Malaj: A Proposal to Eliminate Clashes Between Aspect-Oriented

and Object-Oriented Programming

Gianpaolo Cugola

Carlo Ghezzi

Mattia Monga

Gian Pietro Picco

Politecnico di Milano, Dip. di Elettronica e Informazione

Piazza Leonardo da Vinci, 32
monga,

{cugola, ghezzi,

Abstract

Aspect-oriented programming (AOP) aims at
providing linguistic mechanisms that enable bet-
ter separation of concerns in program devel-
opment. Mainstream techniques, like object-
oriented programming, do not provide a satis-
factory solution to this problem, in that they
do not capture the frequent case of aspects that
cross-cut system components, and hence cannot
be fully encapsulated. On the other hand, AOP
is in its early stages, and it is still unclear what
are the fundamental design criteria for aspect-
oriented languages (AOLs). A previous evalua-
tion of a general-purpose AOL suggested that the
flexibility gained by the ability to freely inter-
twine aspect and functional code opens several
potential conflicts with the principles of object-
orientation. Based on this experience, in this
paper we present an alternative approach where
the vision of a general-purpose AOL is replaced
by the vision of a system where several, indepen-
dent aspects are gathered, each providing spe-
cialized support for a single concern. The hy-
pothesis underlying this work is that such a de-
sign approach provides a good compromise be-
tween flexibility and preservation of good object-
oriented and programming principles.

1 Introduction

Engineering work is largely dealing with sepa-
ration of concerns [1]: designers want to think
about one problem at a time. Software engineers
learned how decomposition of a complex system
into simpler sub-systems can make the problem
tractable because the complete solution can be
built out of sub-solutions, found relatively inde-
pendently.

Existing programming languages support the
partitioning of software in modular units of func-

I 20133 Milano — Italy
picco}@elet.polimi.it

tionality. Such parts can be viewed as generalised
procedures [2] that are assembled to get the de-
sired functionality of the whole system. Several
linguistic constructs are aimed at achieving iso-
lation of a concern in a generalised procedure.
For example, encapsulation limits the effects of
change to localised portion of code; inheritance
allows one to incrementally evolve a component
by adding new features or redefining existing fea-
tures; exception handling mechanisms separate
the normal flow of execution from the emergency
one.

Even optimal functional decompositions omit
to encapsulate some concerns because those
cross-cut the entire system, or parts of it.

As an example, suppose that a Java class is
used to describe the pure functionality of certain
objects. Additional separate aspects [2] may in-
clude the definition of:

e constraints on sequences of applicable opera-
tions (e.g., to get information from an object
one must first apply a setup operation, and
then one of a set of assignment operations);

e synchronisation operations to constrain con-
current access to the object (e.g., a consumer
trying to read a datum from a queue must
be suspended if the queue is empty);

e how objects are distributed on the nodes of
a network, either statically or through dy-
namic migration.

e security or accounting policies (e.g., to get
information from an object one must first
ask some permission).

In principle, the various aspects should not in-
terfere with functional code, they should not in-
terfere with one another, and they should not in-
terfere with the features used to define and evolve
functionality, such as inheritance.

A first approach to aspect-oriented program-
ming (AOP) can be the definition of a general-
purpose aspect-oriented language (AOL) with
full visibility of the internal details of its as-
sociated functional module. We analysed As-
pectJ [3, 4], probably the best-known, general
purpose AOL. We found (see sec. 3) that the
“general-purpose” approach adopted results in
violating the object-oriented principles of pro-
tection and encapsulation, thus increasing the
chance that the different aspects could interfere
with each other or with the functional code.

In this paper we describe Malaj (see sec. 4), a
system supporting aspect-oriented programming
in which we take a different approach: we define
separate linguistic construct for specific aspect
domains, giving aspect code limited visibility of
the functional code. This way we can reduce the
clashes with traditional linguistic features.

2 Aspect-Oriented
Programming

Recently, some AOLs were proposed to make as-
pects clearly identifiable from functional code,
which is written by using a so-called component
language (CL). AOLs claim that the writing of
self-contained and easily changeable aspects is
made possible by providing:

1. some syntactic sugar to isolate code for an
aspect;

2. a way to identify join points in functional
code. These are the points where aspect
code is introduced;

3. a weaver: an engine that is able to mix—
not necessarily at compile time—aspect and
functional code.

The best known system implementing this ap-
proach is probably AspectJ [3, 4].

In AspectJ an aspect is defined via a con-
struct which is reminiscent of the Java class: an
aspect, with a name and its own data members
and methods. With an aspect it is possible to
introduce an attribute or a method in an ex-
isting classand advise that some actions are to
be taken before or after the execution of an
existing class method.

Classes are unaware of aspects, i.e. it is not
possible to name an aspect inside a class. The
association between aspect instances and objects
is one-to-one. However, by using the keyword
static, it is possible to define an association be-
tween an aspect instance and all the objects of a
class.

The creators of AspectJ, in an early version of
their system !, provided two concern-specific lan-
guages: COOL, to control thread synchronisa-
tion; and RIDL, to program interactions among
remote components. With COOL and RIDL
it was possible to define coordinators and por-
tals, which had total visibility of internal details
of objects, but did not have the permission to
change their state. Coordinators could specify
self and mutual exclusion between class methods
and pre/post-conditions on methods execution.
Portals could specify if data transfers across site
boundaries are made possible by copying objects
or transferring a reference to them. Currently,
COOL has become a coordination library, whose
features are woven into functional code by using
the AspectJ engine. In the following section we
show the problems we found with this generalised
approach.

3 AOP and OOP

In a previous analysis [6] we identified a num-
ber of problems and pitfalls that affect currently
available AOLs. In particular, focusing on As-
pectJ?, we found three main clashes between the
aspect-oriented and the object-oriented features
of the language. Possible clashes occur between:

o Functional code (expressed using a CL) and
other aspects (expressed using one or more
AOLs). Usually, such clashes result from
the need of breaking encapsulation of func-
tional units to implement a particular as-
pect. As an example, in AspectJ, the aspect
code may access the private attributes of a
class. This can be useful in some situations,
but results in a potentially dangerous break-
ing of class encapsulation. Imagine a situa-
tion in which a class Foo has a private vari-
able i that needs to be accessed by aspect
Bar. Imagine also that subsequently class
Foo is changed by changing type of variable
i from int to float. This results in breaking
the aspect code. In general, it is not possible
to change the internals of a functional unit
without changing the aspects that access the
private part of that unit.

e Different aspects. Suppose (see Figure 1)
that a class Point exists with two vari-
ables x and y and two methods, setX and
setY. Suppose we have developed an as-
pect TraceBefore to trace the start of ex-
ecution of methods of class Point and an

IFor a detailed description see [5]
2We used version 0.3.0.

aspect TraceAfter to trace the end of ex-
ecution of the same methods. The two as-
pects work perfectly when applied individu-
ally (for example, to trace the start of execu-
tion or to trace the end of it). Unfortunately,
since they introduce the same method (i.e.,
the method print) with different definitions,
they fail when applied together.

e Aspect code and specific language mecha-
nisms. One of the best known exam-
ples of problems that falls into this cate-
gory is inheritance anomaly [7]. This term
was first used in the area of concurrent
object-oriented languages [8, 9, 10] to in-
dicate the difficulty of inheriting the code
used to implement the synchronisation con-
straints of an application written using one
of such languages. In the area of AOP lan-
guages, the term can be used to indicate
the difficulty of inheriting the aspect code
by a subclass. As an example, consider
class Window in Figure 2. Methods show
and paint cannot be called before method
init is called. This behaviour is controlled
by the aspect WindowSync. Now consider
class SpecialWindow in Figure 3. It rede-
fines method show in such a way that it
does not require a previous invocation of
method init. (Note that this way of sub-
classing Window is consistent with the OO
type theory, which requires subclasses not
to strengthen the precondition for redefined
methods.) In principle, it should be possi-
ble to ”inherit” the WindowSync aspect just
by modifying the code associated to method
show (e.g., replacing it with the empty se-
quence). Unfortunately, this is not possible
and it is necessary to rewrite entirely the as-
pect code (see aspect SpecialWindowSync in
Figure 3).

Our claim is that these conflicts result more
from the linguistic choices made in developing
AQOLs, rather than from intrinsic limitations of
the approach. In particular, a general-purpose
AOL, with full visibility of the internal details of
the functional modules, provides the maximum
expressive power at the expense of violating the
principles of protection and encapsulation. An
alternative approach, which we followed in de-
signing Malaj, is to predefine the set of possi-
ble aspects an AOL should deal with, and then
provide ad-hoc constructs to implement these as-
pects, providing limited visibility of the features
of the functional module to which the different
aspects apply. As the next sections will show,
this approach offers a good compromise between
flexibility and power, on the one side, and un-
derstandability and ease of change on the other.

It does not allow programmers to use the AOL
to code any possible aspect, but it eliminates
the problems encountered with a general purpose
AOL.

4 Malaj: a Multi Aspects
LAnguage for Java

As mentioned in the previous section, Malaj is
not a general purpose AOL. It focuses on a well-
defined set of aspects (namely, synchronisation
and relocation), and provides a different linguis-
tic construct for each aspect. We embrace the
same philosophy behind COOL and RIDL, em-
phasising the need for restricted visibility and for
clear rules of composition with traditional con-
structs.

As its name says, Malaj is an aspect-oriented
extension to Java. The Malaj core language is
a reduced version of Java, which does not in-
clude the features that are provided through the
separately specified aspects. More specifically,
the Java keyword synchronized cannot be used
in Malaj, and the same is true for the methods
wait, notify, and notifyall of the standard
Java class Object. We want to show how Malaj
can provide support to synchronisation and re-
location of objects, without tangling these con-
cerns in functional code.

To describe the Malaj constructs for aspect
programming, the following sections refer to a
common example: a very simplified electronic
commerce system. The system (see Figure 4)
is composed of two main classes: Shop and
Customer. The Shop class provides methods to
add and remove items from the list of available
articles. It also exports two methods to ask for
the price of a specific article and to deliver the
article to a specific address after it has been
bought. Class Customer models the behaviour
of an e-commerce agent: it goes through a list of
shops in search of a given article looking for the
best price. At the end of the process, it buys the
article. Finally, class ECom creates two customers
and starts them.

4.1 The Synchronization Aspect

Synchronisation between the different units that
compose an application is a central aspect for
any, non-trivial, software. To express this as-
pect it is necessary to clearly state what happens
when a functional unit is invoked. Three cases
may arise:

1. the call violates some precondition and an
exception is returned to the caller;

class MakePoint {

public static void main(String args(]){

Point p=new Point();
p.setX(1);
p.setY(1);

}

class Point {
int x,y;
public Point(){
x=y=0;

public void setX(int x) {
this.x=x;

}
public void setY(int y) {
this.y=y;

aspect TraceBefore {
introduce private void
Point.print(String methodName) {
System.out.println(” Tracing method ”
~+MethodName
+” before”);
System.out.println("x="+x+" y="+y);

advise void Point.setX(int i),
void Point.setY(int i) {
static before {
print(thisJoinPoint.methodName);

}

}

aspect TraceAfter {

introduce private void
Point.print(String methodName) {
System.out.println(” Tracing method ”

“+methodName
+” after”);

System.out.println("x="+4x+" y="+y);

advise void Point.setX(int i),
void Point.setY(int i) {
static after {
print(thisJoinPoint.methodName);

}
}

Figure 1: An example of clash between two aspects

class MakeWindow {

public static void main(String args[]){

Window w=new Window();
w.init ();
w.show ();

}

class Window {
public void init() {

// Requires initialization
public void show() {

Vs
// Requires initialization
public void paint() {

/)
}
}

Figure 2: An aspect to control the sequence of invocation of different methods

class SpecialWindow extends Window {

// This version of show does not
// meed any initialization
public void show() {

Va

aspect WindowSync {
introduce boolean Window.initDone=false;
advise void Window.init() {
static after {
initDone=true;

}

advise void Window.show(),
void Window.paint() {
static before {
if (!initDone)
System.out.println(
?Error: init never called”);
}
}
}

aspect SpecialWindowSync {

introduce boolean Window.initDone=false;
advise void Window.init() {
static after {
initDone=true;

}

advise void Window.paint() {
static before {
if (! initDone)
System.out.println(
?Error: init never called”);

}
}

Figure 3: An example of inheritance anomaly

public class ECom {
Shop [] shops;
Customer paul, john;

public ECom(){
Shop [] shops = new Shop[5];
for(int i=0; i<5; i++) {
shops[i] = new Shop();
// add new articles to shops[i]

shops[i]. addArticle(”book”, 40—1i);
shops|[i]. addArticle(”CD”, 10+1i);

paul = new Customer(shops,

”paul home”,”book”,

60);
john = new Customer(shops,

”john home”,”CD”,

30);
}

public void startShopping(){
paul.start ();
john.start ();

public static void main(String[] args){
ECom e = new ECom;
e.startShopping();

}

public class Shop {
private Hashtable goodies;
public Shop() {
goodies=new Hashtable();

public void addArticle(String article,
int price) {
goodies.put(article,

new Integer(price));

public void rmArticle(String article) {
goodies.remove(article);

public int query(String article) {
return ((Integer)goodies.
get(article)).intValue();

public void deliver(String article,
String address) {
// deliver the article to the
// address specified

public class Customer extends Thread {
private Shop bestShop;
private int bestPrice;
private Shop|[| shops;
private String myAddress;
private String desire;
private int wallet;

public Customer(Shop[] shops,
String address,
String article,
int wallet) {
this.shops = shops;
myAddress = address;
desire = article;
this.wallet=wallet;
bestShop = null;
bestPrice = wallet;

}

public void shopping(Shop s) {
int price = s.query(desire);
if (price <= bestPrice) {
bestShop = s;
bestPrice = price;

public void buy() {
if (bestShop != null) {
bestShop.deliver(desire, myAddress);
System.out.println(”’I bought a "+
desire+
" at 4
bestShop);

public void run() {
for(int i=0; i<shops.length; i++) {
shopping(shops|i]);

buy ();

Figure 4: An example of a simplistic e-commerce application

2. the call violates some precondition and the
caller is suspended until the condition be-
comes true;

3. the call does not violate any precondition
and execution of the functional unit may
proceed.

To support this aspect, Malaj provides the
guardian construct. Each guardian is a distinct
source unit with its own name, possibly coded
in a different source file. Each guardian is as-
sociated with a particular class (i.e., it guards
that class) and expresses the synchronisation
constraints of a set of related methods of that
class. Each class has at most one guardian. Fig-
ure 5 shows the guardians for classes Shop and

Customer mentioned above.

For each class C, the guardian G of C basically
represents the set of synchronized methods of
C. As an example of the synchronized state-
ment see the guardian ShopGuardian in Figure 5.
G expresses also the conditions that, if not sat-
isfied, result in an exception when m is called
(i.e., the deny guards), and the conditions that,
if not satisfied, result in suspending the caller
of m (i.e., the suspend guards). As an exam-
ple of the deny and suspend statements, see
methods addArticle and deliver of guardian
ShopGuardian in Figure 5, respectively. Observe
that deny guards are always considered before
suspend guards and they are considered in the
order in which they appear in the code. This

means that if different deny and suspend guards
are true, only deny guards are considered and
among them the first is taken and the exception
it defines is returned to the caller.

A guardian may include also a set of local at-
tributes and method definitions to code guards
that depend on state conditions (e.g., attribute
elements of guardian ShopGuardian in Fig-
ure 5). Finally, for each method m of the guarded
class, the guardian may introduce a fragment
of code to be executed before or after m (e.g.,
method addArticle of guardian ShopGuardian
in Figure 5). Observe that, to avoid break-
ing object encapsulation and to increase separa-
tion between the functional and synchronisation
aspects, guardian code (i.e., deny and suspend
guards, and before and after clauses) cannot ac-
cess private elements of the guarded class and
has read-only access to the public and protected
attributes of the guarded class.

As for the relationship between the synchroni-
sation aspect and inheritance, the following rules
exist:

1. The guardian of a class C is inherited by all
the subclasses of C that do not have a differ-
ent guardian.

2. A guardian G1 always extends a parent
guardian G. If not explicitly mentioned,
the parent guardian of G1 is the guardian
malaj.Guardian, which is part of the Malaj
library. G1 inherits all the synchronisation
constraints specified by G and it may add
new guards, redefine existing ones, or remove
them. To distinguish between added and re-
defined guards, each guard of a given method
m has its own label (see Figure 5). A guard
in G1 that has the same label of a guard in
G redefines it, otherwise it is considered as a
new guard.

3. The guardian of a class C must extend the
guardian of the parent class of C.

4. The guards redefined in G1 cannot be stricter
than the original ones. In fact, as the next
point explains, a sub-guardian G1 guards a
class that extends the class guarded by the
parent guardian of G1 and, as observed by
Meyer [11], the precondition of a sub-class
cannot be stronger than the precondition of
the parent class.

5. To reduce the impact of inheritance
anomaly, the before and after clauses of
a guardian G may refer to the corresponding
clauses of the parent guardian through the
statement super(). Similarly, in redefining
a guard it is possible to refer to the original
guard through the construct super().

4.2 The Relocation Aspect

Today software has to be aware of networks and
code implementing network awareness is typi-
cally dispersed among functional units, thus rep-
resenting a good candidate to be aspectified. In
particular, programmers should be able to move
objects among sites. We identify two relation-
ships to be maintained as objects move:

Ownership: if an object A owns an object B,
then A is the only object entitled to move B.
By default, B follows A in its movements.

Interest: if an object A is interested in B, A
has to be always able to reach B, but A and
B move completely independently.

If an object A does not own B and is not inter-
ested in it, it simply does not care of B’s location,
and even of its existence. Evidently, ownership
implies interest.

These relationships are inherently dynamic:
they are subject to change during program ex-
ecution, as objects change their interest in other
objects according to the programmers’ needs.

Malaj provides the relocator construct. Each
relocator is a distinct source unit with its own
name, possibly coded in a different source file.
A relocator is associated with a particular class
(i.e., it relocates the objects of that class). Re-
location actions can be executed before or after
the execution of any method. To specify this,
the relocator provides before and after clauses
that allow programmers to introduce the piece of
code that will be executed before or after the ex-
ecution of the method (see example in Figure 6).

In before and after clauses one is not allowed
to change attributes (i.e., the internal state of an
object can be changed only by using the methods
it provides). However, it is possible to:

e take or release the ownership of an object,
by using the methods:

takeOwnership(Object owned)
throws ObjectOwnedException

releaseOwnership(Object owned)
throws NotOwnerException

Only the owner is allowed to release own-
ership and only objects that have no owner
can be arguments of takeOwnership. Ob-
serve that, by default, each newly created
object is owned by the object that created
it.

e express or retract the interest in an object,
by using the methods:

guardian ShopGuardian guards Shop {
HashSet elements=new HashSet();
synchronized {
addArticle, removeArticle,
query, deliver

void addArticle(String article,
int price):
deny A: (price<0) with new PriceTooLow();
before {
elements.add(article);

void removeArticle(String article):
deny A: (lelements.contains(article))
with new ArticleNotFound();
before {elements.remove(article);}
int query(String article):
deny A: (lelements.contains(article))
with new ArticleNotFound();
void deliver(String article,
String address):
suspend A: (lelements.contains(article));

}

guardian CustomerGuardian guards Customer{
void Customer(Shop|] shops,
String address,
String article,
int wallet):
deny A: (shops==null || shops.length<1)
with new NotEnoughShops();
B: (wallet<1) with new NotEnoughMoney();

Figure 5: An example of guardians for an e-commerce application

expressInterest(Object o)
retractInterest(Object o)

e fix the location of an owned object, by using
the methods:

pin(Site s, Object owned)
throws NotOwnerException

unpin(Object owned)
throws NotOwnerException

Unpinned objects reside in the same site of
their owner.

e refer to variable and method definitions that
are local to the relocator.

Figure 6 shows the relocators for classes ECom
and Customer introduced above. After creation
of an ECom instance, some shops are distributed
in a worldwide market. Customers pin their wal-
let in a secure site and query around for best
prices.

As for the relationship between the distribu-
tion aspect and inheritance, the following rules
exist:

1. The relocator of a class C is inherited by all
the subclasses of C that do not have a differ-
ent relocator.

2. A sub-relocator L1 may add before and
after clauses for methods not considered in
the parent relocator L and may redefine L
clauses.

3. To reduce the impact of inheritance
anomaly, the before and after clauses of a

relocator L may refer to the corresponding
clauses of the parent relocator through the
statement super().

5 Conclusions and Future
Work

In this paper we presented the main concepts of
Malaj, a new system supporting aspect-oriented
programming. The design criteria where in-
spired by earlier experience with general-purpose
aspect-oriented languages. We envision Malaj as
a collection of concern-specific aspect languages,
built on top of a subset of the Java language. In
this paper, we discussed how the synchronization
and relocation aspects can be defined in Malaj.
The ultimate goal is to cover a spectrum of con-
cerns far beyond the two presented here, and
to complement the programming support with
a formal model that can be used to reason about
program construction and aspect interaction.

Whether or not this approach is effective in
practice is still an open question at the present,
and one that can be answered only empirically,
along the lines of [12, 13].

A prototype implementation of Malaj exists for
the aspects described in this paper. The next
steps of our research will extend Malaj to other
aspects, will start an experimental assessment of
the approach, and will provide development tools
for building Malaj applications.

relocator EComRelocator relocates ECom{
Site [] market;
EComRelocator(){
market = new Site[shops.length()];
for(int i=0; i<shops.length(); i++){
// just an example...
Site[i] = new Site(”host[i]”);

}
after ECom(){
for(int i=0; i<shops.length(); i++){
try{
this.takeOwnership(shops[i]);
this.pin(market[i], shops[i]);

catch(Exception e){
e.printStackTrace();

relocator CustomerRelocator relocates Customer{
Site secureHome = new Site(”home”);
after Customer(){

try{

// Customer creates wallet

// next instruction is redundant
this.takeOwnership(wallet);

// pinned wallet doesn’t follow me
this.pin(secureHome, wallet);

catch(Exception e){
e.printStackTrace();

}

before void shopping(Shop s){
this.expressInterest(s);

}
}

Figure 6: An example of relocators for an e-commerce application

References

1]

2]

3]
[4]

[5]

[6]

E. W. Dijkstra, A Discipline of Program-
ming. Prentice-Hall, 1976.

G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin, “Aspect-oriented program-
ming,” in Proceedings of the European Con-
ference on Object-Oriented Programming
(ECOOP), (Finland), Springer-Verlag, June
1997.

XEROX Palo Alto Research Center, As-
pectJ: User’s Guide and Primer, 1998.

XEROX Palo Alto Research Center, As-
pectJ: User’s Guide and Primer, 1999.

C. 1. V. Lopes, D: A Language Framework
for Distributed Programming. PhD thesis,
Northeastern University, nov 1997.

G. Cugola, C. Ghezzi, and M. Monga, “Lan-
guage support for evolvable software: An
initial assessment of aspect-oriented pro-
gramming,” in Proceedings of International
Workshop on the Principles of Software
Evolution, (Fukuoka, Japan), jul 1999.

S. Matsuoka and A. Yonezawa, “Analysis
of inheritance anomaly in object-oriented
concurrent programming languages,” in Re-
search Directions in Concurrent Object-
Oriented Programming (G. Agha, P. Weg-
ner, and A. Yonezawa, eds.), pp. 107-150,
Cambridge, MA: MIT Press, 1993.

A. Yonezawa and M. Tokoro, eds., Concur-
rent Object-Oriented Programming. Cam-
bridge, Mass.: The MIT Press, 1987.

[9]

[10]

G. Agha, “Concurrent object-oriented pro-
gramming,” Communications of the ACM,
vol. 33, pp. 125-141, Sept. 1990.

O. Nierstrasz, “Composing active ob-
jects,” in Research Directions in Concurrent
Object-Oriented Programming (P. W. G.
Agha and A. Yonezawa, eds.), pp. 151-171,
MIT Press, 1993.

B. Meyer, Object-oriented Software Con-
struction. New York, NY: Prentice Hall, sec-
ond ed., 1997.

G. Kiczales, E. L. Baniassad, and G. C.
Murphy, “An initial assessment of aspect-
oriented programming,” in Proceedings of
the 21°" International Conference on Soft-
ware Engineering, (Los Angeles, CA), may
1999.

M. A. Kersten and G. C. Murphy, “Atlas: A
case study in building a web-based learning
environment using aspect-oriented program-
ming,” Tech. Rep. TR-99-04, Department
of Computer Science — University of British
Columbia, 201-2366 Main Mall — Vancouver
BC Canada V6T 174, apr 1999.

