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ABSTRACT
One reasonable categorization of coordination models is into data
sharing or message passing, based on whether the information nec-
essary to coordination is persistently stored and shared, or instead is
only transiently available during communication. Generally speak-
ing, approaches based on data sharing are more expressive and pro-
vide full decoupling in space and time. The alternative approach
requires the simultaneous presence of the coordinated parties, but
is typically more scalable. Prominent examples are, respectively,
tuple spaces and publish-subscribe.

An open research question is whether it is possible to exploit
in synergy the best of these two approaches, e.g. by implement-
ing the more complex data sharing coordination on top of the more
lightweight message passing one. In this paper, we seek an answer
to this question in a pragmatic way: we analyze an implementa-
tion of the LIME tuple space middleware on top of REDS, an open
source publish-subscribe system. Our implementation-driven style
of investigation forces us to face details that do not surface when
reasoning in the abstract about the nature and expressiveness of the
models. We report about lessons we learned in this experience,
and propose an extension to the publish-subscribe model that, al-
beit useful per se, constitutes a more effective foundation for data
sharing coordination models.
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1. INTRODUCTION
Coordination involves the exchange of information that is used

by processes to govern their own actions and affect each other. The
interactions among the coordinating parties can be driven by the ac-
tual values of shared data or by message passing. This distinction
clearly identifies two categories for coordination models, as rec-
ognized in [13] where several examples are also provided. In the
first, data sharing models, often inspired by the tuple space concept
originally introduced by Linda [9], coordination occurs by manipu-
lating the current state of the system, as made globally available by
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the coordination infrastructure. For instance, Linda enables one to
read (or withdraw) one among the tuples hosted by the tuple space,
or change its content by adding a new tuple. In this paper, we refer
to this kind of coordination built on data sharing also as stateful,
precisely because it relies on a persistent, globally available repre-
sentation of the information necessary to coordinate processes. The
second alternative coordination models, based on message passing,
are inherently stateless, such as event-based systems [11]. Indeed,
in these models coordination is achieved by relying only on the in-
formation contained in a message transiently available to the coor-
dinated parties, without any globally-accessible state information.
For instance, in publish-subscribe a message published by a pro-
cess is received only by those subscribers who are interested in the
message content or topic. The coordination information is entirely
contained in the message, is accessible only during the message
exchange, and is discarded by the coordination layer after delivery
to the application process. Note that here we define the notion of
state by looking only at the coordination model: the coordination
system implementing such model will of course contain some state
(e.g., the subscriptions issued by the various components for filter-
ing messages of interest).

The two approaches present clear differences. Data sharing mod-
els provide full decoupling in space and time, enabling exchange of
information even when processes are not active at the same time.
In a distributed setting this typically comes at the price of reduced
scalability, due to the need to enforce some degree of consistency
of the coordination state across the distributed system. On the other
hand, message passing models are more easily and efficiently im-
plementable, in that they foster interactions that are temporally and
spatially confined to the coordinated parties involved in the mes-
sage exchange.

Often, the two models are considered alternatives that, as men-
tioned above, provide a different balance among various tradeoffs.
Some researchers have tried to reconcile the two approaches by ex-
tending stateless models and providing some degree of support for
state-based operations. For instance, in the context of the publi-
sh-subscribe model, the subscription language of the PADRES [8]
system is augmented with the possibility to operate on the history of
the events published in the system; the work in [6] proposes a query
language to express complex subscriptions over published events.
In [1] the data shared for the coordination is composed of both the
published events that are persistently stored inside the publish-sub-
scribe middleware and the active subscriptions; the primitives are
extended with the possibility to query such data and remove the
published events from the shared state.

In this paper, instead, we take a different perspective motivated
by the following questions: Can we implement a form of stateful,
data sharing coordination entirely on top of a stateless, message



passing one? If so, to what extent can the advantages of the under-
lying stateless approach be exploited by the stateful one?

A restricted form of this question was previously posed and tack-
led from a strictly theoretical perspective in [2], where the au-
thors present a mapping of the original Linda model onto the pu-
blish-subscribe model. Nevertheless, their approach both abuses
the stateless nature of publish-subscribe by using subscription fil-
ters to persistently store application state and, although technically
correct, its possible implementation raises many practical concerns.
Instead, we chose a pragmatic approach, using an implementation-
driven case study as a concrete example whose realization yields
practical insights into system issues. Specifically, we chose as
a representative of the class of data sharing coordination models
LIME [12], and publish-subscribe as a representative of the ones
based on message passing. The case study consists of investigat-
ing if and how the LIME system can be (re)implemented on top of
REDS [5]. The two models, and related systems, are briefly de-
scribed in Section 2. In making these choices we have clearly been
biased by our own research interests and experiences. However,
since some of us took part in the implementation of both systems,
these choices nicely solve pragmatic issues such as knowledge of
the architecture internals as well as code ownership and availabil-
ity, therefore placing ourselves in a unique position for undertaking
this effort and distilling lessons learned.

Section 3 presents the system architecture considered throughout
this paper. Section 4 reports about a first integration of the two ap-
proaches, where the publish-subscribe support provided by REDS
is used unmodified by the LIME implementation. This strategy has
a number of drawbacks caused, as one could expect, mostly by
the semantic gap between the two layers. We identify the ability to
collect state information as the fundamental building block missing
from the publish-subscribe layer. Therefore, in Section 5 we pro-
pose publish-subscribe-collect, an extension of publish-subscribe
that, by offering this capability, provides a richer foundation for
the development of data-driven coordination models. An enhanced
implementation of LIME based on publish-subscribe-collect is an-
alyzed in Section 6 and the inner workings of the collect primitive
are outlined in Section 7. We analyze the results of our case study
in Section 8 and provide concluding remarks in Section 9.

The reader should be warned, however, that we are not claiming
here that the scalability issues and other idiosyncrasies of stateful
approaches can magically vanish. Even with our enhanced publish-
subscribe-collect model, there are situations where the efficiency
drawbacks of stateful approaches surface. These are indeed intrin-
sic in data sharing models, and are the main problem grieving the
middleware designer implementing them. In summary, in this pa-
per we make the two following contributions:

• We provide a careful, implementation-driven analysis of the
opportunities and pitfalls in integrating two popular coordi-
nation models. To the best of our knowledge, no other similar
analysis exists in the literature.
• We introduce a novel extension of the publish-subscribe mod-

el, which can be useful per se or as a building block for
higher-level data sharing coordination abstractions.

2. BACKGROUND
Before describing the integration of the data sharing and message

passing models, we first discuss them in isolation, introducing the
systems we selected for the case study.

2.1 Transiently Shared Tuple Spaces
The tuple space model, made popular by Linda [9], supports the

coordination of processes by providing a shared medium accessed
through a minimum set of operations, namely insertion (out), read-
ing (rd) and removal (in). The actual information is described by
tuples, a sequence of typed parameters, such as 〈“foo”, 9, 29.4〉 and
the access to them is performed using templates composed by ac-
tual (i.e. values) and formal (i.e. “wild cards”) fields. The resulting
interaction is decoupled in time and space and the coordination is
based on the content of the available tuples.

The model resonates with the distributed mobile setting as
demonstrated by LIME [12], which breaks up the tuple space into
many tuple spaces each permanently associated to a single node
and defines rules for transient sharing of the individual tuple spaces
based on connectivity. The scope of the sharing can be restricted
by assigning a tuple space a name, and allowing each node to own
more than one named tuple space. The abstraction provided to the
application is that of a local tuple space containing tuples coming
from all the units currently accessible. This transiently shared tu-
ple space can be accessed through a set of operations enlarged with
respect to those of Linda, namely probing operations (i.e. rdp and
inp) that do not block the requester if a result is not available and
bulk operations (i.e. rdg and ing) that return a set of matching
tuples.

LIME also extends the model with a notion of reaction; it is de-
fined as a listener active over the tuple space for all (or just one)
of the tuples matching the associated template. The listener fires
both with the tuples already available in the system at the moment
the reaction is submitted and those inserted later. This behavior
highlights the dependency of the middleware on both the state of
the system at the moment the operation is issued and the following
changes to it.

2.2 Publish-subscribe
The publish-subscribe model [7] supports anonymous, multi-

point communication among publishers and subscribers. Sub-
scribers specify their interest in messages through a subscription
containing a message filter. Filters can be based on a message sub-
ject or content. Our work focuses on the latter, where subscription
filters are predicates over the content of the published messages.
When a publisher sends a message that matches a previously in-
stalled subscription, the message is forwarded to the corresponding
subscriber(s).

The matching of messages against subscriptions, as well as the
consequent message forwarding, are the responsibility of the mes-
sage dispatcher, which effectively decouples publishers and sub-
scribers. In terms of implementation, a message dispatcher is eas-
ily provided by a dedicated server, leading to the usual scalability
and single-point-of-failure problems of centralized architectures.
Therefore, in this work we focus on distributed implementations
of the message dispatcher, where the dispatching functionality is
provided by application-level routers called brokers. In particu-
lar, in our case study, we used the REDS [5] system, a distributed
publish-subscribe framework whose reconfigurable and extensible
architecture allows us to easily exploit a standard publish-subscri-
be system as well as to extend it to encompass our own extensions,
discussed in Section 5.

3. SYSTEM ARCHITECTURE
Figure 1 depicts the architecture of a single host, decomposed

into three distinct layers: the application, the LIME middleware,
and the publish-subscribe middleware. Conceptually the top two
layers focus on data sharing coordination while the lowest is mes-
sage passing. The system is composed of multiple hosts, and all
communication is managed by the lowest layer.
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Figure 1: Components on a single host. Grey components are those affected
by our case study.

The LIME application is composed of multiple, distributed agents
interacting with one another through the interface to the transiently
shared tuple space (ITS). All communication remains hidden be-
neath the tuple space interface. Our work builds on a recent ver-
sion of the LIME middleware that decouples the underlying trans-
port layer from the local tuple space management. Its goal is to
allow LIME to run on top of any transport layer for which a com-
munication adapter conforming to a standard interface has been
provided. Therefore, LIME is internally divided into a component
managing the local tuple space and a communication adapter, con-
trolling all interactions with other nodes in the system. Essentially
this adapter converts locally-issued LIME operations involving re-
mote hosts into a sequence of communication actions. In a similar
way, when an operation issued remotely is received, a listener is in
charge of accessing the local tuple space and replying properly.

In this paper we describe the actions taken by the communica-
tion adapter to work either with publish-subscribe (Section 4) or
publish-subscribe-collect (Section 6). Both implementations are
instantiations of the REDS framework. To make each host as in-
dependent as possible, we opted to instantiate both the dispatcher
and broker on all hosts, using local communication between LIME
and the dispatcher, and between the dispatcher and the broker.

While in principle all operations can be carried out with either
the publish-subscribe or the publish-subscribe-collect primitives,
our case study revealed that some operations are best managed with
one-to-one communication between hosts, motivating the inclusion
of a specific module to handle unicast interactions.

4. LIME OVER PUB/SUB
We begin our investigation with a study of how the federated

tuple space model of LIME can be implemented on top of the tra-
ditional publish-subscribe model. Every LIME operation involving
multiple hosts is actually a sequence of actions executed by the
communication adapter. These actions must be mapped onto ei-
ther unicast or publish-subscribe interfaces. This section outlines
these mappings for operations issued over the whole federated tu-
ple space. For operations issued locally, or over a specific, remote
tuple space, the unicast component is used exclusively. This section
is organized along the different kinds of LIME operations, namely,
non-blocking operations, reactions, and blocking operations.
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Figure 2: Mapping LIME operations onto the unicast and publish-subscribe
primitives: (a) rdg and (b) ONCEPERTUPLE reaction. We assume all hosts
own one tuple space with the same name (tsName).

Non-Blocking Operations. rdg, one of the non-blocking op-
erations provided by LIME, returns to the operation initiator all the
existing tuples matching a specified pattern, or null if no matching
tuple exists. In Figure 2(a), we show an example of the interactions
required to achieve these semantics over publish-subscribe. We
employ the query/advertise paradigm [10] in which each node sub-
scribes (advertises) to receive published messages (queries) it can
respond to. The idea for LIME is for each host to subscribe (step 0
in the Figure) to receive non-blocking operations (rdp, inp, rdg,
ing) destined for a named tuple space held by that node. When
a non-blocking operation is issued (step 1), it is published (step
2), along with the identity of the initiator. The publish-subscribe
infrastructure receives the message (2.1 in the Figure), delivers it
to each of the subscribers (2.2 in the Figure), i.e. owners of the
queried tuple space, then these nodes look locally for matching tu-
ples. If a match is found, a copy of each matching tuple is sent
via unicast (step 3) back to the query initiator. After a given time-
out, all received results are returned to the agent; if no response has
been received, we return null even if some matching tuple exists
but its availability is notified after the expiration of the timeout.

All other non-blocking operations follow a similar implemen-
tation. For a rdp, the first result is returned to the agent, while
the others are discarded. inp and ing follow the corresponding
read operation and append further actions to remove the matching
tuple(s). Specifically, an additional, direct (unicast) interaction is
issued to remove the tuple(s) from the hosting node(s).

Reactions. LIME offers the ability to execute a user defined lis-
tener either once for one single matching tuple or once for every
tuple available in the system. The available primitives that meet
such requirements are respectively ONCE and ONCEPERTUPLE re-



actions. The tuples that satisfy these operations are both the ones
already available in the system at the time of installation as well as
those inserted in the shared tuple space later. Achieving the pre-
sented semantics requires a copy of the matching tuples to be sent
to the reaction initiator where the listener can be executed.

For ONCEPERTUPLE reactions, shown in Figure 2(b), this is real-
ized over publish-subscribe with a combination of two operations,
namely a rdg (steps 0, 3 and 4) to retrieve all existing matching
tuples, and a subscription (step 2) for matching tuples later inserted
into the tuple space. The need for the former is due to the semantics
of the subscription that operates only on the data made available by
publication after the activation but not on the information already
present in the state of the system when the subscription is issued.
We further require that all nodes publish all tuples as they are in-
serted (step 6), allowing tuples to flow to all hosts with registered
reactions (6.1 and 6.2 in the Figure).

Since ONCE reactions require only a single result, we substitute
the rdg with a rdp. Nevertheless, if the result is null, a subscrip-
tion is issued and later removed by an unsubscription as soon as a
result, different from null, is returned.

Blocking Operations. The blocking operations, which return
one matching tuple, are nicely built on top of the previously de-
scribed ONCE reactions. In the case of rd, a listener can be defined
that blocks the issuing agent; when a result is found, then the lock is
released and a copy of the tuple returned. For an in, an additional
out-of-band, unicast communication removes the tuple. After its
successful removal, the unsubscription is executed.

Discussion. At first sight, LIME and publish-subscribe have
some key points in common, which suggest the potential for syn-
ergy between the two models. They both support decoupling be-
tween data producers and consumers, which interact without using
node identifiers, instead using pattern matching over relevant data
as the main mechanism for establishing coordination among the
parties. Moreover, both models provide a form of asynchronous no-
tification. In publish-subscribe, the very model revolves around the
concept that a process is notified whenever a message matching one
of its subscription filters is published by some other component in
the network. In LIME, reactions tie a similar notification function-
ality to state changes: the programmer can essentially “subscribe”
to changes in the tuple space, which are implicitly “published” in
the transiently shared tuple space spanning all components.

On the other hand, an analysis of our implementation reveals
that, in practice, the two models also present some incompatibil-
ity, whose source can be traced back to the state dimension present
in LIME and absent in publish-subscribe. In the latter, message
passing limits the scope of interactions uniquely to the content of
the message itself. Instead, in LIME and in general in data shar-
ing models, operations potentially span the whole distributed state.
Performing operations in these models involves two steps: state
collection and state update.

Consider a blocking rd operation. First, the system must be
scanned to see if a matching tuple exists—state collection. If this
is not the case, the system must be monitored to make sure that if
and when a matching tuple appears, the proper processing occurs—
state update. Clearly, the publish-subscribe model is inherently
well-suited for providing support for state update, and we exploit
this ability in the mechanisms we just illustrated. Unfortunately,
however, its application to state collection is somewhat cumber-
some. Indeed, the publish-subscribe layer is oblivious of the mes-
sage content, and simply disseminates its messages (including those
containing operation requests) to all interested parties—each time

this is requested, regardless of the previous interactions. Instead,
when applied to state collection, one would like to take into ac-
count nodes that, when last queried, did not have any result and
have not communicated a state update since then. Sending opera-
tions to these nodes is wasteful, the more so the bigger the scale of
the system. These kinds of optimizations, however, are clearly not
possible without fundamentally changing not only the publish-sub-
scribe implementation, but also the very nature of the publish-sub-
scribe model.

Similarly, the cooperation of the state collection and update
phases is also problematic. In our solution, to remain faithful to our
goal of reusing the publish-subscribe system as is, we significantly
increased the complexity of the communication adapter component
in Figure 1. Indeed, this component must perform significant book-
keeping to reconcile results coming through separate channels—the
unicast messages carrying query results and the published message
notifications coming as a result of a subscription installation and
the subsequent appearance of a matching tuple.

Therefore, the synergies between the LIME and publish-subscri-
be models are undermined by the mismatch between the two in
terms of their focus on state. Such limitations can be overcome
with ad-hoc solutions, as we did in the design of our communica-
tion adapter. However, this clearly leads to non-reusable solutions.
Instead, based on our observations, we propose an extension of the
publish-subscribe model that, without changing its fundamental na-
ture, provides just what is needed in terms of expressiveness to ef-
fectively deal with state collection: a collect primitive that reunites
the two perspectives above and can be implemented in a way opti-
mized for dealing with state.

5. THE COLLECT PRIMITIVE
Based on the considerations above, we propose publish-subscri-

be-collect, an extension to publish-subscribe that explicitly pro-
vides access to application state. While our motivation was to pro-
vide better support for LIME, the resulting model is general enough
to support any data sharing coordination. This section introduces
the model and its primitives, while the following sections return
to its effectiveness for supporting LIME as well as implementation
concerns.

5.1 Enabling State Access
Our model is based on three concepts that address application

state: local state, state patterns, and state updates. The definitions
of all three are left to the application, and effectively enable a sharp
separation of concerns between the application and the coordina-
tion middleware, leading to a flexible model that enjoys wide ap-
plicability.

The local state of an application is whatever the latter deems rel-
evant for coordination purposes. More interesting is the notion of
state pattern, which describes the (remote) state an application is
interested in. These patterns are analogous to the event patterns
of publish-subscribe, but are defined and evaluated by the applica-
tion rather than the middleware. When the middleware receives a
pattern as a parameter of the collect operation, it routes it to the
distributed hosts, where it is passed up to the application for evalu-
ation. The pattern is therefore evaluated over the local state of the
receiving node only, not over a combination of states on multiple
hosts. Further, the response to the query is completely defined by
the application, but can include a special response, empty. Again,
the precise definition of empty is left to the application. For ex-
ample, it may be used to report that the application is in an initial
state, or that it has no state matching the supplied pattern. In any
case, empty has a special meaning for certain variations of collect,



Table 1: The six variants of collect.

ANY ALL

PROBING
If all nodes empty and no matching state update found, returns
empty. Otherwise returns one, non-empty state or matching
state update.

Queries the state of all nodes. Returns empty or non-empty for
each, along with the matching state updates encountered during
the evaluation.

SINGLE
Returns one, non-empty state or one matching state update.
If all nodes empty, remains installed until one node has a non-
empty state or publishes a matching state update.

Returns one, non-empty state for each node in the system.
If any node is empty, remains installed until that node has a
non-empty local state or publishes a matching state update.

PERSISTENT Non-deterministically selects one node with non-empty state:
returns this state and all future matching state updates.

Returns the state of all nodes, along with all future matching
state updates.

as detailed in the next section.
Additionally, applications publish state update messages, de-

scribing changes to their local state. The intuition is that an appli-
cation, through collect, can receive continuous updates about a re-
mote node’s changing state, similar to subscriptions to receive pub-
lished messages in the standard publish-subscribe model. Identify-
ing which updates to forward to which hosts is a matter of matching
a state pattern against the update messages. It is interesting to note
that, in principle, matching a pattern to an update message may
also be useful for providing a response to a state query. However,
because the contents of the state update are entirely defined by the
application, such a match may or may not make sense. For instance,
consider the case where the notion of local state is represented by
HTML pages, and a state update simply contains a diff between an
old and a new version of the same page. In this case, it is unlikely
that the message carrying the state update (the diff) satisfies the
query, which instead is likely to be formulated in terms of the rel-
evant state (the whole page). Nevertheless, other applications may
provide sufficient state information in a state update message: this
is the case of LIME, where the state update is simply the new tuple
that appeared in the tuple space. Ultimately, since the content of
the state update messages and the definition of state patterns are in
the hands of the application programmer, it is sufficient to encode
in their matching rules if and how a state update matches a state
pattern.

In summary, the application manages its own local state, pub-
lishes messages describing state changes, issues queries contain-
ing patterns describing the desired state (matching either local state
data or published state updates), and responds to queries with local
matching state information.

5.2 The Publish-Subscribe-Collect Model
The primary mechanism for a publish-subscribe-collect applica-

tion to access state is through a new operation, collect. This allows
it to query the current local state of the nodes in the system for
matching state, as well as to monitor changes to such state. The
collect primitive is parametrized along two dimensions: space and
time.

For the former, we consider the extent of the operation in terms
of the hosts involved in the query. This can vary from a single node
to all those available in the system. While theoretically any scope
constraint may be meaningful, for practical reasons we focus only
on the extremes, providing operations over all hosts participating in
the system or to any single host. To maintain anonymous commu-
nication among participants, the any option non-deterministically
selects a suitable participant.

To define the time dimension, we consider the cause of the opera-

tion termination: implicit after the operation is satisfied, or explicit
through cancellation by the application. Further, we recognize two
cases for satisfying an operation, namely accepting an empty state
or requiring a non-empty state response. This yields three options
for defining the operation duration, namely probing that accepts an
empty state, single that is satisfied with a non-empty state response,
and persistent that remains active until explicitly cancelled by the
application.

The combinations of the space and time dimensions yield six
variations of the collect operation, outlined in Table 1. The seman-
tics of publish and subscribe are unaltered.

6. LIME OVER PUB/SUB/COLLECT
In comparison to the mapping of LIME over publish-subscribe

presented in Section 4, the mapping over publish-subscribe-collect
is much more straightforward. The system architecture remains
that of Figure 1, with the use of the collect extensions inside REDS.
The unicast component is retained for use with both LIME opera-
tions issued to specific remote hosts as well as for tuple removal
operations (e.g., in, inp, ing).

As before, adapting LIME requires instantiation of the commu-
nication adapter to respond to queries and to map LIME opera-
tion actions to publish-subscribe-collect operations. Unlike our
original adapter described in Section 4 where the publish-subscri-
be layer is state-agnostic, publish-subscribe-collect explicitly man-
ages both state queries and their responses. Therefore, when a
collect query arrives at a host, a listener residing in the commu-
nication adapter is called and the local tuple space is queried; the
result is then returned to the publish-subscribe-collect layer. This
is notably different from our previous mapping, in which the com-
munication adapter explicitly routed replies back to the operation
initiator. When a query response arrives at a host, a second listener
redirects the response to the pending LIME operation, which then
forwards it to the application agent. Again, this is cleaner than our
previous solution as all replies arrive through the middleware in-
stead of a combination of the middleware and the unicast module.

As expected, the tuple space forms the state to which publish-
subscribe-collect provides access. Queries contain tuple patterns,
and indicate how many tuples are required in the response (e.g., one
for rdp, all matching for rdg). State update messages are used by
LIME to announce the insertion of a tuple, and therefore contain a
copy of the inserted tuple. When a single tuple is sufficient for a
query, the pattern allows matching to state update messages.

This section details the mapping of LIME onto publish-subscri-
be-collect, while Table 2 provides a brief overview.



Table 2: Mapping LIME to publish-subscribe-collect.

ANY ALL

PROBING rdp rdg

SINGLE
rd,
reactTo (ONCE)

PERSISTENT reactTo (ONCEPERTUPLE)

Non-Blocking Operations. The non-blocking operations, i.e.
rdg, rdp, ing, inp, provide results about the current tuples in
the system, precisely matching the semantics of probing-collect.
Specifically, a rdg that requires state from every available host uses
the all variation with a pattern requesting all matching tuples be re-
turned. Instead, rdp maps to the any variation. Its pattern requires
only a single result, and allows matching to a state update message.
ing and inp are implemented as a combination of a read operation
followed by a unicast to remove the tuple(s).

Reactions. ONCEPERTUPLE reactions, which combine state col-
lection and subscription, map precisely to persistent-collect-all.
Their pattern selects all matching tuples and matches state update
messages carrying matching tuples. In comparison to our previous
solution that used a decoupled combination of a rdg and a sub-
scription, this solution achieves the same semantics with a single
operation. Finally, a ONCE reaction requires only a single match-
ing tuple, hence it is mapped to a single-collect-any operation.

Blocking Operations. As noted previously, rd has the same
semantics as a ONCE reaction over the federated tuple space. There-
fore, it is also mapped to a single-collect-any. To implement an in,
the communication adapter first uses single-collect-any followed
by a unicast interaction to perform the tuple removal. If the tuple
is concurrently removed by another process, the entire procedure is
repeated until a result is successfully obtained.

Discussion. As is evident from the brevity of the description, the
mapping of LIME operations to publish-subscribe-collect is straight-
forward, demonstrating the ability of our new model to elegantly
support the stateful coordination of LIME. The use of the differ-
ent state patterns to control the number of tuples contained in a
response exemplifies the flexibility of the approach. Further, the
details of the query distribution and response routing remain com-
pletely hidden to the application, emphasizing the ability of the
middleware to maintain the separation of concerns between the ap-
plication and the coordination layers.

7. ON IMPLEMENTING COLLECT
Having outlined the publish-subscribe-collect model and its ap-

plicability for LIME, we now explore implementation issues made
evident during prototyping.1. Our prototype is an instantiation of
the REDS framework that adds the collect operation on top of an
implementation of the subscription forwarding routing strategy [3].
Before moving into the details of implementing and optimizing col-
lect, we first provide a brief introduction to subscription forward-
ing, as it influences our implementation.

1The prototype is available at http://d3s.dit.unitn.it/
pubsubcol.html

Subscription Forwarding. Subscription forwarding is one of
the most popular publish-subscribe routing strategies. It assumes
distributed brokers are arranged in an unrooted tree topology. Sub-
scriptions propagate along these tree branches from the subscriber
to all nodes of the system establishing routes for matching mes-
sages to follow from each node back toward the subscriber. To
avoid propagating all subscriptions throughout the entire tree, a
common optimization stops forwarding subscriptions for any pat-
tern that has already been subscribed to. The intuition is that the
existing routes are sufficient to properly route messages for the new
subscription.

Regarding efficiency, subscription forwarding assumes the num-
ber of messages is much higher than the number of subscriptions.
Hence, the overhead to distribute subscriptions to all nodes in the
tree is compensated by the efficient routes followed by messages.

7.1 Probing-Collect
The probing versions of collect terminate implicitly, possibly

with empty as a result. Additionally, matching state update mes-
sages can be part of the response. We begin our discussion with the
all variant, as it is the most general.

Taking inspiration from subscription forwarding, the probing-
collect operation propagates from the initiator to all nodes in the
system. When it reaches a leaf node, the state is queried and the
response forwarded to its parent, an intermediate node on the path
to the initiator. Each intermediate node collects the state from its
children, combines the result with its own state and any matching
state update messages it has processed while waiting for responses
from its children, and forwards the combined result to its parent.
Eventually the initiator receives state information from each of its
children and returns the result to the waiting application. Impor-
tantly, no timeouts are required to identify when the full state has
been collected.

Implementing the any variant requires a slight modification of
this form of state collection over a tree. Because only a single re-
sult is required, if a non-empty state is encountered during query
propagation, this state is returned, the propagation halted, and the
collection tree, as described above, removed. Alternately, if a node
waiting for responses from its children processes a matching state
update message, this is returned to the initiator and the query can-
celled. If the query result is empty, the processing for both any and
all are identical.

It is worth noting that the all variant essentially returns the global,
distributed system state. Although each state is kept locally con-
sistent by the application, the combination of multiple local states
raises the concern about consistency. Comparison of our imple-
mentation of the state collection to the original Chandy-Lamport
distributed snapshot [4] reveals that the processing is identical, col-
lecting local states and the state update messages. Nevertheless,
because the definition of these elements is in the hands of the appli-
cation, they may or may not be sufficient to reconstruct a consistent
state. To improve the efficiency of the snapshot implementation, we
consider that multiple nodes may issue identical operations simul-
taneously. Rather than run separate snapshots, partial results such
as the states along common tree branches can be shared. We there-
fore exploit the Kearns and Spezialetti distributed snapshot [14],
which efficiently supports concurrent initiators.

7.2 Single-Collect
The single variants of collect require state from one or all hosts.

The all variation propagates throughout the system along the tree,
establishing routes to the initiator, similar to the probing-collect-all
propagation described above. When a node receives the query, if it



has a non-empty state, this is forwarded immediately to the initia-
tor. Otherwise, the middleware monitors the host for locally pub-
lished state update messages that match the query. Unfortunately,
if the application does not allow state update messages to match
the query, then the query may never be satisfied. Therefore, af-
ter receiving a local state update message, the middleware directly
queries the local node for its matching state. The intuition is that
even if a state update message does not match the pending query,
it does signify that the local state has changed, and therefore a new
request may return a non-empty state. When the node and all its
children have reported non-empty states, the route to the initiator is
no longer necessary and is removed.

When only a single response is required (single-collect-any),
propagation halts as soon as a node with a non-empty state is en-
countered. However, unlike probing-collect-any which collects
empty responses, single-collect-any remains active until one node
reports a non-empty state, either through a state update message
or a local query by the middleware. In either case, the result is
returned to the initiator and the operation cancelled.

7.3 Persistent-Collect
The persistent variants of collect bridge the gap between sub-

scription to future state changes and collection of current state. As
such, the implementation is an integration of the state collection
described previously for the probing variations and a concurrent
subscription. Specifically, as an all version of the persistent-collect
propagates, the local state query is performed as usual, and a sub-
scription is installed to forward matching state updates. However,
unlike traditional subscription installation which stops propagating
when an identical subscription is encountered, the query must con-
tinue to propagate in order to collect the state of all nodes. On the
other hand, for efficiency reasons, the subscriptions are not dupli-
cated in the subscription tables.

The any version of persistent-collect non-deterministically se-
lects a host, collects its state, and monitors its updates. This se-
lection requires establishing only a single path from a node with
non-empty state and the operation initiator. To identify which path
to establish, we use the previously described mechanism to dis-
seminate the query along the tree. When a node with a non-empty
state is encountered, the operation stops propagating, the state is
returned, and all other routes are removed. If multiple hosts from
different branches of the tree reply, the initiator non-deterministi-
cally selects one and removes the routes from the others.

7.4 Optimizing State Retrieval
Considering the operation cost, our implementation of the any

variants of collect represent a significant improvement over the
corresponding implementation using traditional publish-subscribe.
For example, consider that a single state collection, such as rdp,
implemented on top of publish-subscribe publishes a query which
is routed to all subscribed hosts (in LIME, those with the same
named tuple space). Although only a single response is required,
all hosts receive the query and all those with matching tuples. In-
stead, with the implementation described here, the query ceases to
propagate when a matching state is found, limiting the scope of the
operation. Although our propagation mechanism simultaneously
spreads the query to all neighbors, and therefore potentially multi-
ple hosts may respond, the savings can be significant especially in
large systems.

On the other hand, the overhead for collect operations that re-
trieve state from all hosts remains a concern. Returning to our ini-
tial motivation from LIME, we considered that significant savings
could be achieved if we cache tuples from previous queries. For
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Figure 3: Arrows connecting nodes indicate routes for messages toward
subscribers. (a) Without pruning, all probing-collect-all operations reach
all hosts. (b) With pruning, subsequent probing-collect-all operations are
limited to parts of the network with state. Nodes such as D whose de-
scendants previously reported empty and have not since sent state changes
(indicated by the > on the links) are eliminated from the request.

example, in Figure 3, if node B caches the returned tuple from E,
subsequent queries can return the cached value without additional
messages along E’s sub-tree. However, because tuple removals are
not published as state update messages, keeping these caches up to
date is impossible.

Nevertheless, in LIME and any other application written on top
of publish-subscribe-collect it is possible to cache if a branch re-
turned empty. Consider the example in Figure 3(a) in which A is-
sues a probing-collect-all operation (step 1). All nodes receive the
forwarded request (step 2) and reply (step 3). Without optimiza-
tions, subsequent probing-collect-all queries have the same behav-
ior, again reaching all tree nodes, including the empty branch of
the tree containing D and F . However, consider the case where
B has an existing subscription (step 0). This means that state up-
dates (e.g., inserted tuples) at D and F will be forwarded through
B. Therefore, it is safe for B to cache the empty result from D,
because this empty cache status is invalidated by any state update
arriving from D.

Implementing this is straightforward, as it only requires moni-
toring empty queries for patterns where an identical subscription
already exists. The annotation is visualized in the figure with a >
on the links from F to D and D to B. It is worth noting that this
optimization applies to all collect variants, and although it requires
an existing subscription to allow subsequent pruning, we expect
this to be common. For example in LIME, the installation of a
reaction is sufficient to establish the subscription (through the per-
sistent-collect-all), after which all subsequent queries can benefit
from pruning.

8. DISCUSSION
One of our initial goals was to identify the synergies and incom-

patibilities between two coordination styles through a case study.



In the end, we uncovered both. On the positive side, it is clear that
the data sharing model of LIME can be reasonably implemented
on top of a stateless message passing model, namely publish-sub-
scribe-collect. The introduction of state-aware operations into the
corresponding middleware simplifies the implementation of state-
ful constructs, while knowledge of the operation semantics opens
up opportunities for overhead reduction. Interestingly, this is all
achieved through a model that maintains the separation of con-
cerns between data distribution and data management, yielding a
very flexible middleware useful for any data sharing application,
not only LIME.

On the other hand, providing access to the entire system state
presents inherent scalability problems. While the optimizations
presented in Section 7.4 do reduce the overhead, they are appli-
cable only in conditions where entire branches of the system report
the empty state. We intend to explore additional optimizations such
as altering the topology to encourage branches with empty state or
even caching state on stable branches. In general, we intend to pur-
sue a quantitative evaluation of our publish-subscribe-collect im-
plementation in order to identify the best avenues for optimization.

Finally, it is worth noting that our investigation started with LIME,
a model intended for mobile ad hoc networks (MANET). A version
of REDS has been implemented for MANET and, as a natural con-
sequence, we have begun to investigate if the collect operation can
be added within the mobility constraints to yield a version of publi-
sh-subscribe-collect for MANET. Our initial investigations reveal
that the mapping is feasible, however the semantics of the oper-
ations over all nodes must be redefined and additional state and
processing must be added to each node when a tree branch is added
or removed during the processing of a query. Nevertheless, we be-
lieve that with minor modifications, the publish-subscribe-collect
model can be implemented for the MANET environment.

9. CONCLUSIONS
This paper clearly demonstrates that data sharing coordination

can be reasonably implemented on top of message passing. Our
initial investigation mapping LIME to traditional publish-subscribe
revealed a path for extending publish-subscribe with a stateful op-
eration, namely collect. The resulting model more efficiently sup-
ports data sharing applications, is flexible enough to support a wide
range of applications, and is stateless itself therefore remaining true
to the stateless, message passing model.
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