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Abstract—Energy autonomy and system lifetime are critical
concerns in wireless sensor networks (WSNs), for which energy
harvesting (EH) is emerging as a promising solution. Neverthe-
less, the tools supporting the design of EH-WSNs are limited
to a few simulators that require developers to re-implement the
application with programming languages different from WSN
ones. Further, simulators notoriously provide only a rough ap-
proximation of the reality of low-power wireless communication.

In this paper we present SENSEH, a software framework that
allows developers to move back and forth between the power
and speed of a simulated approach and the reality and accuracy
of in-field experiments. SENSEH relies on COOJA for emulating
the actual, deployment-ready code, and provides two modes of
operation that allow the reuse of exactly the same code in real-
world WSN deployments. We describe the toolchain and software
architecture of SENSEH, and demonstrate its practical use and
benefits in the context of a case study where we investigate how
the lifetime of a WSN used for adaptive lighting in road tunnels
can be extended using harvesters based on photovoltaic panels.

I. INTRODUCTION

The market value of wireless sensor networks (WSNs) is
growing steadily, as they are delivering the promise of enabling
new, low-cost, and ubiquitous sensing applications. However,
one of the main limiting factors of current applications comes
from energy autonomy, which typically keeps the system
lifetime (or the mean-time-before-maintenance) very far from
the tens of years expected by industry stakeholders. It is
therefore not surprising that the idea of equipping WSN
nodes with an energy harvesting (EH) subsystem has gained
momentum in recent years. Scavenging energy directly from
the environment around WSN nodes appears to be an ideal
solution to alleviate, and possibly solve, the energy problem.
Indeed, in many cases the energy density—whether solar,
wind, vibrational or thermal in nature—available in the target
environment is often compatible with the energy demands of
the low-power devices participating in the WSN application.

While energy harvesting appears very promising for ex-
tending WSN lifetime, new tools are required for accelerating
the time-to-market of this technology. To ease the industrial
development of Energy Harvesting WSNs (EH-WSNs), pre-
prototyping tools must provide fast and reliable results at
low cost, to inform appropriate hardware design choices or
validate them. Furthermore, prototyping an application by
deploying complete EH-WSN nodes, including their sensing,
harvesting, and communication subsystems, is both a lengthy
and expensive process, possibility inhibiting the wide-scale
development of EH-WSNs.

For these reasons, a simulation approach is often preferred
over hardware prototyping to limit costs and also to enable
a precise analysis of each component’s internal states. This
approach also allows one to investigate a greater system scale,
to evaluate design tradeoffs for system components (hardware
and/or software) that may even not be physically implemented
yet, to replay specific scenarios or study the influence of
given environmental parameters, and finally to observe the
WSN behavior over extended periods of time. These benefits
motivate the recent emergence of simulation tools for EH-
WSNs we concisely survey in Section II. Simulation has its
drawbacks, however, most notably the fact that all existing
tools require that the simulated system is implemented in a
programming framework (e.g., C++ or Matlab) different from
the one of the final WSN implementation (e.g., TinyOS/nesC
or Contiki/C). This makes the execution of simulations fast and
efficient, but significantly widens the gap between the behavior
of the EH-WSN that is simulated and the one that is actually
deployed. The gap may be so significant that the considerations
about energy sustainability derived in the former may actually
become invalid once confronted with the reality of the latter.
A typical example is provided by the simulation of wireless
communication, which is known to provide only a very rough
approximation of the real conditions, which are strongly
affected by the deployment environment.

In contrast, SENSEH improves over the current state of the
art by providing a software framework that allows developers
to move back and forth between the power and speed of a
simulated approach and the reality and accuracy of in-field
experiments, as shown in Table I. This is achieved through
two modes of operation, depending whether a real harvester
is actually available or not. For simplicity, we call these modes
MEMORY and PINS, for reasons that will become evident next.

In MEMORY mode, the harvester is only simulated: a real
harvester does not necessarily exist, and in any case its
integration at code level is not a concern. SENSEH is designed
in such a way that the same code using (and including) the

harvester WSN nodes environment interface
simulated simulated simulated MEMORY
simulated real simulated or real MEMORY
simulated simulated simulated PINS

real real real PINS

TABLE I
SENSEH: FROM SIMULATION TO THE REAL-WORLD—AND BACK.



simulated harvester can be used both in a simulator and in
a real deployment. This allows developers to test the system
first through the more efficient and scalable means offered by
simulation, and then validate the results in the more realistic
environment provided by an actual deployment—something
that normally requires real harvesters, which is both expensive
and risky in an experimentation phase where the “right”
harvester is to be selected. For instance, this is very useful
to verify whether the actual connectivity affects the estimates
derived in simulation, e.g., due to interference or other causes
generating communication overhead. As the harvester oper-
ation depends on environmental parameters, we provide the
option to use serial communication to feed the harvester with
traces from sensors (e.g., light for solar harvesters, temperature
for thermal ones) to replicate real-world environmental trends
affecting energy density. This is particularly useful during
intermediate development steps where the WSN is tested in
a testbed, which often provides out-of-band communication
via USB cables. In the case of an in-field deployment, we
also provide the option to acquire environmental parameters
directly from on-board sensors, specified at configuration time.

The PINS mode, instead, is conceived to support the same
ability to switch from simulation to the real-world, but in the
case where a real harvester is available. In this case we support,
through different mechanisms w.r.t. MEMORY, the simulation
of a WSN application where the MCU of nodes accesses
directly the harvester via pin-level communication.

The toolchain and software architecture of SENSEH are
described in Section III. From an implementation standpoint,
our ability to directly reuse the code simulated into real-
world is enabled by our reliance on COOJA [1] and specif-
ically MSPSim, a hardware emulator for the MSP430 MCU.
However, MEMORY assumes that some components simulating
the behavior of the harvester are actually part of the binary
deployed on the real WSN nodes. We achieve this goal
by supporting the Contiki operating system, although it is
straightforward to port our code to TinyOS or other operating
systems. For PINS, instead, we directly extend COOJA, and
therefore inherit its ability to simulate directly at the binary
level applications written for either TinyOS or Contiki.

We illustrate concretely the use of SENSEH through a case
study, described in Section IV, focusing on a WSN application
installed in a road tunnel [2], [3]. In this context, we analyze
the effect of equipping the WSN nodes with photovoltaic
panels. Light is non-uniform during the day and along the
tunnel, affecting the energy density available to harvesting,
and therefore the sustainability of our WSN. This case study
is also the opportunity to reassert quantitatively the difference
between findings from simulated and real-world experiments.
Section V ends the paper with brief concluding remarks.

II. RELATED WORK

The recent interest in EH-WSNs has determined a surge
of approaches providing simulation support for these systems,
typically through extension of available simulators.

Generic network simulators such as ns-3, OMNeT++, or
OPNET, are not well-suited for energy-aware simulations of
WSNs. The support for models of the energy harvester and
storage as well as power consumption, all crucial to EH-
WSNs, is limited or even absent. Several extensions of these
generic simulators are proposed to incorporate energy models.
Wu et al. [4] extend ns-3 with models for the node power
consumption and its consequent effects on the battery; Sanchez
et al. [5] additionally provide a model of a solar harvester
based on empirically collected radiation data.

Other approaches are instead based on existing WSN sim-
ulators, or develop dedicated ones. HarvWSNet [6] is an
extension of WSNet [13]. It implements models for harvester,
battery, and power consumption in Matlab, and interfaces
them with the network stack of WSNet via TCP sockets.
GreenCastalia [7], is an extension of Castalia [14], itself
an extension of OMNeT++ providing realistic channel mod-
els. GreenCastalia provides modeling for multi-source, multi-
storage EH architectures. It models both an ideal and empirical
energy storage. WSNsim [8] is a standalone simulator, whose
flexible software structure allows integration of diverse models
for EH-WSNs. However, it consists only of a prototype
implementation not currently available to research community.

Finally, PASES [11] is a flexible design space exploration
framework featuring an accurate power consumption analysis
of WSNs. It does not target specific platforms and needs
detailed power models of the digital architectures on board
(i.e., MCU, memory, radio, sensors) to provide statistics about
power consumption and suggest the optimal hardware config-
uration. It is cycle-accurate because it is based on the SystemC
framework, which significantly increases simulation time. In a
similar vein, system-level simulators [9], [10] trade simulation
speed for more accurate modeling of low-level details of the
harvesting system. The complexity of these models is a major
obstacle to their adoption for assessment of EH systems.

Interestingly, some well-known WSN simulators such as
TOSSIM [12] and COOJA are designed to use (through emula-
tion) directly the binary, deployment-ready code, and therefore
provide the ability to move between simulated and real exper-
iments. TOSSIM is designed for running only TinyOS based
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Wu et al. [4] X X
Sanchez et al. [5] X X X
HarvWSNet [6] X X X

GreenCastalia [7] X X
WSNsim [8] X X X

Jeong & Culler [9] X X X
SIVEH [10] X X
PASES [11] X X X

TOSSIM [12] X
COOJA/MSPSim [1] X

SENSEH X X X X

TABLE II
SENSEH VS. STATE OF THE ART.
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Fig. 1. SENSEH toolchain for MEMORY mode.
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Fig. 2. SENSEH toolchain for PINS mode.

applications, while COOJA coupled with MSPSim, a hardware
emulator for MSP430-based motes, allows simulation of both
Contiki and TinyOS applications. However, neither include
support for modeling power consumption or battery discharge,
let apart energy harvesting.

Table II summarizes the related work we surveyed, and
compares against SENSEH. The table visually reasserts how
SENSEH combines the emulation capabilities of COOJA with
the models for power consumption, battery, and harvester simi-
lar to other simulation approaches. The combination of the two
provides developers with a flexible tool enabling one to move
back and forth between simulated and in-field experiments, as
described next. To the best of our knowledge, SENSEH is the
first software framework providing this capability.

III. SENSEH

In this section we describe in more detail our software
framework, SENSEH. We begin by describing in Section III-A
the toolchain or, better, the toolchains that enable the two
modes of operation described in Section I. An integral element
of these toolchains is the actual modeling of the harvester,
and the associated profile for power consumption, described
in Section III-B. Finally, in Section III-C we describe the
software architecture, supporting both modes of operation.

A. Toolchains

As we anticipated in Section I, SENSEH supports two
distinct modes of operation. In MEMORY mode, the harvester
is only simulated, even in a real deployment. In PINS mode,
the application accesses the harvester directly via pin-level
communication, and is therefore deployment-ready. These two
modes of operation result in different toolchains. Both revolve
around the following models, which are however positioned in
different places in each toolchain:

• Harvester model. Describes how the harvester (e.g., a
solar panel) collects energy from the environment, based
on some input parameters (e.g., light intensity).

• Battery model. Describes how the battery behaves when
connected to the harvester, taking into account the dis-
charging due to the node activity, but also the recharging
determined by the harvester.

• Power consumption model. Describes the power con-
sumption of the WSN node, based on the time it spends
in the various states (e.g., radio active vs. idle).

The toolchain for MEMORY mode is shown in Figure 1.
All of the aforementioned models are input, as Contiki/C
source code, to the standard platform compiler, along with
the application. Indeed, in MEMORY mode the behavior of
the harvester is simulated not only when the compiled code
is input in COOJA, but also when such code is deployed
in a real WSN. The models must therefore be part of the
binary deployed on the WSN nodes. The first two models are
provided as part of SENSEH; the power consumption module,
instead, reuses the Energest [15] component of the Contiki
distribution. Input traces are fed to the harvester module either
via the serial port or actual on-board sensors.

The toolchain for PINS mode, shown in Figure 2, is es-
sentially identical to the standard toolchain one would use
to compile applications and then either simulate them with
COOJA or directly deploy them in-field. The only difference
is that we provide a modified version of COOJA that provides
support for the aforementioned models, and to process traces
of environmental parameters affecting the harvester.

B. Modeling the Energy Harvester

An energy harvester normally consists of three main com-
ponents: the micro transducer which converts environmental
energy into electrical energy, the voltage shifter which reg-
ulates the generated voltage, and an accumulator. The micro
generator and the conversion circuit are usually considered
together as the real energy harvesting system, while batteries
or other kind of energy storage need a separate model because
they exhibit performance variations (e.g. state of charge, aging,
leakage, number of charging/discharging cycles) during the
lifetime of the system. In this paper we focus primarily on the
state of charge (SoC); other features are future work.

Harvester. Models of energy harvester circuits often treat
the micro-generator as a voltage/current source; the efficiency
of the whole system depends mainly on the input power
delivered by the transducer and on the required output voltage.
When an accumulator is connected directly to the harvester,
the output voltage of the latter is correlated with the SoC
of the former, which therefore has a runtime impact on the
conversion efficiency of the harvester.

Another important feature, which must be considered in
modeling energy harvesters, is the capability of the scavenger
to achieve maximum conversion efficiency, under any environ-
mental conditions and circuit states. Particular circuit imple-
mentations, called Maximum Power Point Trackers (MPPT),
are responsible for maximizing the performance runtime.

In this paper, as an example, we provide the model of a
photovoltaic (PV) harvester to SENSEH. Usually, when a PV
module is directly connected to a load, the operating point is
rarely at the maximum conversion efficiency. The principle
of MPPT is to guarantee an impedance matching between
the load and the PV module, and to regulate the DC/DC



Solar cell output power [mW] te of Charge of the Battery (SoC) [mV] Efficiency
3,3 3,6 3,9 4,2

5 0,781 0,783 0,785 0,787
50 0,785 0,788 0,79 0,792

100 0,79 0,795 0,799 0,812
150 0,793 0,807 0,821 0,837
200 0,798 0,823 0,835 0,852
250 0,81 0,831 0,842 0,859
300 0,836 0,842 0,857 0,86

                             0,84 0,854 0,86 0,863

4,20,74
0,76
0,78
0,8

0,82
0,84
0,86
0,88

Ef
fic

ie
nc

y 
[η

]

1300 lux
1300 lux 1300 lux 45000 lux30000 lux8200 lux3500 lux 12000 lux

3,3
3,6

3,9
0,74

5 50 100 150 200 250 300 Battery 
State of Charge [V]

Solar cell output  power [mW]

Fig. 3. Efficiency of the photovoltaic harvester as a function of the power
intake and of the state of charge of the battery.

parameters so that the maximum available power is extracted
and used to recharge the battery.

Hence, implementing a MPPT circuit boosts the average
efficiency and the energy converted from the environment. On
the other hand, it adds complexity to the harvester and causes
additional losses due to additional electronic components. For
this reason, power losses must be kept remarkably lower than
the incremental energy collected thanks to the MPPT. This is
a critical condition which must be considered at design time
and must be available in the models during simulations.

In conclusion, knowing the kind of harvester and its avail-
able features, it is straightforward to extract a model whose
efficiency depends on the power input and battery SoC. A
lookup table (LUT) can easily provide such a model. In our
case we have acquired several measurements of the energy
accumulated into the battery and of the maximum power which
can be delivered to the load, under several environmental con-
ditions, and determined the runtime value of the power intake
(e.g., the power which can be collected by the harvester). A
statistical analysis of the measurements enabled us to define
LUTs similar to Figure 3, which shows the actual efficiency
curve of the harvester used in SENSEH, and specifically in the
case study of Section IV. For the sake of clarity, we indicated
also the luminous emittance (lux) necessary to achieve specific
input power values from the solar cell.

Batteries. A fundamental piece of information, needed when
batteries are modeled, is the SoC of the accumulator. Many
existing network simulations assume very simple battery mod-
els such as considering ideal energy storage devices. In this
case, batteries are modeled as containers of finite capacity,
containing a certain amount of energy units spent during the
execution of application tasks, and added when the balance
between the energy intake and the energy consumption is
positive.

Real batteries, however, do not operate in such a simple
way: they have a certain amount of non-ideal properties, that
a simple energy model is not able to capture. These non-
idealities strongly affect the behavior, the delivered capacity,
and the lifetime of a real battery. For instance, all batteries
suffer from self-discharge: a cell that simply sits on the shelf,
without any connection between the electrodes, experiences
a reduction in its stored charge due to internal chemical

reactions, at a rate depending on the cell chemistry and
the temperature. Batteries also have charge and discharge
efficiency strictly less than one, i.e., some energy is lost when
charging and discharging the battery. Additionally, batteries
have some non-linear properties [16], such as temperature
effects and recovery effects.

These properties should be taken into account when di-
mensioning and simulating energy harvesting systems, because
they can easily lead to errors in the battery lifetime estimates.
For example, if the harvester uses a rechargeable battery to
store the energy from the environment, it is important to
consider that the battery capacity reduction, at each recharge
cycle, affects and reduces also the lifetime. To estimate the
SoC of the batteries, on-line techniques, normally used in
real operating devices, can be efficiently exploited as simu-
lation models. They save complex computation, at the cost
of reduced accuracy of the simulation results. In fact, these
methods usually do not take into account aging and the change
of parameter after several cycles.

SoC estimation techniques can be classified roughly into
two main categories: i) direct voltage lookup tables (LUT) [17]
derived from Peukert’s equation; and ii) Coulomb counting
techniques [18].

LUT is a popular and simple method especially for
WSNs [19], because it replaces the runtime computation with
a simpler association (Vbattery, SoC) in an array. In our work,
we tested several batteries with a load equivalent to the
node consumption, and we measured the output voltage under
different charging/discharging curve profiles. This enabled us
to evaluate the values of the LUT. However, for the sake
of the simplicity, the latter uses pre-computed and static
values; unfortunately this technique does not produce accurate
estimations because it does not take into account the effect
of aging and the variations of the component characteristics
after several charging/discharges phases. Coulomb counting
may lead to more accurate simulation results, but in this
case the charge flowing in or out of the battery is counted
by integrating the current over time. Therefore the simulator
must take into account the current profile of each activity
of the system (current profile of the load) and, concerning
systems with energy harvesting, also the current intake from
the harvester during the time of operation, with remarkable
runtime computation. Our current implementation relies on the
LUT technique.

C. Software Architecture

We designed the software architecture of SENSEH to be
easily extendable to encompass various energy sources, stor-
age, and harvesters. Both toolchains rely on the same high-
level conceptual view of the relevant components, shown by
the class diagram in Figure 4. The only difference between
two toolchains, apart from the implementation language (C
for MEMORY, Java for some of PINS modules) is how these
components are used by the rest of the system, be it the
application or the simulator.



Fig. 4. Class Diagram of SENSEH.

1) Conceptual view: The architecture can be broadly di-
vided into three parts, described next.

Harvester. The behavior of the harvester is intimately con-
nected with the one of the environment in which it is
immersed, and from which energy is scavenged. These as-
pects are reified into two classes, EnergySource and
Harvester.

The former is an abstract class, which can therefore ac-
commodate different types of energy sources, and the related
models. Of the examples shown in the picture, SENSEH
currently provides support for harvesters based on photo-
voltaic cells, modeled using the LUT method described in
Section III-B. The producer datasheet of the solar panels
usually only provides the output power for few reference light
levels, therefore we apply a piecewise linear approximation to
estimate the power at the intermediate points. The behavior
of EnergySource, in turn, depends on the actual environ-
mental parameters. These are fed to EnergySource via
the package EnvironmentalDataProvider, which can
be configured to feed data coming offline from pre-recorded
experimental traces or online from on-board sensor readings.

Depending on the amount of current generated by
EnergySource, the efficiency of the modeled harvester is

different, as discussed in Section III-B. The Harvester
class estimates the output power of the harvester considering
an empirical efficiency curve, which is a non-linear function
of the input source power. In our current implementation of
the photovoltaic harvester, we rely on the harvester model
described in [20]. This output power is then fed to the
EnergyStorage, via its charge method.
Energy Storage. As in the case of EnergySource,
EnergyStorage is an abstract class that can in principle
accommodate multiple types of devices. In the current imple-
mentation we provide a model for a rechargeable Battery,
but in principle (super)capacitors could also be included.
EnergyStorage keeps track of the state of charge, which
is affected by the two methods charge and discharge.
The former is called from the Harvester class, as discussed
earlier. The second, instead, can be called from the Leakage
class, which models the leakage current characteristic of the
energy storage device, or by the PowerConsumption class,
which models the discharge due to the actual operation of the
WSN device. The former contribution to discharge is typically
negligible w.r.t. the contribution of the latter, described next.
Power Consumption. An accurate profiling of the node
power consumption is key to estimate whether the EH-
WSN is energy-neutral. This functionality is provided by the
PowerConsumption class, which effectively measures the
time spent by each mote component in each of its operation
modes (e.g., radio on for transmission or reception, MCU on
or in low-power mode). By multiplying these time intervals
by the power consumed by the respective mode we get an
estimate of the amount of energy consumed by the nodes over
time, which is therefore discharged from EnergyStorage.

2) Implementation details: Although they share the same
conceptual architecture, the software implementations are dif-
ferent for each toolchain.
MEMORY . The code of the MEMORY version is writ-
ten in C, to enable its direct integration in Contiki. The
PowerConsumption module reuses the Energest [15] mod-
ule already provided inside Contiki, which provides the power
profiling required. EnvironmentalDataProvider relies
directly on the on-board functionality of the WSN node. In the
case of offline input via recorded traces, these are fed through
the serial port; if real sensed data are to be acquired instead,
these are obtained via direct access to the sensor specified
at configuration time. To retain the ability to use unmodified
code, the same solution is adopted also when using COOJA.
PINS . In this variant of SENSEH, the implementations of
EnergyStorage, EnergySource, and Harvester are
directly provided as extensions to COOJA, implemented in
Java. Therefore, they can be used to emulate both operating
systems supported by COOJA, i.e., Contiki but also TinyOS.

Our implementation interfaces with MSPSim, an
instruction-level emulator for the MSP430 MCU that
offers also emulation of other on-board components for
popular platforms such as TMote Sky. We access MSPSim to
i) extract the information about power consumption of MCU



and radio; ii) access analog-to-digital converter pins to assign
realistic battery voltage and harvester power to ADC pins.

The first functionality is necessary because, unlike Contiki,
COOJA does not provide a power profiling functionality akin
to Energest. Therefore, we essentially reimplemented the same
logic of the latter inside COOJA, accessing MSPSim to derive
the necessary power profiles during simulation.

The second functionality, instead, is necessary because
COOJA does not emulate the battery; reading the emulated
battery voltage returns a random value. Therefore, once we
have estimated the battery SoC and consequently the variation
in voltage, we force these values back to MSPSim, so that
applications can read them directly through the (emulated)
pins. Accessing directly MSPSim in this fashion allows us
to offer accurate emulation of the harvester and its effect on
the battery SoC to any operating system supported by COOJA.

IV. SENSEH IN ACTION

To illustrate concretely the use of SENSEH we resort to the
application case study that motivated the research described in
this paper, constituted by a WSN deployed in a road tunnel to
acquire light readings [2]. These are relayed in multi-hop to a
gateway, and from there to a Programmable Logic Controller
(PLC) that closes the control loop by setting the intensity of
the lamps inside the tunnel. In contrast with the state of the art
in tunnels, where light intensity is pre-set based on the current
date and time, or at best determined by the external conditions,
this closed-loop adaptive lighting system maintains optimal
light levels by considering the actual conditions inside the
tunnel. This increases safety, and enables considerable energy
savings. However, the lifetime of the WSN is determined by
batteries. Although we showed [3] that this lifetime can be
tripled by using data prediction techniques, we want to explore
the potential of EH-WSNs to further approximate energy-
neutrality and reduce the maintenance costs to replace depleted
batteries.

A. Experimental Setup

Figure 5 shows the placement of WSN nodes inside our
260 m-long, two-way, two-lane tunnel. Overall, 40 nodes are
split evenly between the tunnel walls and placed at a height of
1.70 m, compatible with legal regulations. Their data reports
are collected by a gateway, installed 2 m from the entrance.
Each node is functionally equivalent to a TMote Sky mote,
augmented with a sensor board equipped with 4 ISL29004
digital light (illuminance) sensors. Every 30 s each node
reports an aggregate of the light readings gathered in the
period. Further details are provided in [2].

Here, we want to put SENSEH to play to answer a very
simple question: to what extent the WSN can be made energy-
neutral by equipping nodes with energy harvesters?

To answer this question we use a slightly different network
stack w.r.t. the one in [2], and resort to the popular CTP [21]
protocol, collect in the Contiki distribution. We rely on
ContikiMAC with a sleep time of 125 ms.

Further, we assume that a photovoltaic panel is available as
an energy harvester. Nodes very close to the tunnel entrance
have direct exposure to sunlight during the day and can harvest
a considerable amount of energy. However, starting few meters
deep into the tunnel, nodes have only exposure to the artificial
light, which provides much less energy. Nevertheless, with
photovoltaic cells optimized for indoor environments and able
to achieve high efficiency at low illuminance, even these nodes
can harvest some energy. For this study we assume nodes
are provided with the Panasonic AM-1816 [22], which fits
these requirements. As we conduct our experiments with the
MEMORY toolchain, however, this harvester is only simulated
in both our simulation and in-field experiments.

To estimate the amount of energy harvested from our
panels, we use the dataset in [3], containing traces of light
values collected during winter 2010 from the 40-nodes WSN
in Figure 5. This implies that we are using the MEMORY
mode of SENSEH, to feed traces to both the simulated and
real-world WSN. Light is assumed to be fluorescent, the
one our panels are optimized for. We assume a harvesting
efficiency of 79% [20], derived from the light conditions in our
dataset and the curve in Figure 3, a 100% charging efficiency,
and no battery leakage. Finally, we assume that nodes are
equipped with 2 NiMH rechargeable batteries, each providing
2,100 mAh.

B. Results

To evaluate the performance of the WSN vs. the EH-WSN,
we first compute the average consumption of the nodes of
the network and see how many of them can operate in an
energy-neutral manner. Then, we analyze what is the expected
improvement in the lifetime of our tunnel WSN.

Consumed vs. Harvested Energy. We analyze the expected
amount of energy consumed by the nodes on an average day.
This has been computed as an average among a high number of
COOJA simulations, trying to reproduce as close as possible
the radio propagation conditions of the WSN in the tunnel.
From these experiments we derived that a node needs, on
average, 72 J/day to be self-sufficient; the harvester should
therefore provide an average power of 0.834 mW during the
24 hours.

However, our light dataset shows that it is not possible
to achieve a large amount of energy in this environment, as
expected. By estimating the energy production achieved per
day by an AM-1816 solar panel, we saw that only 8 nodes
out of 40 can become self-sufficient with a solar cell array
made of less than 10 solar panels, while the others cannot gain
enough energy to compensate the one consumed. We therefore
provided all the nodes which cannot self-sustain with 10 solar
panels each, which already corresponds to a rather large array
dimension of 20× 30 cm.

Peering at lifetime. To analyze the expected improvement
in node lifetime, we compare the initial battery charge with
the remaining one when the WSN operates with and without
the (simulated) energy harvester. Moreover, we compare the
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Fig. 5. Physical placement of WSN nodes in the tunnel.

results achieved from COOJA simulations with those yielded
by experiments in an indoor testbed. Both experiments have a
duration of 48 hours, so that the daily cycle is respected, and
consider the exact same period of the light dataset. As a feature
of SENSEH, the same binary code has been used both inside
COOJA and on the real nodes; in both cases, light values from
traces are injected into the nodes through the serial interface.

Figure 6(a) shows the battery depletion of node 1, the one
closest to the tunnel entrance, for the COOJA simulation. We
can see that when the node runs without the energy harvester
its energy consumption is about 76 J/day, while when energy
harvesting is applied the node achieves energy-neutrality: the
energy consumed during the night is recovered during the day.
This is not the case for node 8, shown in Figure 7(a), which is
placed in the transition area between the entrance and the cen-
ter of the tunnel. The chart shows how nodes in the transition
area cannot reach energy-neutrality. As we already discussed,
this is because nodes few meters inside the tunnel are never
hit by direct sunlight, so their solar panel can only rely on
artificial light or reflected sunlight. Still, the harvester reduces
energy consumption from 88 J/day to 28 J/day, increasing
the expected lifetime by 70%. Nodes placed deep inside the
tunnel, with no contribution from sunlight, are exposed only to
a very low light intensity coming from artificial illumination.
This makes their energy production very scarce, with no
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Fig. 6. Battery level and energy harvested for a node close to the entrance.
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Fig. 7. Battery level and energy harvested for a node in the transition area.

appreciable difference with and without our energy harvester,
and are therefore not commented further.

An interesting question is whether the same tradeoffs hold
when the WSN is deployed in a real setting, in our case
an indoor testbed in one of our institutions. Although the
latter does not replicate the target tunnel environment, and
in particular its topology, it is nonetheless representative of
the leap between simulation and the real world, and therefore
instructive to investigate, also as a concrete application of our
MEMORY toolchain. Indeed, Figure 6(b) shows the battery
depletion for the same node 1, but in the experiment run
in the testbed. The node is fed exactly the same light traces
as in the simulated experiment. In the testbed case the node
shows a much higher battery discharge, and it cannot operate
in an energy-neutral manner. The higher energy consumption
of the node is possibly a function of the different topology,
but also of radio propagation phenomena like interference and
signal reflection, which the simulator grossly approximates.
In the testbed experiment the energy depletion of the node
without energy harvester is of about 152 J/day, more than
twice than in simulation. Nevertheless, when energy harvesting
is simulated in the testbed, the battery depletion of node 1 is
of 65 J/day, still yielding an expected lifetime improvement of
60%. Similar considerations hold for node 8 in Figure 7(b).

Estimating lifetime through battery voltage decrease.
Among the advantages offered by our SENSEH toolchain is
the capability of estimating, in simulation, the voltage decrease
of the energy source over time, a feature not provided by the
original COOJA simulator. This is useful because, when a sim-
ulated harvester is not present as in our MEMORY toolchain,
applications often use the direct access to the voltage pin as a
coarse means to estimate lifetime. This is directly mirrored in
the PINS mode, which therefore provides a means to utilize this
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Fig. 8. Voltage depletion of NiMH batteries over time for different positions
inside the tunnel.



feature both in simulation and in the final deployed application.
As an example of what can be inferred from this informa-

tion, from the 2-day simulations used to achieve the previous
results we can derive the trends of voltage decrease of the
NiMH batteries and provide an approximation of lifetime.
Figure 8 shows the results, for nodes placed in different
positions inside the tunnel. The battery of a node close to
the tunnel entrance, which can be recharged over the day for
the same amount of energy consumed during the night, has
an almost constant (and close to full) voltage. The battery
voltage for nodes placed in the transition area decreases over
time, since the amount of energy consumed is higher than the
one harvested. The same holds for nodes placed in the middle
of the tunnel, with the very low amount of energy achievable
from the environment. These nodes reach 1 V, the battery death
point, after 62 weeks of operation, about the same obtained
without a harvester.

V. CONCLUSIONS

Energy harvesting is becoming increasingly popular as a
solution to achieve energy-neutral WSNs, therefore drastically
extending their lifetime. However, the tools supporting the
design of EH-WSN applications are limited to a few simu-
lators. Developers must implement their application for these
simulators using non-WSN programming languages, and then
re-implement it for the final WSN deployment. This makes
simulation efficient, but jeopardizes its accuracy w.r.t. real-
world deployments.

SENSEH fills the gap between simulation and deployment
by providing a unified software framework that allows one
to move back and forth between the power and speed of a
simulated approach and the reality and accuracy of in-field
experiments. In MEMORY mode, a simulated harvester and
associated models are linked with the WSN application, which
can therefore be either simulated or tested in-field without
having several physical harvesters. In PINS mode, the same
can be done for the real code using pin-level communication.

We exemplified the use of SENSEH, specifically the MEM-
ORY mode, in a real case study where we investigated to what
extent photovoltaic panels can achieve energy-neutrality in a
WSN used for adaptive lighting in road tunnels.

Future work will involve the development of models for
other types of harvesters, and the study of their advantages
by using both MEMORY and PINS modes in the actual tunnel
environment.
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