
An Outlook on Software Engineering
for Modern Distributed Systems

Carlo Ghezzi and Gian Pietro Picco

Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo da Vinci, 32, I-20133 Milano, Italy
Phone: +39-02-23993519, Fax: +39-02-23993411

E-mail: {ghezzi,picco}@elet.polimi.it

1 Introduction

The evolution of software engineering has been constant over the past thirty
years. Some major technological discontinuities, however, can be identified in
this progress, which caused a more radical rethinking of the previous established
approaches. This, in turn, generated research for new methods, techniques and
tools to properly deal with the new challenges. This paper tries to identify some
of these major evolutionary steps from a historical viewpoint, with the goal of
understanding if common treats can be found to characterize them.

We argue that major discontinuities indeed have an underlying common driv-
ing factor; namely, the goal of making software development increasingly more
decentralized, flexible, and evolvable. Decentralization manifests itself in differ-
ent forms: from the architecture viewpoint (from monolithic to fully distributed
systems) to the process and business models.

After a brief outline of this evolution, we discuss the nature of the major
discontinuity that we are currently facing, which is pushing decentralization,
distribution and dynamic evolution to their extreme, and we try to identify the
challenges to software engineering research that this is posing.

2 Architecting Software: Evolution and State of the Art

To better understand the situation that software engineering researchers need
to face for the next years, it is instructive to look back at the evolution that
occurred in the last decades.

In the beginning, software development methods typically assumed a stable
environment (and hence stable requirements) and a fully centralized system ar-
chitecture. These are the years of the waterfall lifecycle, advocated as a way to
impose a much needed disciplined development style over the previous prevalent
“code and fix” approach, which was recognized to be responsible for the lack of
industrial quality of software [5].

From this rather static scenario, several evolutionary steps brought increas-
ing degrees of dynamicity into software development. For instance, a first major
shift was the recognition that requirements cannot be frozen before design and



implementation, since the environment typically changes, and the requirements
with it. To cope with this problem, research addressed both methods and tools to
support change. From the process viewpoint, this led to flexible and incremental
models, like the spiral model and prototyping-based processes. Regarding meth-
ods, this lad to fundamental principles like design for change, encapsulation
and hiding of design decisions, clear distinction between interface and imple-
mentation, and between implementation and specification [10]. Also, this led to
modular and then object-oriented programming languages. Notably, however,
the mechanisms devised to deal with software change where mostly static. A
change would require modifying software, recompiling, and re-running the mod-
ified application. In a sense, dynamicity was introduced at the process level, but
changes were still dealt statically at the product level.

Another significant step took place in application architectures, driven by
changes in the underlying available physical architecture. From monolithic sys-
tems, we moved to distributed, client-server applications with a multi-tier struc-
ture. This made it possible to accommodate changes due to the growth of the
system, such as adding new clients, or splitting a server into a–say–two tier struc-
ture. Efforts were made to make the shift easy, by allowing interaction between
clients and servers to look like as if they would coexist on the same physical
machine. This was possible through mechanisms like remote procedure call and
middleware that would support them. This solution supported a clear separa-
tion of the issues of component allocation on physical nodes, which affected such
properties as system performance, and conceptual structure of the application,
which could be designed without bothering about physical distribution.

Another big leap was the need for decentralizing the responsibility to pro-
vide some needed functionality to pre-existing components or subsystems, and
the ability of integrating in a distributed architecture such components or exist-
ing (legacy) subsystems. This was driven by two equally important issues, which
both aim at decentralizing functionality and saving development costs. On the
one side, the increasing availability of components-off-the-shelf to be used to
build new applications, instead of starting developments from scratch. On the
other, the need for reusing previously developed subsystems into new systems.
This led to the need for architectures that would support interoperability of dif-
ferent types of distributed components, via suitable middleware [7].

Certainly, this summary of the history of software engineering is reductive.
Still, it evidences how the evolution of software development has been largely
driven by the need to accommodate increasing degrees of dynamicity, decentral-
ization, and decoupling. Future scenarios show that this tendency is further ex-
acerbated. Components are not only decoupled, but more and more autonomous
in nature. Moreover, this is becoming true irrelevant of their size. Thus for in-
stance, macrocomponents like clients for peer-to-peer file sharing are designed in
a way that is largely independent of other components. At the same time, mobile
code technology [8] enables microcomponents of the size of a language module
(e.g., Java classes) to get relocated into a totally different execution context.

Dynamicity is also increasingly permeating software development [6]. For in-



stance, technological factors like the surge of wireless communications and mobile
computing, together with factors like the structure of businesses run over the
Internet, are defining application scenarios that are extremely dynamic. In the
latter case, software components need to be deployed in environments that may
change from time to time, due to changes in the business structure, or to adapt
to the preferences of the user. In the former case, dynamicity must be dealt at an
even finer time scale, since mobility defines a fluid system configuration where
interactions among components may become only transient [16].

In these scenarios, assumptions about the existence of a single point of con-
trol, persistency, or authorization are often inefficient, impractical, or simply
not applicable. More and more, the developer loses global control over the com-
ponents belonging to the system, since they are autonomously and indepen-
dently created and managed. Components can disappear either in an announced
or an unannounced manner. Hence, system design must increasingly strive to-
wards applications that are constituted by highly decoupled, autonomous, self-
reconfiguring components. To some extent, the focus is no longer on component
integration, rather it is shifted towards component federation.

It is interesting to note how some of the principles enunciated in the past for
conventional systems are still valid, albeit interpreted in the new scenarios. For
instance, Brooks’ advices of “buy versus build”, and “incremental development—
grow, don’t build, software” [2] acquire new meanings when transposed to the
current environment. These statements have usually been associated with the
need for reusing software components whenever possible, and with a software
development process that favors evolution of the product across a number of
small increments. Nowadays, “buy vs. build” is becoming even more crucial. For
instance, often only a portion of a distributed system is totally under control of
the designer; the rest is constituted by pre-existing components and services that
is convenient—or mandatory—to exploit. The current interest for Web services,
once filtered from hype, is symptomatic of this trend. Similarly, incremental de-
velopment is now a necessity more than a choice, with the added complexity
induced by the fact that more and more the growth of the system cannot be
handled statically, rather it needs to be managed during the runtime.

In the next section we briefly survey some of what we believe are the most
challenging (and intellectually stimulating) issues that arise in the environment
defined by modern distributed systems, in an effort to help shaping a software
engineering research agenda.

3 Research Challenges

The scenario depicted so far raises a number of fundamental questions, affecting
software engineering practices.

It was argued that applications are increasingly built out of highly decou-
pled components. Nevertheless, components need to interact to become a true
federation, i.e., to achieve the required behavior. An immediate question is then
about the kind of interface components should provide to make them interact.



Traditionally, components define a list of features they export to and import
from other components. A type system is typically used to ensure the correct
use of such features, and more recently also to govern the lookup for a given
service and the setup of the binding towards it, e.g., in Jini [12]. Nevertheless,
the syntactic matching enabled by the type system is often not enough. Instead,
one would like to match component services based on their semantics. Hence the
increasing importance of languages for knowledge representation, and opportu-
nities for synergies between the fields. Moreover, the services offered by a com-
ponent are typically not known in advance. In this context, reflection techniques
become a fundamental asset for allowing applications to discover dynamically
the characteristics of a given component, as well as for allowing a given compo-
nent to reconfigure itself dynamically. Finally, in such a fluid environment, one
would have guarantees about the behavior of a given component. In this context,
methods like “design by contract” [13] could gain even more importance than in
conventional environments, if properly adapted.

The immediately next problem is how to make the components actually in-
teract. In the traditional case, a monolythic system is built out of a set of com-
ponents, and interaction is achieved by statically binding a service request from
one component to a matching service supply from another component. This re-
quires components to agree on some global naming scheme, which is then used
to establish the binding. Static binding allows type checking to be also done
statically, and thus type safe programs can be easily obtained. Object-oriented
languages introduce more flexibility in this scheme, by introducing a form of
constrained dynamic binding, still retaining the safety of static type checking.

Distributed computing platforms typically rely heavily on establishing a bind-
ing between the client and the supplier of some service. This is the case of
mainstream middleware like RPC or distributed object technology. Desirable
properties, e.g., location transparency, are usually achieved by exploiting an ad-
ditional step of indirection when establishing the binding, e.g., by using a lookup
service. Nevertheless, the question is whether such a tightly coupled model of
interaction is still suitable in a fluid environment where components tend to be
highly decoupled and their overall configuration is frequently changing.

By and large, two approaches have emerged to date. On the one hand, there
are systems where interaction still occurs through a binding to another compo-
nent, but dynamicity and reconfiguration is taken under account by allowing the
targeted component to be changed transparently. This approach has its roots in
earlier work on object migration (e.g., Emerald [1]). In this approach, binding
occurs in two steps: first, a service discovery step matches the request for a ser-
vice to the available offers. Second, a choice is made, and the binding is set. For
these steps, we can envisage different levels of complexity and sophistication.
For example, one may think that among the available services, a choice is made
based on some offered quality of service (and maybe on price). One may even
think of a negotiation that goes on to establish this. And even one may think of
federating a number of subservices to match a service request.

The other approach completely decouples components by replacing the bind-



ing towards another component with a binding to some other external entity,
that is assumed to be global to every component. This is the case of event-based
systems [4, 3], where components react to the emission of events through the
event dispatcher, and of systems [11, 14] inspired by Linda [9] where components
communicate by exchanging information through a shared tuple space. In both
cases, the problem of enabling component interaction in a highly dynamic, fed-
erated environment is regarded as a coordination problem. Coordination models
and languages decouple sharply the internal behavior of components from the
interactions they need to carry out. Typically, the latter is represented explicitly
by using some kind of abstraction, like Linda tuple spaces. One reason why co-
ordination approaches resonate with the problems we are concerned with in this
paper is that, by modeling explicitly the space where component interactions
take place, coordination models naturally represent the computational context
for components. The notion of context is fundamental in dealing with the high
dynamicity set by the scenarios we defined here. If components are to be de-
coupled from one another and yet able to interact with the rest of the world,
they need to have some way to define what “rest of the world” means to them.
Moreover, this is likely to change according to the application domain at hand,
and/or different portion of the context need to be treated in a different way for
different applications. We believe that one of the major research challenges for
software engineering researchers is the definition of abstractions that are able to
properly capture the essence of the notion of context and its inherent dynamic-
ity, and allow application component to customize and access their contextual
view (see for instance [15]).

Clearly, the tension between the two solutions, i.e., explicit binding among
components or use of coordination media, is ultimately resolved only in the ap-
plication context, where the choice of either style is tied to a specific functionality
at hand. Nevertheless, the challenge is to devise programming abstractions, as
well as methods for designing and reasoning about applications that naturally
support and integrate both styles.

The radical changes due to decentralization and continuous evolution not
only characterizes software products (i.e., applications), but also the business
models and the software processes that drive software developments [6]. For sev-
eral classes of mainstream applications, we are moving from a situation where
application development is mostly done from scratch, and under control of a sin-
gle authority who dictates the requirements, supervises design, development, and
often even deployment, to a situation where components are integrated, maybe
even dynamically, to form new applications. Components are made availbale
through the network by independent authorities. Thus the network is evolving
from an information bazaar to a service bazaar. The bazaar metaphor indicates
that computational resources are made available in a largely unstructured show-
case, with no centralized control authority, where averybody can have some form
of access. In this new setting, systems are built by federating services available
in the bazaar, rather than building everything from scratch, and by publishing
local information to the global world. What kinds of business models are possi-



ble for this setting? How do these affect the process models we need to follow to
guide developments?

4 Conclusions

In the limited space of this contribution we attempted at providing an overview
of the state of the art of software engineering by evidencing how old trends, like
those towards dynamicity, decentralization, and decoupling, are now exacerbated
by modern distributed computing. Moreover, we touched on a few key research
challenges that we believe are fundamental for dealing with this kind of systems
from a software engineering standpoint.

References

1. A.P. Black et al. Distribution and abstract types in Emerald. IEEE Transactions
on Software Engineering, 13(1):65–76, 1987.

2. F.P. Brooks. No silver bullet: essence and accidents of software engineering. IEEE
Computer, 20(4):10–19, April 1987.

3. A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of a wide-
area event notification service. ACM Trans. on Computer Systems, 19(3):332–383,
August 2001.

4. G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. IEEE Trans. on Software
Engineering, 27(9):827–850, September 2001.

5. G. Cugola and C. Ghezzi. Software Processes: A Retrospective and a Path to the
Future. Software Process Improvement and Practice, 4(3):101–124, 1999.

6. M.A. Cusumano and D.B. Yoffie. Software Development on Internet Time. IEEE
Computer, 32(10):61–68, October 1999.

7. W. Emmerich. Engineering Distributed Objects. John Wiley, 2000.
8. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. IEEE

Transactions on Software Engineering, 24(5):342–361, May 1998.
9. D. Gelernter. Generative Communication in Linda. ACM Computing Surveys,

7(1):80–112, January 1985.
10. C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.

Prentice Hall, 1991.
11. JavaSpaces. The JavaSpaces Specification web page. http://www.sun.com/jini/

specs/js-spec.html.
12. Jini Web page. http://www.sun.com/jini.
13. B. Meyer. Design by Contract. In D. Mandrioli and B. Meyer, editors, Advances

in Object-Oriented Software Engineering. Prentice-Hall, 1992.
14. A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime: A Middleware for Physical and

Logical Mobility. In F. Golshani, P. Dasgupta, and W. Zhao, editors, Proc. of the
21st Int. Conf. on Distributed Computing Systems, pages 524–533, May 2001.

15. G.P. Picco, A.L. Murphy, and G.-C. Roman. On Global Virtual Data Structures. In
D. Marinescu and C. Lee, editors, Process Coordination and Ubiquitous Computing,
pages 11–29. CRC Press, August 2002. To appear.

16. G-C. Roman, G.P. Picco, and A.L. Murphy. Software Engineering for Mobility:
A Roadmap. In A. Finkelstein, editor, The Future of Software Engineering, pages
241–258. ACM Press, 2000.


