponding tuple and
perform the job. Otherwise, the consumer should take and perform the job as soon
as connectivity is restored. From the producer’s perspective, the only change is
the addition of a statement (the last one) that outputs a job tuple with priority

as the job name. The consumer program, on the other hand, must be able to
react to the presence of a high priority tuple. Lime reactions provide the natural
solution for implementing this behavior. As discussed in Section 2, Lime provides
two kinds of reactions: strong reactions fire in the same atomic step as detecting
the presence of a matching tuple, while weak reactions fire only eventually after
detection. In the example, the consumer program is augmented with a statement
(the last one) containing a weak reaction that is fired whenever a tuple containing
high priority jobs appears in the shared tuple space, and executes the corresponding
job. Using a weak reaction in the example makes it closer to the specification of
a real application designed using the current Lime implementation where, as we
mentioned in Section 2, performance considerations driven by the current target
scenario constrain strong reactions to fire only upon detection of a local tuple. In
the formalization that follows, however, we do not model explicitly the constraints
the current middleware imposes on strong reactions, keeping the formal semantics
of our model as free as possible from the implementation concerns specific to a
given application scenario.

We model Lime reactions as:

ρ :: s(τ) strongReaction[x, y](T, p,mode)

ρ :: s(τ) weakReaction[x, y](T, p,mode)

where s is the statement to be performed when a tuple matching pattern p is
found in the tuple space T . As in query operations, [x, y] indicates a projection
of the tuple space over which to evaluate the reaction. The variable τ is a free
variable that can appear within the statement s and is bound to the matched
tuple when the action fires. The variable mode can assume either of the once or
oncepertuple values. The label ρ uniquely identifies the reaction and can be used
as a parameter for the registering and deregistering operations, enableReaction(ρ)
and disableReaction(ρ).

The formalization of reactions relies on the reacts-to construct provided by
Mobile Unity. Nevertheless, some additional bookkeeping is necessary to deal
with explicit registration and deregistration of reactions (which is not provided in
Mobile Unity) and to ensure the proper execution pattern with respect to the
reaction mode. The details of the formalization are discussed below for strong
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reactions:

ρ :: s(τ) strongReaction[x, y](T, p, mode) ,

〈‖ θ : θ = θ′.(M(θ′, [id: ID,cur: x,dest: y] ⊕ p) ∧ θ′ ∈ T
∧ (mode = once ⇒ reactedSetρ = {})
∧ (mode = oncepertuple ⇒ θ′.id /∈ reactedSetρ))

:: s{τ/θ} ‖ reactedSetρ := reactedSetρ ∪ {θ.id}〉

reacts-to

matchExists(T, [id: ID,cur: x,dest: y] ⊕ p) ∧ enabledρ

To keep track of the tuples that have been reacted to and of whether the user has
enabled or disabled the reactions, two auxiliary variables, namely reactedSetρ and
enabledρ, are introduced. By subscripting these variables with the unique reaction
identifier ρ, we are guaranteed that reactions do not interfere with one another.

The selection of a matching tuple uses the same non-deterministic selection nota-
tion as described in the Linda formalization for the copy function. The necessity to
bind the matched tuple to the free variable τ prohibits the use of the copy function
here, but the semantics are the same: a single matching tuple is selected from the
shared tuple space. The condition for actually firing the reaction (i.e., executing
the user action s) depends on the contents of reactedSetρ. This variable tracks the
identity of the tuples that have already been reacted to. A once reaction will only
fire if no tuples have been reacted to, i.e., the set is empty. A oncepertuple

reaction will only fire if the tuple chosen by the non-deterministic selection has not
been recorded in reactedSetρ. The user action s(τ) can be any non-reactive Mobile
Unity statement12.

To guarantee that at least one tuple can be selected from the tuple space, we
include the matchExists function as a condition to the reaction. Without this,
the θ′ variable could not be bound and the formalization would be incorrect. The
second condition for the reaction, enabledρ, tracks whether the user has explicitly
enabled or disabled the reaction with the following macros:

enableReaction(ρ) , (enabledρ := true ‖ reactedSetρ := {}) if ¬enabledρ

disableReaction(ρ) , enabledρ := false

These functions allow the specifier to control when reactions are able to fire during
the lifetime of the system. By clearing reactedSetρ when a reaction is re-enabled, it
is treated as a new reaction that has not fired on any tuples. This is true for both
once and oncepertuple; neither type of reaction retains any memory of previous
periods when it was enabled and they may react again to the same tuples, if re-
enabled. It is also important to remember that the reactive program is executed
after every regular statement, including a statement that enables a reaction. This
means that a reaction may fire in the same atomic step as the statement that enables
it, assuming a matching tuple exists in the tuple space. As mentioned in Section 2,
this is a significant departure from more conventional event-based systems.

12More precisely, transactions cannot appear in user actions either. Since transactions are not
used in our formalization of Lime, we redirect the reader interested in the semantic details of
Mobile Unity to [McCann and Roman 1998].
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For proper initialization, each reaction must be either enabled with an empty
reactedSetρ, or disabled. This is indicated in the initially section of a program for
reaction ρ by using either of the following predicates:

isEnabled(ρ) , enabledρ = true ∧ reactedSetρ = {}

isDisabled(ρ) , enabledρ = false

As mentioned earlier, the formalization just introduced does not limit the scope of
strong reactions to the local host, as is done by our current implementation. This
constraint is straightforward to capture, but we prefer to define here the formal
semantics of the Lime model in the most general way.

Moreover, our model provides, through weak reactions, an alternative reaction
semantics that imposes fewer implementation requirements. Weak reactions re-
move the atomicity constraint between the detection of the matching tuple and
the firing of the reaction, allowing other agent operations to occur in between the
two. Weak reactions therefore enjoy a scope that can be as large as the whole
federated tuple space without excessive constraints being placed on the run-time
system. We take advantage of the similarities between weak and strong reactions
and actually rely on the latter when specifying the former. Indeed, a strong reac-
tion is exploited to detect the appearance of a matching tuple. The user action is
instead an asynchronous statement, breaking the atomicity and guaranteeing only
eventual completion of the weak reaction:

ρ :: s(τ) weakReaction[x, y](T, p, mode) ,

ρ :: eventsρ := eventsρ ∪ {τ} strongReaction[x, y](T, p, mode)

[] 〈‖ θ : θ = θ′.(θ′ ∈ eventsρ) :: eventsρ := eventsρ − {θ} ‖ s{τ/θ}〉

To model the transfer of a matching tuple from a given agent to the subscriber, we
rely on the set eventsρ. This variable is a temporary holding place for all tuples
that should be reacted to, but for whom the user reaction has not yet fired. In some
sense, even though eventsρ is local to the agent that registered the reaction, it is
analogous to a communication buffer between the agents. This set is populated by
the strong reaction in the first statement. The second statement, separated by the
[] operator, executes asynchronously with respect to the reaction by removing an
element from eventsρ and firing the corresponding user action using the matched
tuple. As with strong reactions, only tuples in the currently shared tuple space
will be reacted to, meaning that any tuples written while hosts are disconnected
cannot be reacted to, even in the weak model. Additionally, we must redefine the
initialization macro isEnabled, used only in the initially section, to clear the set
eventsρ:

isEnabled(ρ) , enabledρ = true ∧ reactedSetρ = {} ∧ eventsρ = {}

One point to notice about the definition of weakReaction is the use of non-
deterministic selection to remove an element from eventsρ. Similar to the definition
of remove in Section 3.1, exactly one tuple is selected, ensuring that only one user
action s fires at a time. Also, this non-deterministic selection does not guarantee
an order in the selection of elements from eventsρ, nor does it guarantee that an
element will ever be selected. This is the weakest constraint we can set in the
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public class LimeTupleSpace {

public LimeTupleSpace(String name);
public String getName();
public boolean isOwner();

public boolean isShared();
public boolean setShared(boolean isShared);

public static boolean setShared(LimeTupleSpace[] lts, boolean isShared);
public void out(ITuple tuple);
public ITuple in(ITuple template);

public ITuple rd(ITuple template);
public void out(AgentLocation destination, ITuple tuple);

public ITuple in(Location current, AgentLocation destination, ITuple template);
public ITuple inp(Location current, AgentLocation destination, ITuple template);

public ITuple[] ing(Location current, AgentLocation destination, ITuple template);
public ITuple rd(Location current, AgentLocation destination, ITuple template);
public ITuple rdp(Location current, AgentLocation destination, ITuple template);

public ITuple[] rdg(Location current, AgentLocation destination, ITuple template);
public RegisteredReaction[] addStrongReaction(LocalizedReaction[] reactions);

public RegisteredReaction[] addWeakReaction(Reaction[] reactions);
public void removeReaction(RegisteredReaction[] reactions);
public boolean isRegisteredReaction(RegisteredReaction reaction);

public RegisteredReaction[] getRegisteredReactions();
}

Fig. 4. The class LimeTupleSpace, representing a transiently shared tuple space.

formalization, and leaves room for stronger guarantees to be enforced by specific
implementations. For instance, our current implementation maintains ordering and
guarantees selection.

4. THE LIME MIDDLEWARE

After having presented the Lime model and its formal semantics, we now switch our
focus to describe how it is embodied in the companion middleware. In Section 4.1,
we illustrate how the concepts of our model are made available to the programmer
through the middleware application programming interface (API). Then, in Sec-
tion 4.2 we discuss the most important choices underlying the design of the Lime

middleware, and illustrate its overall architecture. Finally, Section 5 describes some
examples of application development, where we illustrate how the API is used in
practice by the programmer, and how the mechanisms included in the middleware
architecture come into play in mobile scenarios. The reader interested in additional
information can find extensive documentation and programming examples on the
Lime Web site at http://lime.sourceforge.net.

4.1 Application Programming Interface

Fundamental to Lime is the notion of transiently shared tuple space. This con-
cept is embodied in the class LimeTupleSpace, whose public interface is shown13

in Figure 4. In the current implementation, agents are single-threaded and only
the thread of the agent that creates the tuple space is allowed to perform opera-
tions on the LimeTupleSpace object; accesses by other threads fail by returning an
exception. This represents the constraint that the its must be permanently and
exclusively attached to the corresponding mobile agent. The name of the tuple
space is specified as a parameter of the constructor.

13Exceptions are not shown for the sake of readability.
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Agents may also have private tuple spaces, i.e., not subject to sharing and not
appearing in the LimeSystem tuple space. A private LimeTupleSpace can be used
as a stepping stone to a shared data space, allowing the agent to populate it with
data prior to making it publicly accessible, or it can be useful as a primitive data
structure for local data storage. All tuple spaces are initially created private, and
sharing must be explicitly enabled by calling the instance method setShared. The
method accepts a boolean parameter specifying whether the transition is from pri-
vate to shared (true) or vice versa (false). Calling this method effectively triggers
engagement or disengagement of the corresponding tuple space. The sharing prop-
erties can also be changed in a single atomic step for multiple tuple spaces owned
by the same agent by using the static version of setShared (see Figure 4). En-
gagement or disengagement of an entire host, instead, can be triggered explicitly
by the programmer by using the methods engage and disengage, provided by the
LimeServer class, not shown here. Otherwise, they are implicitly called by the
run-time support according to connectivity. The LimeServer class is essentially
an interface towards the run-time support, and exports additional system-related
features, e.g., loading of an agent into a local or remote run-time support, setting
of configuration properties, and so on.

LimeTupleSpace contains the Linda operations needed to access the tuple space,
as well as their operation variants annotated with location parameters. The only
requirement for tuple objects is to implement the interface ITuple, which is de-
fined in a separate package providing access to a lightweight tuple space imple-
mentation. As for location parameters, Lime provides two classes, AgentLocation
and HostLocation, which extend the common superclass Location, enabling the
definition of globally unique location identifiers for hosts and agents. Objects
of these classes are used to specify different scopes for Lime operations, as de-
scribed earlier. For instance, a probe inp(cur,dest,t) may be restricted to the
tuple space of a single agent if cur is of type AgentLocation, or it may refer
the whole host-level tuple space, if cur is of type HostLocation. The constant
Location.UNSPECIFIED is used to allow any location parameter to match. Thus,
for instance, in(cur,Location.UNSPECIFIED,t) returns a tuple contained in the
tuple space of cur, regardless of its final destination and therefore including mis-
placed tuples. Note how typing rules allow the proper constraint of the current and
destination location according to the rules of the Lime model. For instance, the
destination parameter is always an AgentLocation object, as agents are the only
carriers of “concrete” tuple spaces in Lime. In the current implementation of Lime,
probes (inp and rdp) and bulk operations (rdg and ing) are always restricted to
a local subset of the federated tuple space, as defined by the location parameters.
An unconstrained definition, such as the one provided for in and rd, would involve
a distributed transaction across the federated tuple space to preserve the semantics
of the probe.

All the operations retain the same semantics on a private tuple space as on a
shared tuple space, except for blocking operations. Since the private tuple space is
exclusively associated to one agent, the execution of a blocking operation when no
matching tuple is present would suspend the agent forever, effectively waiting for
a tuple that no other agent can possibly insert. Hence, blocking operations always
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public abstract class Reaction {

public final static short ONCE;
public final static short ONCEPERTUPLE;
public ITuple getTemplate();

public ReactionListener getListener();
public short getMode();

public Location getCurrentLocation();
public AgentLocation getDestinationLocation();

}

public class UbiquitousReaction extends Reaction {
public UbiquitousReaction(ITuple template, ReactionListener listener, short mode);

}
public class LocalizedReaction extends Reaction {

public LocalizedReaction(Location current, AgentLocation destination,
ITuple template,ReactionListener listener, short mode);

}

public class RegisteredReaction extends Reaction {
public String getTupleSpaceName();

public AgentID getSubscriber();
public boolean isWeakReaction();

}

public class ReactionEvent extends java.util.EventObject {
public ITuple getEventTuple();

public RegisteredReaction getReaction();
public AgentID getSourceAgent();

}
public interface ReactionListener extends java.util.EventListener {

public void reactsTo(ReactionEvent e);

}

Fig. 5. The classes Reaction, RegisteredReaction, ReactionEvent, and the interface
ReactionListener, required for the definition of reactions on the tuple space.

generate a run-time exception when invoked on a private tuple space.
The remainder of the interface of LimeTupleSpace is devoted to managing re-

actions; relevant classes for this task are shown in Figure 5. Reactions can either
be of type LocalizedReaction, where the current and destination location restrict
the scope of the operation, or UbiquitousReaction, that specifies the whole fed-
erated tuple space as a target for matching. The type of a reaction is used to
enforce the proper constraints on the registration through type checking. These
two classes share the abstract class Reaction as a common ancestor, which defines
a number of accessors for the properties established for the reaction at creation
time. Creation of a reaction is performed by specifying the template that needs
to be matched in the tuple space, a ReactionListener object that specifies the
actions taken when the reaction fires, and a mode. The ReactionListener in-
terface requires the implementation of a single method reactsTo that is invoked
by the run-time support when the reaction actually fires. This method has ac-
cess to the information about the reaction carried by the ReactionEvent object
passed as a parameter to the method. The reaction mode can be either of the
constants ONCE or ONCEPERTUPLE, defined in Reaction. Reactions are added to the
its by calling either addStrongReaction or addWeakReaction, depending on the
desired semantics. As we discussed earlier, in the current implementation strong
reactions are confined to a single host, and hence only a LocalizedReaction can
be passed to the first method. Registration of a reaction returns an instance of
RegisteredReaction that can be used to deregister a reaction with the method
removeReaction. The decoupling between the reaction used for the registration
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Fig. 6. The main components of the Lime middleware architecture.

and the returned RegisteredReaction object allows for registration of the same
reaction on different itss and for the same reaction to be registered with strong
and, subsequently, with weak semantics.

Finally, in addition to the LimeTupleSpace class described thus far, the Lime

API includes a LimeSystemTupleSpace class that provides access to the LimeSystem

tuple space. Since tuples in the LimeSystem are directly managed by the run-time
support, LimeSystemTupleSpace does not provide any of the variants of the out or
in operations. The interface of this class is otherwise identical to LimeTupleSpace,
enabling queries and reactions over the system configuration information.

4.2 Design and Implementation

In this section we look behind the scenes of the Lime API, and describe the main
design choices of our middleware. Figure 6 shows a class diagram with the most rel-
evant classes and their relationships. Details are provided throughout this section.

Tuple Space. One of the early decisions in the design of Lime addressed the im-
plementation of the underlying tuple space. Analysis of available systems revealed
that they provide a rich set of features with large variations in terms of expres-
siveness, performance, and often semantics. The need for a simple, lightweight
implementation, combined with the desire to provide support and interoperability
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with industrial-strength products, led us to the development of an adaptation layer
that hides from the rest of the Lime implementation the nature of the underlying
tuple space engine. This layer is provided by a separate package called LighTS that
also includes a lightweight tuple space implementation14. In this package, the in-
terface ITupleSpace provides access to the core tuple space functionality. Adapter
classes implementing this and other interfaces are loaded at start-up to translate
operations into those of the supported tuple space engines. Currently, adapters ex-
ist for LighTS’s built-in lightweight tuple space and for IBM’s TSpaces [Lehman
et al. 2001].

In Lime, every LimeTupleSpace object contains an instance of the LighTS tuple
space, accessible through the ITupleSpace interface. Instances of LimeTupleSpace
are created as private, so that only the agent creating the tuple space has access
to the contents of the tuple space. Operations on the LimeTupleSpace are dele-
gated to the underlying ITupleSpace object if the tuple space is currently private.
Otherwise, they are delegated to a component of the run-time that enforces the
semantics of transient sharing, as described in the following.

Location Parameters. Although locations are not immediately useful in a pri-
vate tuple space, LimeTupleSpace is equipped with the mechanisms needed to deal
with location attributes since they become relevant when the tuple space is toggled
from private to shared. These mechanisms simply entail the management of two
fields that are dynamically added and removed from tuples, and that correspond to
the current and destination locations. Upon insertion in the tuple space, the orig-
inal tuple provided by the programmer is always augmented with these two fields,
which are set to the proper value—those specified by the programmer if the oper-
ation contains location parameters, conventional default values otherwise. These
fields are then stripped off when the tuple is returned as the result of an operation
accessing the tuple space, such as rd. Although these fields are exploited by the
run-time support to deal with locations, they are hidden from the programmer,
thus preventing the introduction of inconsistencies by directly altering their values.

These location parameters are simply agent identifiers. It is worth noting that
agent identifiers must be unique throughout the system. For this reason, every
agent is assigned a unique identifier indirectly accessible through the ILimeAgent

interface. The agent identifier itself contains the identifier of the server where it
was created, and a unique long value, incremented each time a new agent is created
on the server.

Host-Level Sharing. When a private LimeTupleSpace is set to shared, a host-
level tuple space is created through transient sharing, according to the semantics
we presented earlier. The enforcement of these semantics, and in particular of the
engagement and disengagement of local tuple spaces, cannot be managed by a single
LimeTupleSpace, as it requires host-wide management of tuple space access. This
management is provided by instances of the class LimeTSMgr. On each host, one
LimeTSMgr object exists per tuple space name15: each of these objects is created

14LighTS source code and documentation are available at lights.sourceforge.net
15We assume applications use some convention for tuple space naming. Alternately, the
LimeSystemTupleSpace can be used to identify the names of the tuple spaces in the system.
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when a local LimeTupleSpace with the corresponding name becomes shared for
the first time. Subsequent engagements of local tuple spaces with the same name
exploit the same LimeTSMgr.

When the LimeTupleSpace becomes shared, it surrenders the control of its tuple
space to the appropriate LimeTSMgr. In practice, the methods of the LimeTu-

pleSpace no longer operate directly on the ITupleSpace, rather they delegate
tuple space operations to the LimeTSMgr, which performs the appropriate actions
according to the semantics of transient sharing before returning control to the
method body and hence to the calling agent. Operation requests are queued and
serially executed at the LimeTSMgr, which runs in a separate thread of control. This
way, synchronization among concurrent accesses performed through different Lime-
TupleSpace instances is obtained structurally, by confining all tuple space accesses
to a synchronized queue.

To perform its actions, the LimeTSMgr must obtain access to the content of
the tuple space being shared. This access can be granted in at least two ways.
The first one consists of providing the LimeTSMgr with a direct reference to the
ITupleSpace object holding such content. The other solution consists of moving
the data tuples into a single ITupleSpace that contains all the shared tuples and is
associated with the LimeTSMgr, and moving them back to the original ITupleSpace
when it is unshared16. The first approach is more convenient in very dynamic
scenarios, where the overhead of moving the tuples back and forth as a consequence
of a reconfiguration becomes significant. Instead, the second approach, which is
chosen by our current implementation, opens up opportunities for optimizing query
execution since, rather than searching several tuple spaces, a single one can be
searched. It should be noted that in both cases, the tuples are moved, not copied.

Throughout this section, we use the term host to refer to the location of a group of
agents. In Lime, however, a single computer can host multiple groups, distinguished
from one another by port number. Technically, therefore, when we use the term
host we are referring to a LimeServer, identified through a host:port pair.

Reactions. In addition to the ITupleSpace object, each LimeTupleSpace and
LimeTSMgr contains also a Reactor object that is responsible for managing the
(de)registration of reactions and the execution of the reactive program. Reactor,
LimeTupleSpace, and LimeTSMgr are properly synchronized so that only tuple space
operations issued from within the statements of the reactive program are allowed
to execute while all others are blocked during the execution of a reaction.

When a strong reaction is registered by the user, a RegisteredReaction object
is generated and kept in a list held by the local Reactor. This list effectively
contains the reactive program, which must execute after each tuple space operation
that adds tuples to the tuple space. Execution of the reactive program proceeds
by iterating through the list of registered reactions. If a tuple matching a reaction
is found, the reaction is fired by executing the corresponding ReactionListener.
Iteration continues until one pass completes with no reactions firing.

Weak reactions are built on top of strong reactions, and may span multiple hosts.

16In this case, the tuple space associated with the LimeTSMgr can be regarded as a concrete
representation of the host-level tuple space.
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Fig. 7. Distributed processing of a weak oncepertuple reaction.

Figure 7 shows an example of the distributed processing involved. When a weak
reaction is registered (e.g., in the figure, by an agent in host A), a message contain-
ing the reaction template and a reaction identifier is sent to all the hosts involved,
based on the location parameters associated with the reaction. On each host, the
arrival of this message causes the registration of a system-defined strong reaction,
effectively watching for tuples matching the specified template on behalf of the
registering agent. A similar “watchdog” reaction is registered also at the host of
the agent that installed the weak reaction. Moreover, on the registering host, the
ReactionListener provided by the programmer is stored along with the reaction
identifier within a table managed by the WeakReactionMgr object associated to the
local LimeTSMgr. When one of the watchdog strong reactions fires on one of the
hosts (e.g., because of the insertion of a matching tuple in the local tuple space,
as in Figure 9), its listener takes care of sending back to the registering host the
corresponding ReactionEvent, which contains a copy of the matching tuple and
the reaction identifier. The latter is used to retrieve the correct listener from the
table in WeakReactionMgr and to execute it by passing the ReactionEvent.

Upon disengagement, the watchdog system reactions are automatically deregis-
tered, as shown in Figure 9 with the disengagement of host C. Otherwise, these
reactions may or may not remain installed after the execution of the listener on
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the registering agent, depending on the mode of the application reaction installed.
If the mode is once, the reaction is deregistered (i.e., removed from the reactive
program, and its listener removed from WeakReactionMgr) right after its execution,
and so are all the system reactions. We guarantee that the ReactionListener is
executed only once, even when multiple matching tuples are returned from different
hosts in the system.

Instead, if the mode is oncepertuple the reaction (and the remote watchdog
reactions necessary for monitoring) remains registered, but it must be prevented
from firing multiple times for the same tuple. This requires a mechanism to distin-
guish one tuple from another. Because the tuple space itself is a multiset, multiple
tuples may contain the same data. Therefore, we guarantee that all tuples are
unique by adding a tuple identifier field to each tuple before it is inserted into the
tuple space. To guarantee uniqueness, this tuple identifier contains the identifier of
the agent that produced the tuple and a long value that is incremented each time a
tuple is inserted by the agent. The identifier is hidden from the Lime programmer
in the same manner as the location parameters, meaning it is stripped from the
tuple before the data portion of the tuple is returned to the user.

In the current implementation, the oncepertuple mode is implemented by
keeping a list of the tuple identifiers that have already been reacted to within the
RegisteredReaction object itself. Each time a matching tuple is found, this data
structure is queried and updated to determine if a listener should be executed. Our
optimized implementation of Reactor separates newly written tuples from those
that were in the tuple space prior to the execution of a given reaction, and greatly
improves the performance of oncepertuple by not selecting a tuple more than
once from a single local tuple space. However, because tuples can migrate and weak
reactions can be uninstalled and reinstalled as connectivity changes, it is possible
for a tuple to be selected more than once for a reaction, making the list of tuple
identifiers necessary.

Reactions as a Building Block of Transiently Shared Tuple Spaces. One
interesting aspect of our design is that the management of blocking operations over
a transiently shared space, including a federated one, is performed by relying on
reactions, which are exploited not only by the programmer through the API, but
also internally by the run-time support.

When a blocking query operation is issued on a federated tuple space, one of two
things may happen. In the case where a matching tuple is found immediately in the
host-level tuple space, the processing is equivalent to the non-blocking operation:
the LimeTSMgr simply releases the calling agent and returns the matched tuple
to it. Instead, if no matching tuple is found, further processing must be done to
detect when a matching tuple appears in the tuple space, and therefore the agent
can be released. Phrased another way, the run-time support needs to react to the
presence of a matching tuple, an operation that is achieved precisely by using Lime

reactions.

Therefore, when the immediate probe does not find a matching tuple, the run-
time creates and registers a once reaction with the same template. When a match-
ing tuple is eventually inserted in the tuple space, the reaction fires and the tuple
is passed to the listener through the ReactionEvent input parameter—as in all
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Fig. 8. Distributed processing of an in operation. The example assumes no matching tuple initially
exists at Host A.

reactions. The listener is system-defined, and its body performs different actions
depending on whether the operation originally requested was a rd or in. For a
rd, the matching tuple is passed immediately to the suspended agent. For an in,
the tuple is first removed, then passed to the agent. This processing is shown in
Figure 8.

These operations take place both in the case of a host-level and a federated
tuple space, with the only difference being that in the first case a strong reaction
is registered, while in the second case a weak reaction is used. This complicates
things when an in must be processed. In fact, in the first case the use of a strong
reaction guarantees that the tuple cannot be withdrawn in between the detection
of its presence and the execution of the listener, since these two steps are executed
atomically. This guarantee does not hold when a weak reaction is used, and hence
a subsequent inp must be used to withdraw the tuple. Probes are implemented by
sending the inp operation request to the appropriate host based on the location
parameters. There, it is served by the appropriate LimeTSMgr and the result is
returned. In our case, if the probe returns a tuple the agent is released. However,
the tuple might have been withdrawn by another agent, in which case the inp

returns null, the reaction is re-registered, and the agent continues to wait.
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Fig. 9. A simple leader-based protocol for engagement and disengagement. The leader serves to
ensure atomicity of the operation.

Another case to consider is the possibility that the reaction fires at the same
time on multiple hosts, with the result that the host of the agent that issued the
operation receives multiple matching tuples. If the operation is a rd, the agent’s
host simply returns to it the first tuple, dropping any others that arrive. If the
operation is an in, the replies are buffered and if the inp for the first tuple returns
null, the subsequent replies are used to issue new inp requests to find a matching
tuple.

Connectivity, Engagement, and Disengagement. Transient sharing of host-
level tuple spaces into a federated one is dependent on the connectivity among
the hosts in the system. A set of connected hosts forms a group. Independent,
disjoint groups can co-exist, as long as they are not within communication range.
When two or more groups move within range, they are merged into a single group
containing all members. To provide this functionality, Lime relies on the group
management protocol described in [Roman et al. 2001]. This protocol guarantees
that, in response to a change in group membership detected at the network level,
all members of the group are notified atomically. In principle, any group forma-
tion policy can be exploited, but the current implementation matches the above
description and relies on GPS information, working best in outdoor scenarios.

To give the reader a basic understanding of how the engagement protocol works,
we describe here a simpler engagement protocol based on multicast instead of GPS.
This protocol actually served as our first experimental engagement protocol and is
still available in the current implementation to support indoor scenarios where
GPS is not available and nodes announce explicitly connection and disconnection.
It assumes that hosts are added to and removed from groups one at a time and
does not support group-to-group engagement or disengagement. The operation of
this engagement and disengagement protocol is shown in Figure 9.
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For each Lime group, a single node acts as the leader, ensuring the atomicity of
engagement. Before a node can join, operations on all involved local tuple spaces
must be halted. This is accomplished by the new host multicasting a join request.
Upon receipt of this request, hosts stop local processing and inform the leader
that they are now ready for engagement. When all nodes are ready, the leader
informs the new host of the identity of the group members by sending a copy of its
LimeSystem tuple space and tells all group members to begin the engagement. All
group members, including the leader, then exchange misplaced tuples and remote
reactions with the new host. When all pairwise data exchanges have completed,
regular operation continues at the hosts. The new host identifies completion when
it has received data from all hosts identified by the leader’s LimeSystem tuple space.

Disengagement is similar, with the departing node notifying the leader of its in-
tent to depart. As before, all nodes receive this message, complete any outstanding
communication with the departing host and notify the leader they are ready for
disengagement. When all hosts are ready, the leader announces disengagement and
the host has disengaged.

In both versions of the engagement and disengagement protocols, the LimeSystem

is updated to reflect the new configuration of hosts, agents, and tuple spaces. In
Figure 6 this is explicitly shown with the connection between GroupMgr and the
TransactionMgr. The TransactionMgr ensures the atomicity of the engagement
and disengagement.

It should be noted that in the implementation, the LimeSystem is not actually
implemented as a federated tuple space. Instead it is independently maintained
at each host, and is kept consistent though updates during engagement and dis-
engagement. Besides updating the information inside the LimeSystem tuple space,
engagement effects the migration of all the misplaced tuples whose destination
became available during the group change. Moreover, for all the weak reactions
involving newly connected hosts, engagement also triggers the registration of these
reactions on the appropriate hosts. On the other hand, disengagement does not
involve any transfer of information. When hosts are disconnected as a consequence
of a group change, the weak reactions involving them are simply deregistered and
the LimeSystem updated. No movement of tuples is required although, to preserve
atomicity, the protocol we employ performs a distributed transaction to ensure that
all hosts complete the disengagement process before regular operations resume.

Mobile Agents. Lime is a coordination framework that deals with mobility in
a way that is independent from the nature of migration. As this is not one of its
goals, it does not support directly agent mobility. Instead, as with tuple spaces,
agent migration is decoupled from the rest of the system by an adaptation layer
that simplifies the integration of a mobile agent system. The currently available
implementation relies on an adapter built for the µCode mobile code toolkit [Picco
1998], available as open source at mucode.sourceforge.net.

This adaptation layer allows a mobile agent to carry along one or more Lime

tuple spaces, and automatically deals with their (dis)engagement. Upon migration,
the agent tuple spaces are all toggled to private, and hence disengaged. These tuple
spaces are serialized as part of the agent state and migrated to the destination along
with the agent, where they are deserialized and shared again before the agent code
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begins to execute. More details about the adaptation layer and how to integrate a
different mobile agent system are available in the Lime documentation, and on the
Lime Web site.

Implementation Details. The lime package is roughly 5,000 non-commented
source statements, resulting in approximately 100 Kbyte of jar file. The LighTS

lightweight tuple space implementation and the adapter for integrating multiple
tuple space engines add an additional 20 Kbyte of jar file. When using mobile
agents, the µCode toolkit adds approximately 30 Kbyte of jar file. Communi-
cation is completely handled at the socket level, requiring no support for RMI or
other communication mechanisms. Lime has been tested successfully on various
versions of Windows, Linux, and MacOSX, using wired Ethernet as well as IEEE
802.11 wireless technology. Moreover, Lime was tested successfully also on PDAs
equipped with PersonalJava and other Java environments for small devices.

5. DEVELOPING MOBILE APPLICATIONS WITH LIME

Application development is the last phase of our research strategy, and the one
where the abstractions inspired by formal modeling and embodied in the middle-
ware are evaluated against the needs of practitioners. In this section we present
two applications that exploit the current implementation of Lime in a setting with
physical mobility of hosts. The first involves the ability to perform collaborative
tasks in the presence of disconnection, while the second revolves around the ability
to detect changes in the system configuration. In each case, we present the cor-
responding application scenarios and report how Lime has been exploited during
development. The lessons learned from these experiences and the results of our
empirical evaluation of Lime are presented in the next section.

5.1 RoamingJigsaw: Accessing Shared Data

Scenario. Our first application, RoamingJigsaw, is a multi-player game in which
a group of players, each carrying a PDA, cooperate to assemble a jigsaw puzzle.
They can construct assemblies of two or more pieces independently (e.g., while
disconnected), acquire piece descriptions from one another when connected, and
share intermediate results (e.g., parts of the puzzle already assembled). Play begins
with one player loading the puzzle pieces into a shared workspace that is visualized
by the user as a puzzle tray. The workspace is shared among all connected users,
therefore the puzzle trays of all connected users show the same set of puzzle pieces
at the beginning.

Each player is assigned a unique color, and players are restricted to working only
with pieces outlined with their color. Pieces can be selected by clicking on them,
resulting in a change of the outline color, visible on the displays of all users. A
player can select pieces or assemblies that are currently selected by another player,
provided that the target player is connected.

Disconnection of a player does not have an immediate effect on the view of the
puzzle tray of the others. Nevertheless, pieces that have been selected by the de-
parting player can no longer be selected by the others—and vice versa. Hence,
the disconnected player can now construct assemblies by using only the pieces out-
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Fig. 10. RoamingJigsaw. The top two images show the puzzle trays of the black and white
players while they are disconnected and able to assemble only their selected pieces. The bottom
two images show the black and white puzzle trays after the players re-engage and see the assemblies
that were made during disconnection.

lined with her color. The pieces of all players remain visible, but if any of the
disconnected players assembles pieces, these will not be visible due to the discon-
nection. These assemblies become visible only when connectivity is restored. In
fact, upon reconnection, the puzzle trays of all users are reconciled with all changes
made during disconnection and the selection of a piece belonging to a connected
player is again possible. Figure 10 shows the appearance of the puzzle tray during
disconnection and after reconnection.

From the description, it is evident that RoamingJigsaw embodies a pattern
of interaction where the shared workspace displayed by the user interface of each
player provides an accurate image of the state of all connected players, but only a
weakly consistent image of the global state of the system. For instance, a user’s
display contains only the last known information about each puzzle piece in the
tray. If two pieces have been assembled by a disconnected player, this change is not
visible to others. However, even this weak model allows players to work towards
the global goal, i.e., the solution of the puzzle, through incremental updates of their
local state.

RoamingJigsaw is a simple game that nonetheless exhibits the characteristics of
a general class of applications in which data sharing is the key element. Hence, the
design strategy we exploited in RoamingJigsaw may be adapted easily to handle
updates in the data being shared by real applications. One example is provided by
collaborative work applications involving mobile users, where our mechanism could
be used to deal with changes in sections of a document, or with paper submissions
and reviews to be evaluated by a program committee.
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Fig. 11. Code for the RoamingJigsaw agent. Exceptions are not shown for readability.
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Design and Implementation. Our design of RoamingJigsaw represents pieces
and assemblies as tuples and the shared workspace as a tuple space. When a player
creates a new puzzle, a tuple is created for each piece. When a player selects
a piece, the corresponding tuple is withdrawn and subsequently reinserted in the
tuple space, making itself the current owner of the tuple. Similarly, when a player
builds an assembly out of several pieces, the tuples representing the previously
individual pieces are removed and a new tuple is written containing information
about the assembled pieces. Figure 11 shows the code for a RoamingJigsaw

agent. The code shown is real, minus exceptions and user interface code. As the
reader can appreciate, despite the non-trivial nature of the puzzle agent the code
itself is reasonably clean and concise.

The critical issues in the design of RoamingJigsaw are the detection of piece
selection and assembly, the reconciliation of the puzzle tray taking place on re-
connection, and the joining of a new player. Interestingly, all of these rely upon
a single weak, ubiquitous, oncepertuple reaction. The reaction template speci-
fies any new tuple corresponding to a puzzle piece, while the reaction listener takes
care of updating the puzzle tray using information found in the tuple, thus correctly
maintaining the weakly consistent view of the workspace. The body of the reaction
is shown in step 6 at the bottom of Figure 11 while the installation is in step 2.
Since the reaction is scoped over the whole federated tuple space, the Roaming-

Jigsaw agent receives updates about new pieces regardless of where and why they
have been inserted. For example, a tuple is immediately reacted to upon insertion
if it represents an assembly made by a currently connected player. If instead it is
an assembly inserted by a player previously disconnected, it is immediately reacted
to as soon as connectivity is re-established. It is important to notice that the Lime

puzzle agents are not explicitly aware of the arrival and departure of players, thus
the programming effort is rightfully spent on handling data changes, rather than
monitoring changes in the system configuration.

Although the processing described thus far operates on the federated tuple space,
fine-grained control over the location of tuples is critical in dealing with disconnec-
tions. To ensure that a player can access her selected pieces during a period of
disconnection, piece selection must actually transfer the corresponding tuple into
the local tuple space of the player’s application. Moreover, according to the earlier
discussion, a player must be prevented from selecting a piece that is currently not
present in the federated tuple space. For this reason, as shown in step 4 of Fig-
ure 11, selection is performed by issuing an inp operation on the tuple space of the
player last known to have the piece. If the piece is returned, it is reinserted in the
local tuple space of the new owner, thus leading to a successful selection. Instead,
if no tuple is returned, this means that the piece is unavailable for selection, and
the game beeps in warning.

Given this ability for a player to remove another player’s piece at any time, it
could happen that a player tries to assemble two of its own pieces but, in the mean
time, one of these pieces is removed by another player. This is handled in step 5 of
Figure 11. If either of the two pieces involved in the assembly cannot be found, then
the system beeps and restores the tuple space. This kind of high-level transaction
is easily handled by the application.
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Fig. 12. RedRover. The main console of RedRover, the identifying icon of one of the team
members, and one player (a ghost) out of range.

5.2 RedRover: Exploiting Context-Awareness

Scenario. Our second target application is a spatial game we refer to as Red-

Rover, in which individuals equipped with small mobile devices form teams and
interact in a physical environment augmented with virtual elements. This forces
the participants to rely to a great extent on information provided by the mobile
units and not solely on what is visible to the naked eye. Our final aim is to empower
each player with global positioning system (GPS) access, audio and video commu-
nication, range finding capabilities, and much more. Currently, the game is limited
to seeking the physical flag of another team and gathering around the player who
finds the flag. A snapshot of the graphical user interface is shown in Figure 12.
The most dominant display element is a view of the playing field, indicating the
current position of all players within range. In RoamingJigsaw, disconnection is
masked until a user tries to access a piece from a disconnected user. In RedRover

disconnection is instead made explicit, by displaying a “ghost” icon for a discon-
nected user, indicating her temporary unavailability. Each player has an icon of
herself that is available to her teammates, as shown in Figure 12. While this is
currently a static image, the functionality can easily be extended to share recent
images taken from a digital camera in order to share environmental information
among teammates. It is important to note that while location information should
be disseminated to all players, some data should be restricted only to team mem-
ber access. For example, it is desirable to inform only one’s own team members
regarding the flag location, and not the opponents’ team.

As with RoamingJigsaw, RedRover is a simple game with the potential to be
extended to real world scenarios. Examples include the exploration of an unknown
area by a group of people or robots. If enhanced with some kind of mapping
mechanism, the interaction pattern of RedRover could easily enable users to
acquire the elements of a region and share these results as they meet other users.

Design and Implementation. A key issue in RedRover is to disseminate
information about the physical location of a given user. In our implementation, this
information is encoded as a tuple. How tuples are filled with location information,
and hence the back-end of the location support, is decoupled from the rest of the
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application through an appropriate API, and thus can easily accommodate various
positioning alternatives. Currently, we support feeding of location data from a GPS
device.

Instead of “pushing” the location information to other users, in our design we let
each application agent “pull” it from the tuple space of the other users. At start-up,
all application agents register a weak oncepertuple ubiquitous reaction, whose
pattern matches any tuple containing location information. Each time a player
moves, its location is updated by writing a tuple containing the corresponding
information in the tuple space. This causes the reaction listener of all application
agents (including the one corresponding to the moving user) to fire, and update the
display according to the new location.

Detection of player disconnection relies on the LimeSystem tuple space and its
support for reactions. In this tuple space, tuples corresponding to hosts and agents
contain a field reporting the current connection status of the mobile unit. In Red-

Rover, all agents are registered for tuples in the LimeSystem representing departed
hosts: the corresponding listener updates the display by substituting the icon of the
player with the ghost icon. Similarly, when a player reconnects a complementary
reaction fires that changes her icon back to normal. Interestingly, thanks to the
oncepertuple reaction associated to location tuples, no further action is needed to
retrieve the current location of the reconnected user. If the player did not change its
position while disconnected, its location tuple will still be the same and no reaction
will fire. On the other hand, if the location tuple is different at engagement time,
then the corresponding listener will execute, updating the display.

To enforce a separation between team data and location information, we ex-
ploited Lime’s ability to define tuple spaces with different names, and hence are
shared independently. Therefore, general information such as player location is
written to a game-wide tuple space, while team-specific information like flags, or
images is written to a tuple space accessed only by the members of that team. A
player can either request to be notified when a given piece of information appears
in its team tuple space, or can probe a specific player for a specific object. For in-
stance, flag capture notification is implemented with a once weak reaction over the
team federated tuple space. Instead, the feature allowing retrieval of the player’s
icon is implemented through a rdp that goes directly to the tuple space of the
corresponding remote player.

6. DISCUSSION

In this section we elaborate on the presentation thus far. First, we report about
lessons learned from the design and development of Lime. Then, we broaden the
scope of our discussion and report about other projects that either build on or are
inspired by Lime. Finally, we turn our attention to efforts that are not directly
related with Lime and survey related research projects that deal with tuple spaces
and middleware for mobility.

6.1 Reflections and Lessons Learned

Lime is the result of a continuous interplay among the definition of the underlying
formal model, the design and implementation of the middleware, and its evalu-
ation with mobile applications. The development of a model for Lime and its
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formalization favored a better understanding of the abstractions provided by the
middleware. In particular, by keeping the programming interface as close as possi-
ble to the operations defined in the formal model, we made it easy to communicate
and reason about the functionality of the system and its use in applications. In
an incidental way, this task also provided an evaluation of the applicability of Mo-
bile Unity to the specification of a middleware for mobility. The ability to think
about abstractions in a setting unconstrained by implementation details favored a
style of investigation characterized by a more radical perspective, where the deci-
sions driving the modeling and the definition of the main abstractions were mostly
determined by the need for expressiveness and completeness.

Building applications on top of Lime made it possible for us to evaluate the
usefulness of its programming abstractions and constructs. For example, our ex-
perience confirmed the effectiveness of both weak reactions on the federated tuple
space and the oncepertuple reaction mode to simplify programming. The reg-
istration of a single reaction is sufficient to guarantee notification of relevant data
as it appears throughout the federation, independent of changes in configuration.
Interestingly, this power has a cost: the implementation of oncepertuple weak
reactions is probably the most complicated portion of the current Lime software—
this should be expected, since we are shifting a great deal of complexity away from
the programmer and into the run-time support.

Another interesting by-product of these empirical evaluations is an understand-
ing of the programming and architectural styles fostered by Lime and recurring
in mobile applications. One distinction can be made between applications such
as RoamingJigsaw whose main requirement is to enable sharing of data despite

mobility and those such as RedRover where most of the computation is driven by
reactions to changes in context and whose functionality exists because of mobility.
In these and other application typologies, a recurring dilemma is between an ap-
plication style that provides a weakly consistent view of the system in the presence
of mobility, and one that provides a fully consistent view that takes into account
departure and arrival of mobile units. Choosing one representation style or the
other has non-trivial implications on the complexity of the overall design and de-
velopment task, as well as on the primitives that must be used. If weak consistency
is enough, the view can be built incrementally by exploiting the data notification
mechanism provided by weak reactions, usually in the oncepertuple mode. If,
instead, a fully consistent view is required, application-specific machinery must be
written in addition to using the LimeSystem tuple space to react (immediately) to
changes in the system configuration. In our experience both styles are naturally
accommodated by the abstraction of a transiently shared tuple space and use of
the LimeSystem tuple space. Our “developers”, mostly graduate and undergradu-
ate students, found it easy not only to program applications with Lime but, most
importantly, to think about the application in terms of the metaphors characteristic
of the underlying Lime model.

Despite the somewhat limited experience, analysis of Lime application develop-
ments revealed that the programming style induced by Lime is quite different from
what we initially expected. This is especially true in the case of weak reactions
and the LimeSystem tuple space. Because Lime was envisioned to be a coordina-
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tion framework founded on the idea of transiently shared tuple spaces accessible
exclusively through Linda operations, reactive programming was not even part of
the initial core. Nevertheless, reactive programming, especially weak reactions on
the federated tuple space, form critical pieces in both RedRover and Roaming-

Jigsaw. Similarly, the LimeSystem was initially thought of as an add-on to support
very specific needs. Actually, we initially thought that the explicit context knowl-
edge provided by the LimeSystem tuple space could be bypassed by the observation
of changes in the data context. Experience with our applications, especially Red-

Rover, showed that this does not hold in general and that developers may use
extensively the LimeSystem tuple space. On the other hand, RoamingJigsaw did
not use the LimeSystem tuple space, showing clearly that it is not an essential part
of all mobile application styles.

6.2 Lime-Inspired Works

Although this paper presents the first comprehensive description of Lime, the pub-
lished model and implementation have already been influential in some research
endeavors both inside and outside our research group.

Within our group, we have extended or exploited Lime for several purposes.
First, we have begun to explore the issues of security in tuple space based ad hoc
mobile environments [Handorean and Roman 2003] by allowing applications to pro-
tect selected tuple spaces and even individual tuples through the use of passwords.
The same passwords were also used to encrypt communication among hosts when
exchanging messages related to sharing specific tuples spaces. Second, we have used
Lime as the foundation for a Jini-like service discovery mechanism [Handorean and
Roman 2002]. This project, implemented as an application layer on top of Lime

uses the tuple space for sharing service advertisements and performing pattern-
based service discovery. This extends the client-server model of service discovery
for the mobile ad hoc environment by coupling the services available for discovery
with the services available in the network, and maintaining this connection even as
connectivity changes. In another project the Lime tuple space is used to support
code mobility by storing Java class bytecode [Picco and Buschini 2002]. The class
loading mechanism is extended to resolve class names by searching the federated
tuple space, instead of a well-known, centralized code repository. This mechanism
enables the code on demand paradigm for code mobility in the mobile ad hoc
environment, where connections to specific code servers are not always available.
Finally, we have recently developed TinyLime [Curino et al. 2005], an extension of
the Lime model designed for mobile data collection in wireless sensor networks. In
TinyLime, applications running on the mobile base stations share the data they
gather and obtain access to sensor data through the same transiently shared tu-
ple space. An energy-aware implementation is provided for the Crossbow MICA2
platform.

Groups at other universities have presented alternatives to both the Lime im-
plementation and the formalization. At Purdue University, a group extracted the
features of Lime necessary for mobile agents by removing host-level sharing, and
created a model referred to as CoreLime [Carbunar et al. 2001]. On top of this
restricted model, they proposed some ideas for tuple space security. A group from
the University of Bologna proposed an alternative to the state-based formal specifi-
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cation presented here, providing a calculus-based specification [Busi and Zavattaro
2001]. This calculus presents several alternatives to the original Lime model, includ-
ing reacting to tuple space operations instead of tuple space contents and blocking
agents that generate tuples destined for disconnected agents rather than creating
misplaced tuples.

As we conclude this section, it should be noted that the effort that went into
developing Lime also contributed to our development of a more abstract and gen-
eral coordination concept and methodology called Global Virtual Data Structures

(gvds) [Picco et al. 2002]. It is centered on the notion of constructing individual
programs in terms of local actions whose effects can be interpreted at a global level.
A Lime group, for instance, can be viewed as consisting of a global set of tuples
and a set of agents that act on it in some constrained manner. The set has a struc-
ture that changes in accordance with a predefined set of policies and it is this very
structure that governs the specific set of tuples accessible to an individual agent
through its local interface at any given point in time. The analogy to the concepts
of virtual memory and distributed shared memory are very strong and other re-
search projects have picked up the gvds theme and instantiated it in their own
unique ways. The xmiddle [Mascolo et al. 2002] system developed at University
College, London, for instance, presents the user with a tree data structure based
on XML data. When connectivity becomes available, trees belonging to different
users can be composed, based on the node tags. Upon disconnection, operations
on replicated data are still allowed, and their effect is reconciled when connectivity
is restored. Also PeerWare [Cugola and Picco 2002] at Politecnico di Milano
exploits a tree data structure, albeit in a rather different way. In PeerWare, each
host is associated with a tree of document containers. When connectivity is avail-
able, the trees are shared among hosts, meaning that the document pool available
for searching under a given tree node includes the union of the documents at that
node on all connected hosts.

6.3 Related Projects

The last several years have seen a revitalization of Linda for distributed computing
applications, including mobile environments. From the industrial perspective, both
Sun and IBM have developed tuple space implementations for client-server coordi-
nation, i.e., JavaSpaces [Freeman et al. 1999] and TSpaces [Lehman et al. 2001],
respectively. These systems present a centralized tuple space, accessible through
remote operations by multiple processes. In contrast, Lime provides a fully dis-
tributed, peer-to-peer implementation of the tuple space abstraction. Distributed
Linda implementations have been studied extensively for fault tolerance [Xu and
Liskov 1989; Bakken and Schlichting 1995] and data availability [Pinakis 1993]. The
main disadvantage with these approaches is their need for high degrees of connec-
tivity among the hosts of the distributed portions of the tuple spaces, a property
inherently not possible in the mobile environment. Instead, Lime supports appli-
cation development in dynamic scenarios, namely those characterized by mobile ad
hoc networks as well as mobile agents, and takes into account the fluidity of these
environments both at the model and implementation level.

One of the first applications of Linda to mobility came in the Limbo plat-
form [Blair et al. 1997; Wade 1999], a system that builds the notion of quality
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of service aware tuple spaces that reside on mobile hosts. The quality of service
information itself is stored in the tuple spaces and can be made accessible to agents
on remote hosts. While Limbo has a notion of distributed tuple spaces that span
multiple hosts, there are no mobile agents carrying tuple spaces when they migrate,
no concept of reaction, and the mechanism for relocation of tuples is unclear. In-
terestingly, the Limbo universal tuple space, which serves as a registry for all tuple
spaces, is similar to the LimeSystem tuple space of Lime. However, instead of de-
scribing the current system context, the universal tuple space remembers all tuple
spaces the host has ever encountered without regard for current reachability.

Two other models, TuCSoN [Omicini and Zambonelli 1999] and MARS [Cabri
et al. 2000], exploit tuple space coordination for mobile agents, creating programma-

ble tuple spaces. When an agent poses a query to the tuple space, the registered
reaction that matches the operation fires, and an action is performed. While in
Lime reactions form a core concept for the application programmer, MARS and
TuCSoN reactions are designed to be implemented by manager agents only, and
application agents use only the basic tuple space operations. These manager agents
support system design to provide an intermediate access between the form of the
query, which can vary among agents, and the data, which remains constant within
a host, but is adapted when a query arrives. While both MARS and TuCSoN
provide transparent access to the local tuple space, MARS adds an option to fully
qualify a tuple space name for an operation, thus identifying the specific host where
operation should be executed. This enables remote operation on tuple spaces, but
connectivity must be available and the agent must be explicit about interaction.
This is in contrast to the Lime model that performs operations transparently over
the current context of transitively connected hosts. Further, in MARS and TuCSoN,
mobile agents only have access to the tuple spaces fixed at the hosts, they do not
carry tuples as they migrate, and there is no built-in coordination or data exchange
among tuple spaces such as Lime tuple migration.

The Klaim [Nicola et al. 1998] model supports a programming paradigm where
code migrates during execution, using tuple spaces to provide the medium for in-
teraction among processes. Tuple spaces have locality, but unlike in Lime, these
tuple spaces are not permanently associated to a process. Instead, Klaim processes
located at a given locality implicitly interact through the co-located tuple space.
There is no transient sharing among tuple spaces, but a process can explicitly inter-
act with any tuple space by identifying its locality, and a process can migrate to a
new locality to interact locally. While Lime leaves the details of process migration
outside the model, Klaim includes in the formal specification the details of process
migration, making it an integral part of the model.

As alluded to in the informal description of Lime provided in Section 2, the notion
of reaction put forth in Lime is profoundly different from similar event notification
mechanisms such as those provided by TuCSoN, MARS, TSpaces, and Javaspaces.
In these systems, the events respond to operations issued by processes on the tuple
spaces (e.g., out, rd, in, etc.). In Lime, however, reactions fire based on the
state of the tuple space itself. Further, Lime reactions execute as a single atomic
step, and cannot be interrupted by other operations. This makes it straightforward
for a single Lime reaction to probe for a tuple, react if it is found, and register a
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reaction if it is not. This same operation in the other systems requires a transaction.
Finally, the atomicity of strong reactions increases the power of Lime reactions. For
example, with a strong, local reaction, the execution of the listener is guaranteed
to fire in the same state in which the matching tuple is found. No such guarantee
can be given with an event model where the events are asynchronously delivered.
Nonetheless, we also support this second approach through weak reactions.

In addition to the shared memory model, significant effort has focused on migrat-
ing other distributed computing models such as objects, events, and databases to
the mobile environment. For example, Mobile CORBA [Adwankar 2001] supports
a limited degree of mobility for clients accessing distributed objects. Unlike Lime,
which targets the extreme MANET environment, Mobile CORBA works only in
nomadic computing environments where mobile clients rely on a stable networking
infrastructure. Event aggregation and dissemination are addressed in Solar [Chen
and Kotz 2002], the Context Toolkit [Dey et al. 2001], and STEAM [Meier and
Cahill 2002], while Bayou [Terry et al. 1995] provides a replicated database model
for the MANET environment. In some respects, Lime combines ideas from research
on both data-centric and event-centric models under a single unified framework,
where the novel idea of transiently sharing the data repositories is combined with
the enhanced expressive power of state-based reactions.

Apart from models, research has focused also on specific problems that are im-
portant for mobile applications, such as disconnected operation, replication, and
adaptation. Coda [Kistler and Satyanarayanan 1992] is one of the first systems to
address disconnected operation, specifically supporting user-defined conflict resolu-
tion of file modifications. Replication [Boulkenafed and Issarny 2003], consistency,
and availability of information have also been addressed, using user-defined profiles
to guide the system replication. Puppeteer [deLara et al. 2001] specifically deals
with adaptation of data, e.g., scaling of images, for remote, wireless access, while
MIDAS [Popovici et al. 2003] takes an aspect-oriented approach for the environment
to push context-dependent updates to applications. While none of these directions
are the core focus of Lime, some of these ideas can be supported as services on
top of Lime, using the shared tuple space model to exchange application, contex-
tual, and control information. For example, we have begun to explore a replication
layer that locally copies tuples according to user-specified patterns and consistency
models [Murphy and Picco 2006].

Finally, several large endeavors have recently emerged to build middleware sys-
tems to support ubiquitous computing. For example, Gaia [Roman et al. 2002]
provides a distributed operating system to support active spaces, offering a range
of services including access to location information, resource management, task
management, and event distribution. Aura [Sousa and Garlan 2002] provides sim-
ilar features through a distributed architecture whose goal is to allow computation
devices to disappear into the environment. Although these systems and Lime can
both be classified as middleware, their respective focus is very different. Gaia,
Aura, and similar efforts focus on providing a comprehensive service platform us-
ing standard communication facilities and abstractions (e.g., sockets and RPC),
and target primarily nomadic computing scenarios where mobile nodes rely on a
fixed infrastructure. Instead, Lime complements these efforts by placing itself at
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the level of the core coordination facilities, where it contributes novel abstractions
meant to simplify the development of higher-level services and applications, and
does so by targeting the more complex mobile ad hoc networking environment.

7. CONCLUSIONS

Lime is a middleware specifically designed to support logical mobility of agents
and physical mobility of hosts in both wired and wireless settings. Within this gen-
eral context, its distinctive feature is the reliance on coordination to simplify the
development of mobile applications. While building on the decoupling advantages
of the original Linda model, Lime breaks new ground by extending coordination
technology to mobile systems, including the ad hoc wireless setting. Transparent
management of tuple space sharing, contingent on connectivity, offers an effective
context awareness mechanism while reactions provide an effective and uniform vehi-
cle for responding to context changes regardless of their nature or trigger. The net
result is a simple model with precise semantics and applicability in a wide range of
settings, from mobile agent systems operating over wired networks, at one extreme,
to mobile ad hoc networks lacking any infrastructure support, at the other. While
a full formal validation of Lime’s impact on software development productivity is
still to be performed, our experience to date with the development of a reasonable
set of applications in wireless settings appears to validate Lime’s potential for rapid
development of mobile applications.

Lime continues to be developed as an open source project, available under the
GNU LGPL license. Source code and development notes are available at lime.

sourceforge.net.
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