
Programming Wireless Sensor Networks with
Logical Neighborhoods

Luca Mottola and Gian Pietro Picco
Dipartimento di Elettronica ed Informazione—Politecnico di Milano

{mottola,picco}@elet.polimi.it

Abstract— Wireless sensor network (WSN) architectures often
feature a (single) base station in charge of coordinating the
application functionality. Although this assumption simplified
the path to adoption of WSN technology, researchers are now
being attracted by more decentralized architectures with multiple
sinks and heterogeneous nodes. These scenarios are brought to
an extreme in Wireless Sensor and Actor Networks (WSANs),
where sensing and acting nodes collaborate in a decentralized
fashion to implement complex control loops. In these settings, new
programming abstractions are required to manage complexity
and heterogeneity without sacrificing efficiency.

In this paper we propose and define a logical neighbor-
hood programming abstraction. A logical neighborhood includes
nearby nodes that satisfy predicates over their static (e.g.,
type) or dynamic (e.g., sensed values) characteristics. The span
of the neighborhood and the definition of its predicates are
specified declaratively, along with requirements about the cost
of the communication involved. Logical neighborhoods enable
the programmer to “illuminate” different areas of the network
according to the application needs, effectively replacing the
physical neighborhood provided by wireless broadcast with a
higher-level, application-defined notion of proximity.

This paper presents the definition of a declarative language for
specifying logical neighborhoods, highlighting its expressiveness,
flexibility and simplicity. Moreover, although the language con-
structs are readily implemented using existing communication
mechanisms, we briefly report about a novel routing scheme we
expressly designed to support efficiently our abstractions.

I. I NTRODUCTION

Wireless sensor networks (WSNs) are increasingly em-
ployed in a variety of settings to gather data from the physical
world. Nevertheless, most of the WSN architectures deployed
thus far are quite simple. Habitat monitoring [9], one of the
most popular applications, is paradigmatic in this respect,
featuring asingle base station collecting data from a high
number ofhomogeneousnodes.

More recently, researchers are investigating the use of
more decentralized settings where multiple base stations are
employed, different applications run on the same hardware,
or heterogeneous nodes are deployed. These approaches find
their extreme realization in wireless sensor and actor networks
(WSANs) [1], where nodes not only observe and gather data
from the environment, but are also capable of affecting it
by performing a variety of actions. Applications range from
localization facilities to control systems in tunnels or buildings,
interactive museums and home automation [12].

These applications clearly raise new challenges in the field
of networked embedded systems. Indeed, while in mainstream

WSNs the application goals are mainly realized by a single
task performed across the whole network (typically, that of
sensing and reporting a given measure), in decentralized
scenarios applications are usually composed of many collabo-
rating tasks, each affecting only a given part of the system. For
instance, a WSAN deployed to perform control and monitoring
of a building needs to perform at least three main tasks, i.e.,
structural monitoring, in-door environment monitoring, and
response to extreme events such as fire or earthquakes [2].
To realize the latter functionality, actuator nodes controlling
water sprinklers need to monitor nearby temperature sensors
and smoke detectors and take the appropriate countermeasures
where and when it is needed. Therefore, not only devices have
heterogeneouscapabilities, but the application logic must now
reside in the network: including a central base station in the
control loop would inevitably degrade system performance and
reliability without any sensible advantage [1].

Developing applications for this kind of systems is complex.
In fact, the developer must worry not only about the imple-
mentation of the application logic, but also about which subset
of the system should be involved and how to reach it. As
no dedicated programming constructs and mechanisms exist
for the latter task, the result is additional programming effort,
increased complexity and, in absence of well-established and
reusable solutions, less reliable code.

In this work we address the aforementioned issues by intro-
ducing the notion oflogical neighborhood, an abstraction that
replaces the conventional notion of physical neighborhood—
i.e., the set of nodes in the communication range of a given
device—with a logical notion of proximity determined by
applicative information, and easily allows for data fusion and
aggregation through sensor virtualization. Logical neighbor-
hoods are specified declaratively using theSPIDEY language
we designed, illustrated in the rest of the paper, conceived to be
a simple extension to existing WSN programming languages
(e.g., nesC [5] in the case of TinyOS [6]).

To minimize the impact on the programming task, we
couple our logical neighborhood abstraction with conventional
broadcast-based communication. Using our enhanced com-
munication API, a broadcast message can now be sent to
the nodes in the system that satisfy the constraints imposed
by a given application-defined neighborhood, instead of the
nodes within communication range. This way, application pro-
grammers still reason in terms of neighborhood relations and
broadcast messages, but in addition can specify declaratively



Fig. 1. A portion of a node’s state and characteristics is exported at the
application-level by means of (logical) node instances.

the set of nodes a given device considers as its neighbors.
As such, our abstraction may foster a fresh look at existing
mechanisms, algorithms, and programming models by replac-
ing their conventional notion of physical neighborhood with
our programmer-defined, logical one.

Furthermore, even if existing solutions could be used to
implement the routing mechanisms needed to support commu-
nication in a logical neighborhood (e.g., [7]), we also propose
a novel routing algorithm that, in our opinion, better captures
the kind of localized interactions[3], [13] that characterize
decentralized scenarios like WSANs.

The overall benefits of our proposal impact two orthogonal
aspects. First, developers can concentrate on the actual ap-
plication goals while relying onSPIDEY and the associated
communication framework as a way to logically partition the
system and interact with it. We conjecture that applications
built on top of our abstraction result in cleaner, simpler, and
more reusable implementations. Second, this strategy opens
up opportunities for achieving a longer system lifetime and a
better resource utilization, by focusing only on the nodes that
actually need to be involved.

The rest of the paper is organized as follows. Section II
describes the logical neighborhood abstraction and theSPIDEY

language. Section III discusses solutions for supporting com-
munication in our approach, including a novel routing ap-
proach expressly devised for the decentralized scenarios we
target. Finally, Section IV surveys the related work, while
Section V ends the paper with brief concluding remarks and
an outlook on our future work.

II. T HE LOGICAL NEIGHBORHOODABSTRACTION

In this section, we begin with an overview of the core
concepts underlying the notion of logical neighborhood, and
describe the constructs of theSPIDEY language through ex-
amples. Then, we show how the language provides also higher
level abstractions by means of hierarchical composition of
neighborhoods, enabling a notion ofvirtual sensor. Finally, we
describe an API to support broadcast-based communication in
logical neighborhoods.

node template Device
static Function
static Type
static Location
dynamic Reading
dynamic BatteryPower

create node ts from Device
Function as "sensor"
Type as "temperature"
Location as "room1"
Reading as getTempReading()
BatteryPower as getBatteryPower()

Fig. 2. Sample node definition and instantiation.

neighborhood template HighTempSensors(threshold)
with Function = "sensor" and

Type = "temperature" and
Reading > threshold

create neighborhood htsn100
from HighTempSensors(threshold : 100)
max hops 2
credits 30

Fig. 3. Sample neighborhood definition and instantiation.

A. Core Concepts

The abstraction we propose revolves around only two con-
cepts:nodesand neighborhoods. As illustrated in Figure 1,
a (logical) node is the application-level representation of a
physical node, and defines which portion of a node’s data
and characteristics is made available by the programmer to
the definition of any logical neighborhood. The definition
of a node is encoded in anode template, which specifies
the node’s exported attributes. This is used to instantiate the
(logical) node, by specifying the actual source of data. To
make these concepts more concrete, Figure 2 shows aSPIDEY

code fragment to define a node template for a generic sensor,
and then instantiate a node with the structure prescribed by
the template. During instantiation, each attribute in a node
template is bound to an expression of the target language, e.g.
a variable or a function.

The attributes in a node template can bestatic or
dynamic . The former represent information assumed not to
vary in time, e.g., the type of measurement a sensor node
provides. Instead, dynamic attributes represent information
that by definition changes with time, e.g., the current sensor
reading. The decision about whether an attribute is static or
dynamic depends on the deployment scenario. Making the
distinction explicit may enable optimizations at the routing
layer.

A (logical) neighborhood is the set of nodes satisfying
a predicate on the nodes’ attributes. As with nodes, the
definition of neighborhoods is encoded in a template, which
contains the predicate that essentially serves as the mem-
bership function determining whether a node belongs to the
logical neighborhood. For instance, the neighborhood template
HighTempSensors in Figure 3 is based on theSensor
template in Figure 2 and selects nodes that host temperature



Fig. 4. A pictorial representation of the example in Figure 3. The black node
is the one defining the logical neighborhood, and its physical neighborhood
(i.e., nodes lying in its direct communication range) is denoted by the dashed
circle. The dark nodes are those satisfying the predicate in the neighborhood
templateHighTempSensors when the threshold is set to 100oC. However,
the nodes included in the actual neighborhood instancehtsn100 are only
those lying within 2 hops from the sending node, as specified through the
hops clause during instantiation.

sensors and are currently reading a value higher than a given
threshold. As exemplified in theSPIDEY code fragment of
Figure 3, a neighborhood template can be parameterized, with
the actual parameter values provided by expressions of the
target language upon neighborhood instantiation.

Moreover, the instantiation of a neighborhood template
specifies additional requirements aboutwhere and how the
neighborhood is to be constructed and maintained. For in-
stance, Figure 3 specifies that the predicate defined in the
HighTempSensors template is evaluated only on nodes that
are at a maximum of 2 hops away and by spending a maximum
of 30 “credits”. The latter is an application-defined measure of
cost, further detailed next, which enables the programmer to
retain some control over the resources being consumed during
the distributed processing necessary to deliver messages to
members of a logical neighborhood. A pictorial representation
of the example, visualizing the logical neighborhood concept,
is provided in Figure 4.

In essence, as graphically illustrated in Figure 5, templates
define what data is relevant to the application, while the
instantiation process constrainshow this data should be made
available by the underlying system. Separating the two per-
spectives has several beneficial effects. The same template
can be “customized” through different instantiations. For in-
stance, the very same template in Figure 3 could be used to
specify a logical neighborhood with a different threshold or
a different physical span. Moreover, this distinction naturally
maps on an implementation that maintains a neighborhood
by disseminating its template to be evaluated against the
values exported by a node instance, and uses instead the
additional constraints specified at instantiation time to direct
the dissemination process.

Beyond the basic constructs described so far,SPIDEY gives
developers further flexibility in defining the neighborhood
template through a set of simple and yet expressive constructs.
Traditional logical operators such asand , or , and not are
provided to define complex predicates on node templates. In
addition, as logical neighborhoods essentially identify sets of
nodes, it becomes natural to express a neighborhood as a
composition with already existing ones, using conventional
set operators such as union, intersection, subtraction, and

Fig. 5. Relationship between templates and their instantiation.

inclusion.
Our language also provides flexibility in managing the cost

involved in communicating towards a (logical) neighborhood,
through thecredits construct. Communication cost is de-
fined in terms of the basic operation of sending a broadcast
message to physical neighbors (the node’ssending cost), and
is measured incredits. The mapping between the two is
specified by the programmer on a per-node basis through a
use cost construct, which delegates the computation of this
mapping to an expression of the target language. Therefore,
the programmer can define a vast array of mappings, from
a straightforward one where the sending cost is fixed, to
sophisticated ones where it varies dynamically to adapt to
context changes (e.g., low battery power). Moreover, different
nodes can have different functions, e.g., with higher costs for
tiny, battery-powered sensors, and lower costs for resource
rich, externally-powered nodes. The overall number of credits
necessary to communicate with the members of a logical
neighborhood is evaluated as the sum of the costs that each
node involved in routing messages incurs in, with each node
evaluating its own cost according to the function specified
in the use cost declaration. Therefore, the ability to set
the maximum amount of credits spent in communication in a
logical neighborhood enables programmers to exploit different
trade-offs between accuracy and resource consumption. Neigh-
borhoods instantiated with a high number of credits ensure a
broader coverage at the expense of a higher amount of credits
and therefore resources. Instead, neighborhoods endowed with
a small number of credits may not reach all the specified
nodes, but are guaranteed to limit resource consumption.

B. Higher-Level Abstractions

Beyond defining and instantiating basic logical neighbor-
hoods,SPIDEY enables, without compromising its simplicity,
sensor virtualization through data aggregation and hierarchical
composition of neighborhoods.

Along the lines of [2], consider an actuator node controlling
a water sprinkler and monitoring the readings provided by a
set of nearby (e.g., deployed in the same room) temperature
sensors. When the average readings they collectively provide
are beyond a given threshold, the sprinkler must be activated.

This behavior can be encoded using theSPIDEY abstrac-
tion we discussed thus far, e.g., by defining a neighborhood
nearbyTempSensors . However, the collection of the data
reported by the sensors in this neighborhood and the corre-



create node vts from Device
Function as "virtualSensor",
Type as "temperature",
Location as "room1"
Reading as average(roomTempSensors) every 30

Fig. 6. Building a virtual sensors out of a neighborhood of lower-level real
sensors: the case of average values.

Fig. 7. A hierarchy of sensors where at the lowest level are actual sensors
and at above levels are derived virtual sensors. The same color is used to
represent sensors belonging to the same logical neighborhood.

sponding processing would be entirely up to the programmer.
Here, we introduce instead the ability to regard the set of
temperature sensors as a higher-level,virtual sensorable to
report as its main reading directly the average temperature.

Clearly, to accomplish this, the programmer inevitably needs
to encode the aggregation semantics into an appropriate func-
tion that, conceptually, depends on the values reported by the
nodes holding data needed to derive the aggregated measure,
i.e., the nodes in a given (logical) neighborhood, as in1:

function average(Neighborhood: nhood) {
sum = 0; counter = 0;
for(node in nhood) {

sum = sum + node.Reading;
counter = counter + 1;

}
return sum/counter;

}

However, theSPIDEY framework can spare the programmer
from the burden of directly handling the communication
needed to gather and aggregate data. This is achieved by
instantiating avirtual sensoras in Figure 6, directly reporting
the aggregated measure. In this definition, the key difference
with what we showed in Section II-A is the use of theas
clause, which binds an attribute to an aggregation function
(i.e., theaverage() function above) operating on a (logical)
neighborhood (i.e., the one containing temperature sensors
deployed in the same room). The rate at which data should
be gathered from the nodes must also be specified by the
programmer using the associatedevery clause. Notably, we
defined these virtual sensors from the sameSensor template
we defined earlier in Figure 2: simply, at instantiation time
we bind the attributeReading to a different, distributed data
source.

1Here, we use an abstract constructin to obtain an enumeration of the
node instances in a (logical) neighborhood. However, this construct must be
mapped appropriately on the target language.

Figure 7 illustrates the concept. At the bottom level is a
flat space of (logical) nodes, each being a direct abstraction
of the underlying hardware—temperature and water sprinklers
in our example. Aggregation functions over a neighborhood
enable developers to code at a higher-level of abstraction,
where nodes in a logical neighborhood are perceived as a
single virtual sensor. This is shown in the middle plane of
Figure 7, where the virtual sensors we just defined are placed.

Once virtual sensors are created, they can be used just
like any other sensor. This enables the programmer to recurse
the process arbitrarily, creating hierarchies that push the level
of abstraction higher, as shown by the topmost sensor in
Figure 7. For instance, assume we created a virtual smoke
detector reporting the average measurement obtained from real
smoke detectors in a logical neighborhood. The virtual sensor
in Figure 6 and this new one could then be used to define
a single “virtual fire detector”, operating in an appropriate
neighborhood, and reporting whether a fire is detected based
on the evaluation of some application-defined function over
the virtual temperature and smoke sensors. Once more, the
application can easily detect the presence of a fire and trigger
the appropriate reaction by checking only the current reading
of the topmost virtual sensor, instead of explicitly gathering
and processing the raw data reported by the real sensors, thus
considerably simplifying the programming task.

C. The Communication API

Neighborhoods must ultimately be used in conjunction
with communication facilities, to enable interaction among
the neighborhood members. On the other hand, the notion
of logical neighborhood is essentially a scoping mechanism,
and therefore is independent from the specific communication
paradigm chosen. For instance, one could couple it with the
tuple space paradigm to enable tuple sharing and access only
within the realm of a logical neighborhood. However, in
an effort to keep support for our abstraction as minimal as
possible, we combined it with the simplest communication
mechanism available for WSNs, i.e., message passing through
broadcast communication.

In this sense, the API we are currently developing mimics
the one traditionally provided by the bare operating system
with simple send and receive operations (e.g., as in
TinyOS’ GenericComm module). Thesend operation is
extended with an additional parameter representing the logical
neighborhood where a message must to be delivered, i.e.,
the scope of that particular message. Essentially, we are
replacing the broadcast facility commonly made available by
the operating system with one where message recipients are
not determined by the physical communication range, rather by
membership in a programmer-defined logical neighborhood. In
addition, an auxiliary operation that can be used to reply to a
message received through a neighborhood is provided.

III. ROUTING STRATEGIES

As our logical neighborhood abstraction is essentially in-
dependent of the underlying routing layer, existing and well-



established solutions to the problem ofdata-centriccommu-
nication in WSNs can be directly employed. For instance,
Directed Diffusion [7] can serve our purposes by simply
redefining the interest matching function so that data is fed
towards nodes satisfying a given neighborhood template. Ex-
ploiting these protocols provides a rapid development path and
clearly assesses the feasibility of our approach.

At the same time, we contend that existing solutions fail
in capturing the kind of localized interaction patterns that
should characterize communication in decentralized, multi-
sink WSNs and WSANs. For instance, actuator nodes are
envisioned to communicate mainly with sensors deployed in
close proximity, as typically the control loop they perform
affects a small portion of the physical environment and does
not involve a central base station. In this scenario, some of the
characteristics of Directed Diffusion (e.g., global propagation
of interests) would waste resources. Analogous considerations
hold for other established approaches, e.g., the system-wide
tree-shaped overlay network used in TinyDB [8]. Moreover,
existing proposals do not lend themselves to an easy im-
plementation of some of the constructs ofSPIDEY (e.g.,
the management of credits), as they are not designed with
heterogeneous devices in mind.

For these reasons, we designed a dedicated routing strategy
supporting our logical neighborhood abstraction. Due to space
limitations we can only sketch its behavior here. Moreover, we
are currently evaluating its performance through simulation.

Our approach to routing isstructure-less(i.e., it does not
exploit overlays), is based on the notion oflocal search[10],
and relies on two core mechanisms. The first mechanism
builds a distributedstate spaceby periodically propagating
node profiles (or portions thereof) and storing at each node
the cost to reach a device whose profile contains a specific
〈attribute,value〉 pair. This cost is evaluated in terms of the
aforementioned sending cost, computed locally based on the
expression given in theuse cost construct and accumulated
along the path to that device. However, the propagation of
node profiles is constrained so that each node has enough in-
formation to reach only theclosest nodewith a given attribute.
Therefore, the spreading of node information is limited to
small portions of the system, thus achieving better scalability,
and information stored at each node can be compressed with
a simple scheme to achieve less memory usage.

The second mechanism enables messages to smartly “nav-
igate” this state space. Messages addressed to a logical
neighborhood contain the neighborhood template, thus making
explicit the part of the state space that must be considered.
The credits specified when instantiating a neighborhood are
also attached to each message and “spent” in navigating the
state space. Each message is always sent in broadcast mode
with the goal of exploring the state space and looking for
decreasing paths, i.e., paths where the cost needed to reach
a given 〈attribute,value〉 pair is decreasing. Whenever such
a path is found, acredit reservationmechanism, exploiting
the state space information, reserves enough credits to reach
the corresponding node following this decreasing path. These

credits are immediately removed from those in the message.
The remaining credits are used to explore non-decreasing
paths and are evenly divided among the physical neighbors
of the sending node, in the hope to find further decreasing
directions in other parts of the system. Clearly, this mechanism
is able to tolerate the dynamic topology characteristic of
sensor systems—induced by the low duty cycle of nodes—
by providing multiple paths to a given destination.

Additionally, the reverse path set up by messages sent to
members of a logical neighborhood can be exploited both to
forward replies towards the original sender, as well as to better
direct the search for possible members of a neighborhood. In
particular, the latter consists in avoiding distributing credits
towards part of the system where no member of the neigh-
borhood has appeared so far, and in redirecting these credits
towards other, still unexplored parts of the system.

As for the management of virtual nodes, several solutions
are viable and we are currently investigating the tradeoffs be-
tween redundancy of information and network traffic overhead.
At one extreme, neighborhood members can be requested
to send data to the node defining the virtual node, where
aggregation is performed. At the other extreme, we can make
each member propagate its data to all the others, and perform
aggregation on every node in a neighborhood. This way, each
node can act as a replica of the virtual one. Furthermore,
depending on the properties of the aggregation function at
hand, intermediate solutions may be possible. For instance,
data could be aggregated piecemeal as it flows towards the
device defining the virtual node, as in TinyDB [8].

IV. RELATED WORK

Only few proposals define distributed abstractions for WSNs
that support some notion of scoping. Moreover, unlike the
strongly decentralized scenarios we target in this work, many
assume a single data sink.

The work closer to ours is the neighborhood abstraction
described in Hood [15], where each node has access to a local
data structure where attributes of interest provided by neigh-
boring nodes are cached. The current implementation consid-
ers only 1-hop neighbors and is mainly based on broadcasting
all node attributes and filtering on the receiver’s side. Clearly,
our framework is much more flexible as it provide a much
more general, application-defined neighborhood abstraction.

The work an Abstract Regions [14], instead, proposes a
model reminiscent of tuple spaces to enable communication
among the nodes belonging to a givenregion. The span
of a region is based mainly on physical characteristics of
the network (e.g., physical or hop-count distance between
sensors) and each region requires a dedicated implementation.
Therefore, each region is somehow separated from others, and
regions cannot be combined. This results in a much lower
degree of orthogonality and flexibility with respect to our
approach. Moreover, the concept oftuning interfaceprovides
access to a region’s implementation, enabling the tweaking
of low-level parameters (e.g., the number of retransmissions).



Instead, our approach provides a higher-level, application-
dependent notion of cost that can be used to control resource
consumption.

In TinyDB [8], materialization points create views on a
subset of the system and aggregation functions can be used
for deriving higher level data. In this sense, common to our
work is the effort in providing the application programmer
with higher-level network abstractions. However, the approach
is totally different, as TinyDB forces the programmer to a
specific style of interaction (i.e., a data-centric model with
SQL-like language) and targets scenarios where a single base
station is responsible for coordinating all the application
functionalities.

SpatialViews [11] is a programming language for mobile ad-
hoc networks wherevirtual networkscan be defined depending
on the physical location of a node and the services its provides.
Computation is distributed across nodes in a virtual network
by migrating code from node to node. Common to our work
is the notion of scoping virtual networks provides. However,
SpatialViews targets much more capable devices than ours,
and focuses on migrating computation instead of supporting
an enhanced communication facility as we do. Still, the frame-
work is less flexible than our proposal in defining members
of a spatial view, as a virtual network is basically defined
requesting a given service within some physical scope.

Finally, in [4], the authors propose a language and algo-
rithms supporting generic role assignment in WSNs with an
approach that, in a sense, is dual to ours. In fact, their work
imposescertain roles on nodes in the system so that some
specified requirements are met, while in our approach the
notion of logical neighborhoodselectsnodes in the system
based on their characteristics.

V. CONCLUSIONS ANDFUTURE WORK

In this work we introduced logical neighborhoods as a novel
programming abstraction for WSNs. Logical neighborhoods
capture set of nodes with functionally related characteristics
and simplify the programmer’s task by providing a base for
node interaction that goes beyond the physical neighborhood
defined by wireless broadcast.

Logical neighborhoods are defined by the application using
the SPIDEY language we presented in this paper.SPIDEY

constructs enable the programmer to specify neighborhoods
declaratively, and yet control the trade-off between accuracy
and resource consumption using an application-defined notion
of cost. Data aggregation is also supported through a notion
of virtual sensor that in turn relies on logical neighborhoods.

We argued that our abstractions can be readily implemented
with existing routing algorithms, but also sketched a routing
solution we conceived expressly to support communication in
logical neighborhoods in a localized fashion.

We are currently evaluating the performance of the routing
strategy we devised through simulation, as well as inves-
tigating different ways to implement virtual nodes. Future
work will study an analytical model of our routing approach,
to provide support for credit management, and investigate

how our abstraction can be used to enhance higher-level
communication abstractions (e.g. tuple spaces and event-based
paradigms).

Acknowledgements. The work described in this paper is
partially supported by the Italian Ministry of Education, Uni-
versity, and Research (MIUR) under the VICOM project, by
the National Research Council (CNR) under the IS-MANET
project, and by the European Union under the IST-004536
RUNES project.

REFERENCES

[1] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks:
Research challenges,”Ad Hoc Networks Journal, vol. 2, no. 4, pp. 351–
367, October 2004.

[2] M. Dermibas, “Wireless sensor networks for monitoring of large public
buildings,” 2005, tech. Report, University at Buffalo. Available at www.
cse.buffalo.edu/tech-reports/2005-26.pdf.

[3] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: scalable coordination in sensor networks,” inProc. of the
5th Int. Conf. on Mobile computing and networking (MobiCom), 1999.

[4] C. Frank and K. R̈omer, “Algorithms for generic role assignment in
wireless sensor networks,” inProc. of the3rd ACM Conf. on Embedded
Networked Sensor Systems (SenSys’05), Nov. 2005.

[5] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded sys-
tems,” inProc. of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI’03). ACM Press, 2003, pp. 1–11.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” inASPLOS-IX:
Proc. of the9nt Int. Conf. on Architectural Support for Programming
Languages and Operating Systems. ACM Press, 2000, pp. 93–104.

[7] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion for wireless sensor networking,”IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp. 2–16, 2003.

[8] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
an acquisitional query processing system for sensor networks,”ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

[9] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” inWSNA ’02: Proc.
of the 1st ACM international workshop on Wireless sensor networks
and applications. New York, NY, USA: ACM Press, 2002, pp. 88–97.

[10] L.A. Wosley, Integer Programming. Wiley, 1998.
[11] Y. Ni, U. Kremer, A. Stere, and L. Iftode, “Programming ad-hoc

networks of mobile and resource-constrained devices,” inPLDI05: Proc.
of the 2005 ACM SIGPLAN Conf. on Programming language design and
implementation. New York, NY, USA: ACM Press, 2005, pp. 249–260.

[12] E. Petriu, N. Georganas, D. Petriu, D. Makrakis, and V. Groza, “Sensor-
based information appliances,”IEEE Instrumentation and Measurement
Mag., vol. 3, pp. 31–35, 2000.

[13] H. Qi and P.T. Kuruganti, “The development of localized algorithms in
wireless sensor networks,”Sensors Journal, vol. 2, no. 7, July 2002.

[14] M. Welsh and G. Mainland, “Programming sensor networks using
abstract regions,” inProc. of the1st USENIX-ACM Symp. on Networked
Systems Design and Implementation (NSDI04), March 2004.

[15] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neighbor-
hood abstraction for sensor networks,” inProc. of the2nd Int. Conf. on
Mobile systems, applications, and services. ACM Press, 2004.


