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Abstract. Distributed applications rely on middleware to enable in-
teraction among remote components. Thus, the overall performance in-
creasingly depends on the interplay between the implementation of ap-
plication components and the features provided by the middleware. In
this paper we analyze Java components interacting through the RMI
middleware, and we discuss opportunities for optimizing remote method
invocations. Specifically, we discuss how to optimize parameter passing
in RMI by adapting fairly standard static program analysis techniques.
The paper presents our technique and reports about a proof-of-concept
tool enabling the analysis and the subsequent code optimization.

1 Introduction

Two major trends characterize the evolution of software technology during the
past decade. On one hand, software applications are increasingly distributed
and decentralized. On the other, off-the-shelf components are increasingly used
as building blocks in composing distributed applications. The gluing mechanisms
that support the assembly of components are provided by the middleware. Al-
though much progress has been achieved in supporting designers while develop-
ing distributed applications, it is still true that the level of support provided for
traditional centralized software is more mature.

Several techniques are available to optimize code generation for predefined
target architectures. Today’s challenge, however, is to deal with distributed ap-
plications where a conventional programming language is used to develop com-
ponents and a middleware layer is used to interconnect them. We are not aware
of optimization techniques that span over the two domains—i.e., the program-
ming language and the middleware. This is true also when the two are in the
same linguistic framework, as in the case of Java and RMI [10].

Providing these optimizations is precisely the goal of our work. We concen-
trate on parameter passing across network boundaries, when object methods are
invoked remotely and parameters are serialized. Serialization may introduce a
serious performance overhead for large objects. Furthermore, often only a small
part of an object is actually used remotely. In these cases, performance would
greatly improve if only the used portion of the object were transmitted.

In this paper we discuss how to achieve this optimization by statically ana-
lyzing the bytecode of a Java program, and then using the results to optimize the



run-time object serialization. We use fairly standard static analysis techniques.
What is new in this paper is the way static analysis is used. Our technique
is particularly valuable when off-the-shelf components are used to build a dis-
tributed application. In this case, the designer has no visibility of the internals
of the components, and therefore many opportunities for hand-optimizing inter-
component interactions are necessarily missed. Moreover, since our technique
is aimed at reducing the communication overhead, it is particularly useful in
bandwidth-constrained scenarios, such as mobile computing.

The paper is structured as follows. Section 2 provides an overview of RMI.
Section 3 defines the problem and introduces a reference example. Section 4
describes our program analysis approach. Section 5 reports on a proof-of-concept
tool we developed to support our approach. Section 6 discusses limitations and
extensions for our technique. Section 7 briefly surveys related work. Section 8
ends the paper with brief concluding remarks.

2 Background

In this section we present the basics of serialization and RMI that are relevant
to our work.

2.1 Object Serialization

Serialization is the process of flattening a structured object into a stream of
bytes. It provides the basic mechanism to support I/O operations on objects,
e.g. to save them on persistent storage, or to transfer them across the network.

Serialization is accomplished in Java by using two I/O streams, ObjectInput-
Stream and ObjectOutputStream. When an object reference r is written to the
latter, the run-time recursively serializes its attributes until the whole graph
of objects rooted at r is serialized. In this process, primitive type attributes
(e.g. int) and null attributes are serialized by using a default format. Class
descriptors are also inserted in the serialization stream to provide the receiv-
ing side with enough information to locate the correct type at deserialization
time. Deserialization essentially proceeds backwards, by extracting information
from the serialization stream and reconstructing the object graph accordingly.
Interestingly, serialization preserves aliases within a single serialization stream.

The aforementioned process requires r and all the other object references
to belong to a type implementing the java.io.Serializable interface. The
programmer, however, retains control over the fraction of the object graph that
must be serialized. Although by default all the object attributes are serialized,
attributes that are prepended by the transient modifier are not. When the
object is reconstructed by deserialization, transient attributes are set to the
language default for their type.

2.2 Remote Method Invocation

In RMI, a line is drawn between remote objects and non-remote objects. A “re-
mote object is one whose methods can be invoked from another Java virtual



machine, potentially on a different host” ( [10], §2.2). Remote objects are defined
programmatically by any class that implements the java.rmi.Remote interface
or a subtype thereof. All the other objects are simply called non-remote objects.

A reference to a remote object can be acquired by querying a lookup service—
or registry in the RMI jargon. The registry is a process that binds local objects to
symbolic names. Remote clients can query the registry by providing a symbolic
name, and obtain a network reference to the corresponding object.

A reference to a remote object can also be obtained through parameter pass-
ing. Object parameters can be passed in a remote method invocation either by
reference or by copy. If the object being passed is a remote object and it has been
exported to the RMI run-time, then the object is passed by reference, i.e., it is
accessed through the network. Instead, if the parameter is a non-remote object,
or a non-exported remote object, it is passed by copy. In this case, however, the
type of the object is required to implement the interface java.io.Serializable.
Primitive types are always passed by copy.

The semantics of parameter passing by copy is defined in Java RMI by object
serialization. The interplay between serialization and parameter passing, how-
ever, slightly complicates the picture. The first issue is aliasing. Since a single
serialization stream per remote method invocation is used, references to the same
object in the caller are mapped in the callee into references to the same serialized
copy of that object. Hence, parameters are not copied independently, as usually
happens in parameter passing by copy. The other issue has to do with serialized
objects containing references to remote objects. In this case, the behavior of RMI
is as follows ( [10], §2.6.5):

– If the object being serialized is an instance of Remote and the object is ex-
ported to the RMI run-time, the stub for the remote object is automatically
inserted in the serialization stream in place of the original object.

– If the object is an instance of Remote and the object is not exported to
the RMI run-time, or the object is not an instance of Remote, the object
is simply inserted in the serialization stream, provided that it implements
Serializable.

In essence, this preserves the semantics of object references in presence of
distribution. If the object o contains a remote object r in its object graph, the
serialized copy of o still accesses the original copy of r on the original node, if r
has been exported. Otherwise, r is treated just like any other ordinary object.

3 Motivation and Reference Example

Object serialization can be the source of severe inefficiencies in remote method
invocations. In Java—and object-oriented languages in general—objects are of-
ten highly structured: composition quickly leads to pretty large object graphs.
If the object must be transferred to another host by a remote method invoca-
tion, performance may be affected severely. An overhead is introduced in terms
of both computation, as (de)serialization requires a recursive navigation of the



object graph, and communication, as large objects result in large serialization
streams being transmitted. Most of the existing approaches focus on reducing
only the computational overhead [1,2, 7, 8, 12]. They aim at improving the mid-
dleware run-time without considering the application code exploiting it and, in
particular, how the object is used after deserialization. In this paper, we take
the complementary approach of optimizing serialization to reduce communica-
tion overhead, based on how serialized objects are used on the server side.

Our goal is to optimize parameter passing for each remote invocation, by
serializing only a portion of the object and hence reducing the network traffic.
In fact, different invocations may access different portions of the remote objects
passed as serialized parameters. The proposed solution consists of (a) performing
static analysis to derive information about the portions of serializable parameters
that must be transmitted at each call point, and (b) using this information at
run-time to optimize serialization.

Let us consider a simple reference exam-
public interface IPrinter
extends Remote {
public void print(IPage page)

throws RemoteException;
}
public interface IPage
extends Serializable {
public IPageItem[] getWholePage();
public IPageItem[] getTextItems();
public IPageItem[] getGraphicItems();

}
public interface IPageItem
extends Serializable {
public void print(PrintStream ps);

}

Fig. 1. Interfaces of a simple
print service.

ple1, used throughout the paper. A simple
print service is provided by the IPrinter in-
terface shown in Fig. 1. Clients are expected
to invoke the method print() by passing the
page to be printed as a parameter. Pages are
made up of page elements; their interfaces
are also shown in Fig. 1. Pages can contain
text and/or graphical elements. The meth-
ods exported by the IPage interface allow
one to retrieve either or both. IPageItem ex-
ports a method print(), which is invoked by
the receiving IPrinter and causes the actual
printing of the element on the device.

In our example, several implementations
of IPrinter and IPage exist, corresponding to different kinds of printing devices
and of pages. Sample implementations (DotMatrixPrinter and MixedPage) are
shown in Fig. 2. The client of the printing service, however, ignores the kind of
remote printer that is actually being used; it simply invokes the print service. It is
up to the server to perform the requested service according to its own capabilities.
For example, a dot-matrix printer only prints the textual part of the page (see
Fig. 2). Let us consider the case where a composite page is to be printed on a
printer that happens to be a dot-matrix printer. Although only textual elements
are going to be accessed by the printer, all page elements are serialized and
transferred to the server. This is an example where serialization and transmission
of a large unused portion of an object generates unnecessary computational
and communication overhead, because the server only refers to a portion of the
data. The client has no means to avoid this unnecessary serialization—unless
information hiding is broken.

We can draw generalized remarks from this example. Often the client has
no control over the server’s behavior. The server may change over time, due to
1 The complete source code of the example can be found in [4].



public class DotMatrixPrinter
extends UnicastRemoteObject
implements IPrinter {
private PrintStream out = new DotMatrixPS();
public DotMatrixPrinter()

throws RemoteException { super(); }
public void print(IPage page)

throws RemoteException {
IPageItem[] text = page.getTextItems();
if (text != null)

for (int i = 0; i < text.length; i++)
text[i].print(out);

}
}

public class MixedPage
implements IPage{
private IPageItem[]pageItems;
public IPageItem[]getTextItems(){

TextItem[] text=
new TextItem[pageItems.length];

int j=0;
for(int i=0;

i<pageItems.length;
i++)

if (pageItems[i]
instanceof TextItem)
text[j++]=(TextItem)pageItems[i];

return text;
}
...

}

Fig. 2. Sample implementations of a printer (left) and a page (right).

dynamic binding, and different servers, though presenting the same interface,
may differ in their internal behaviors. Internal behaviors are not visible, either
because of a deliberate design choice, as in our example, or because they are hard-
wired in an off-the-shelf component, whose implementation is responsibility of a
third party and hence outside the designer’s control.

The next section presents a program analysis technique that enables run-time
optimization of remote method invocations. Situations like the one we described
can be detected automatically during a static analysis phase, to determine which
fields of a given object involved in a remote method invocation are actually used
by the target and which are not. The results of analysis can be exploited by
automatically generating code that selects the fields to be serialized for each
invocation, skipping the serialization of fields unused on the server side. Need-
less to say, our technique does preserves correctness of the application, i.e., it
guarantees that there will never be an attempt to access an object field that has
not been serialized.

4 Type-Based Static Analysis

This section describes our static analysis technique in a stepwise manner. We
begin by describing the overall analysis strategy, then introduce the notion of
concrete graph, which is central to our approach, and conclude by describing the
details of the analysis.

4.1 Overall View of the Method

For each remote method invocation r=o.m(p1, . . . , pn) and for each serializable
parameter pi ∈ {r, p1, . . . , pn}, we identify which attributes of pi need to be
copied through serialization and passed to the remote target object. To achieve
this goal, we focus our analysis on the types that can be instantiated through
a new operation. These types, called concrete types, include all primitive types,
and do not include any abstract class or interface.



Our analysis technique is structured in the following phases:

1. Given the overall set of types constituting the application, determine:
(a) the set R of remote types, i.e., types that extend or implement Remote;
(b) the set S of serializable types. This includes primitive types (e.g., int)

and reference types that extend or implement Serializable. The dec-
laration of an array T[] causes the insertion in S of both T and the type
“array of T”.

2. Compute the set of concrete remote and serializable types, i.e., the subsets
Rc ⊆ R and Sc ⊆ S containing only concrete types.

3. For each class c ∈ Rc, identify the set M of methods that can be invoked
remotely. This includes all the methods belonging to the interfaces which
extend Remote and implemented by c.

4. For each remote invocation of a method m ∈ M, identify the set of param-
eters Pm that must be serialized, i.e., those for which at least one dynamic
type belongs to Sc.

5. For each parameter p ∈ Pm, identify the attributes of p for which serialization
can be safely skipped.

Phases 1-4 are quite straightforward, R = {IPrinter, DotMatrixPrinter}
Rc = {DotMatrixPrinter}
S = {IPage,MixedPage,

IPageItem,IPageItem[],
TextItem,TextItem[],
GraphicItem,GraphicItem[],
int,int[],int[][],char,char[]}

Sc = { MixedPage,
TextItem,TextItem[],
GraphicItem,GraphicItem[],
int,int[],int[][],char,char[]}

M = {print}
Pprint = {aPage}

Fig. 3. The relevant sets for the
reference example.

and can be accomplished by inspecting the
code and the inheritance hierarchy. Fig. 3
shows their result for our reference exam-
ple. Phase 5 is the most complex and con-
stitutes the core of our analysis. In a re-
mote method invocation r=o.m(p1, . . . , pn),
the analysis is complicated by polymor-
phism. In fact, a parameter pi of static type
T can be replaced at run-time by any sub-
type of T . The same holds, recursively, for
every attribute of T . For each parameter
pi and for each attribute a potentially reachable from it, we must determine
whether a is used, and hence it must be serialized, or instead we can safely avoid
to do so. The next two sections describe how this can be accomplished.

4.2 Concrete Graphs

Each parameter of a remote method invocation can be associated with one or
more descriptors, called concrete graphs. Intuitively, a concrete graph associated
with a reference parameter p of type T is a directed multi-graph that represents
the type structure of one of the possible instances of p at runtime, according
to the class hierarchy. The nodes of the concrete graph are serializable types
belonging to Sc. Each edge departs from a node representing the type of an
object, ends in the node representing the type of one of the object’s attributes,
and is labeled with the name2 of such attribute.
2 Attribute names must be fully specified, i.e., include the type where they are defined.

Hereafter, we use only the attribute label as it is unambiguous in our example.



The concrete graphs for a given parameter are computed through an inspec-
tion of the static class hierarchy. Fig. 4 shows the two concrete graphs for a
parameter of MixedPage type shown in Fig. 2. The two concrete graphs differ in
the concrete type of the array attribute pageItems of MixedPage. The graph in
Fig. 4(a) describes the case where an element of the array3 is of type TextItem
(a character array). The other graph, in Fig. 4(b), describes the case where the
element is instead of type GraphicItem (an integer matrix)4.

Formally, a concrete graph is a tuple 〈N , E ,A,Sc, type, attr〉.

pageItems

chars

[*]

[*]

MixedPage

TextItem[]

TextItem

char[]

char

(a)

pageItems

colours

[*]

[*]

MixedPage

GraphicItem[]

int[][]

int[]

GraphicItem

[*]

int

(b)

Fig. 4. The concrete graphs of
a MixedPage parameter.

N and E are, respectively, the set of nodes and
edges of the graph, with E ⊆ N ×N ×A, being
A the set of attribute names. Sc is the set of
serializable concrete types. Functions type and
attr represent the object structure:

type : N → Sc attr : E → A
Function type is such that @n1, n2 | type(n1) =
type(n2) i.e., each serializable type appears in
the concrete graph exactly once. Function attr
yields the name associated with an edge. For
instance, if n1 and n2 are the first two nodes of
the concrete graph in Fig. 4(a), and e the first
edge, then type(n1) = MixedPage and attr(e) =
pageItems.

Intuitively, concrete graphs are used as fol-
lows. First, we assume that, for all remote in-
vocations, each serializable parameter has its
associated set of concrete graphs. Static analysis is then performed by exam-
ining each concrete graph and determining, for each field, if it is used on the
receiving side and hence should be serialized5. This information is recorded by
properly annotating the edges of the concrete graph, and can be exploited at
run-time, when the actual dynamic type of each node is known, to determine
whether to serialize or skip a given attribute.

4.3 The Analysis in Detail

In this section we provide a detailed description of the core of our technique,
i.e., phase 5 of the program analysis described in Section 4.1. To simplify the
presentation, we focus on method invocations with a single input parameter and
no return parameters. Method signatures with arbitrary arity and types, and
encompassing serializable return parameters, can be treated straightforwardly6.
3 An edge labelled [*] denotes indexing in the array.
4 Clearly, the array attribute pageItems can in general contain any combination of

the two.
5 Clearly, in the case of recursive types only an approximation is possible.
6 A simple way to deal with multiple parameters is to represent them as attributes

of a fake, single parameter. As for the return value, it is sufficient to analyze the



Fig. 5. The control flow graph of the methods DotMatrixPrinter.print,
MixedPage.getTextItems, and TextItem.print.

Exploiting the concrete graph The analysis of a method m(p) starts by building
the concrete graphs associated to p. Then, it analyzes the control flow of m. As
the analysis walks through the body of m, it “decorates” each concrete graph of
p by keeping track of whether a given attribute can be serialized or not, based on
how the control flow has used the attribute thus far. This information is derived
incrementally as the control flow is examined, and relies on the definition of two
labelling functions mapping each edge of a concrete graph to a boolean value:

defined : E → {true, false} skip : E → {true, false}
The value returned by defined(e) is true if the attribute associated with the edge
e (i.e., attr(e)) has been already assigned a value at a given point in the analysis.
The value of skip(e) is true if the attribute attr(e) can be safely skipped during
the serialization process of the parameter p associated to the concrete graph.

Analyzing the control flow To inspect the control flow of the invoked method,
we follow the standard data-flow framework described in [11], which relies on
a control flow graph, where nodes represent program statements and edges rep-
resent the transfer of control from one statement to another. As an example,
Fig. 5 shows the control flow graph for the methods print in DotMatrixPrinter,
getTextItems in MixedPage and print in TextItem (both invoked by print
in DotMatrixPrinter). The control flow graph of each method starts with an
entry node and ends with an exit node. Hence, the overall program control flow
can be built out of the method control flow graphs by moving from one control
flow graph to the other according to method invocation and termination7.

Program analysis is carried out by relying on two groups of equations. The
first group focuses on a given node in the control flow graph, and defines the

client code (instead of the server) using the return value as the parameter driving
the analysis.

7 Exception-handling introduces additional implicit control transfers. However, these
can be analyzed by using existing techniques (e.g., [13]) in conjunction with ours.



relation between the information entering and exiting the node. This group of
equations is sufficient to analyze a single path in the given program. However, a
node in the control flow graph may have multiple incoming edges that represent
different control flow paths, e.g., due to branches or loops, as shown in Fig. 5.
The second group of equations specifies precisely how the information coming
from these different sources is merged at the entry point of a given target node n,
by defining the relationship between the outgoing information associated to the
sources of all the edges insisting on n, and the information effectively entering
n. Given these two groups of data-flow equations, the global solution can be
computed with a standard worklist algorithm (see, e.g., Chapter 6 of [11]).

Object aliasing Our analysis is complicated further by object aliasing, i.e., the
ability of Java to refer to the same object through different references. To de-
termine if an object must be serialized, we must keep track of all the uses of its
aliases. The aliasing problem is widely studied and can be tackled by a number of
techniques (e.g., [9,14]). Moreover, alias analysis is orthogonal to the type-based
analysis described here, and the two can be combined as follows. Given a con-
crete graph, we first exploit the results of alias analysis to annotate each node of
the control flow graph with the alias set associated with each attribute found in
the concrete graph. Then, when we “decorate” the edges of the concrete graph,
we change the state of an edge not only when an attribute is being modified by
a node of the control flow graph, but also when any of its aliases is.

In the sequel, we first describe how the analysis is performed on a single
path, by defining how each instruction in the control flow graph of m affects the
labeling functions defined and skip. Then, we explain how these functions are
“merged” when paths on the control flow graph meet.

Analyzing a Single Path To simplify the presentation, we assume that the
input parameter p in the method invocations o.m(p) has a single concrete graph
and is serializable, i.e., p ∈ Sc. Moreover, we assume that all multiple-level
reference expression such as a.b().c() and a.b.c are normalized into a sequence
of two-level reference expression of the form a.b() and a.b, by using additional
variables. For instance, y=a.b().c() can be split in x=a.b(); y=x.c(). In the
initial state, skip(e) = true and defined(e) = false, ∀e ∈ E , where E is set of
edges belonging to the concrete graph of p. That is, all the attributes of p are
undefined and their serialization can be skipped.

We focus the discussion on a variable y being analyzed in the context of the
execution of the given method m, where y is either represented in the concrete
graph by some edge e such that y = attr(e) with e = (ni, nj , v) and v = y, or it
is an alias of the variable v represented by e.

Let us specify how the traversal of a given node of the control flow graph
involving y affects the concrete graph, and in particular the labelling of its edges.
Variable y can be affected by definitions and uses (in the common meaning of
program analysis [6, 15]). Definitions of y are statements which assign a new



value to y. Uses of y are all those situations where y’s value (or one of y’s
attribute values) is used in an expression.

The data-flow equations can then be expressed informally as follows:

– Definition. If defined(e) is true before entering the node of the control flow
graph containing the definition of y, nothing needs to be done, since y was
already defined and the state of the concrete graph up to date. Otherwise,
the value of defined is set to true for e.

– Use. If defined(e) is true before entering the node of the control flow graph
containing the definition of y, nothing needs to be done. Otherwise, the value
of skip(e) must be set to false, since the value of y is needed in the execution
of the method under analysis.

Attribute accesses and method invocations are an important kind of use. An
attribute access to y is in the form8 y.x, where x is an attribute defined in the
class of y. It requires to consider, from this point in the analysis on, not only the
definitions and uses of y but also those of x, to determine whether it is in turn
serializable. Method invocations involving y can be either9 of the form y.g(...)
or g(y,...). Method invocations can be treated as uses, but they require also
method g to be analyzed, by operating on the same concrete graph that was
labelled up to the invocation point.

Example Let us consider the example of Section 3 and the remote invocation
of print on an object of type DotMatrixPrinter, with a parameter of type
MixedPage. The concrete graphs for this case are shown in Fig. 4, and the control
flow graphs are shown in Fig. 5. Let us consider the concrete graph of Fig. 4(a)
and walk through all paths of the control flow graph. Fig. 6 shows the result
of this analysis as a series of snapshots of the concrete graph as the control flow
graph is analyzed. A dashed edge e means that the corresponding attribute can
be safely skipped, i.e., skip(e) = true, while a solid edge means that the attribute
must be serialized.

The analysis of the control flow graph begins in node 1 of Fig. 5. Upon enter-
ing the first statement of print in node 2, the formal parameter page (and hence
the actual parameter) is used during the invocation of method getTextItems.
Invocation of this method is analyzed by moving to the entry point of its con-
trol flow graph (node 3), but keeping the same concrete graph. The traversal
of node 4 leaves the concrete graph unaffected. On the other hand, node 5 con-
tains a use of the attribute pageItems, through access to its attribute length.
The edge corresponding to pageItems is then marked as to be serialized, shown
with a solid arrow in Fig. 6(b). Node 6 must be considered next. This node is
an interesting case since it illustrates how the construct instanceof must be
handled. Although pageItems[i] is an argument of this instruction, this is not
a use of the variable. The result of instanceof does not depend on the value of
pageItems[i], but only on its type. Moreover, the value of this variable is left

8 As mentioned earlier, if y is an array then y[i] is treated as a reference to an attribute.
9 The new instructions can be viewed as a special case of method invocation.
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Fig. 6. Decorating the concrete graph of Fig. 4(a) while walking through the control
flow graphs in Fig. 5. The value of skip is true for dashed edges and false for solid ones.

unaffected by the execution of instanceof. Hence, the traversal of this node
leaves the concrete graph unchanged. Note also that in this case we are forced
to go through node 7 instead of choosing the else branch and return to node
5. In fact, choosing the latter path would yield to a violation of the previous
assumption about the type of the elements of pageItems.

The remaining two nodes of getTextItems do not affect the concrete graph
directly, but establish the object aliases that enable further changes effected by
the other methods. Node 7 establishes an alias between an element of pageItems
and an element of the local array text. Node 8 propagates this alias back to
the caller print, by returning text as a result value. Node 9 brings the control
back to print, which resumes from node 10. Nodes 10 and 11 do not affect the
concrete graph, since they contain only uses of text. Node 12 contains a use of
an element of text, which is potentially aliased to one of pageItems. Hence,
the corresponding edge in the concrete graph must be marked accordingly, as in
Fig. 6(c). Such use is a method invocation, which causes the analysis to move to
the control flow graph of print (node 13).

The first statement of this method (node 14) contains a use of the array chars
which, by virtue of aliasing, is an attribute of the element of pageItem aliased
to the invocation target text[i]. Hence, chars must be serialized (Fig. 6(d)).
Finally, node 15 contains an invocation of the method responsible for printing
an element chars[i]. Although here we do not show the code of this method,
intuitively it relies on the input parameter, which then needs to be serialized,
leading to the last and final concrete graph in Fig. 6(e).

According to this analysis, the whole object graph of the parameter must
be serialized. In our example this matches intuition, since all the information
associated to a text page is actually used by a dot-matrix printer.



Let us examine now what happens if the concrete graph of Fig. 4(b) is con-
sidered instead, when walking through the same control flow graphs in Fig. 5.
Up to node 6, the analysis proceeds as in the previous case, by requiring the
attribute pageItems to be serialized. The test in node 6, however, forces us
to choose a different path, and return to node 5. In fact, proceeding to node
7 would violate the assumption that the elements of pageItems are of type
GraphicItem. The rest of the analysis proceeds through nodes 5, and 8 to 17.
However, since no alias has been established between text and some attribute of
the concrete graph, the latter remains unchanged: only the edge between nodes
MixedPage and GraphicItem[] in Fig. 4(b) become solid. Hence, the analysis
confirms our intuition that serialization of an element of pageItems whose type
is GraphicItem can be safely skipped.

Merging Information from Multiple Paths What we described thus far is
sufficient to analyze methods whose code does not contain branches in the con-
trol flow. Otherwise, we need to specify how the information collected through
separate control paths is merged when the control paths are rejoined. Such in-
formation is the labelling of edges of the concrete graph, i.e., the value returned
by the functions defined and skip. The problem is that an attribute y in the con-
crete graph may have been recorded as defined (defined(e) = true, y = attr(e))
through one control path, and not in another. Even worse, the same attribute
may have been deemed necessary to the enclosing method, and hence marked as
to be serialized along one path, and marked as to be skipped along another.

Clearly, to preserve a correct program behavior we need to take the most
conservative stand. In the aforementioned case we need to preserve, in the node
where the control flow rejoins, the values defined(e) = false and skip(e) = false. In
other words, an attribute is defined in the joining node if it was defined through
all of the joining paths, and similarly it can be safely skipped during serialization
if it can be skipped through all the joining paths. Formally, if definedi and skipi

are those computed along an incoming path i, ∀e ∈ E :

defined(e) =
n∧

i=1

definedi(e) skip(e) =
n∧

i=1

skipi(e)

Once data-flow equations are given, the analysis is completely defined and
the least solution can be computed by the worklist algorithm. The analysis must
be performed for each method that can be invoked remotely, for each serializable
object parameter, and for each of the possible concrete graphs of such parameter.

5 Prototype

We developed a toolkit to support the approach described in this paper. The
overall architecture is showed in Fig. 7. The core component is the analyzer,
which receives a Java source code as input and outputs information about each
remote method invocation, with the corresponding annotated concrete graphs.



The output is in binary format for the sake of compactness. The current im-
plementation of the analyzer is built on top of JABA [5], an API supporting
program analysis of Java bytecode.

The result of the analysis can be input to one

viewerchecker

analyzer

optimizer

source
code

binary
representation

stdoutwarnings instrumented 
code

Fig. 7. Tool architec-
ture.

of three tools: The serialization checker, which de-
tects all unused fields declared as serialized, as men-
tioned in Section 3. The viewer, which enables visu-
alization of the analysis output in a human readable
format. The optimizer, which exploits the analysis
results to instrument the source code, by properly
redefining serialization. The instrumentation process
is non-invasive: it preserves user-defined serialization
(when present), and does not affect other uses of seri-
alization (e.g., for storing an object in a file). Details
are available in the full technical report [4].
6 Discussion

In this section we discuss improvements and limitations of our technique.

Semi-static analysis Program analysis is usually performed statically, and indeed
this is the way our approach works, too. The reason is that the computational
load is often too high to be placed on the run-time system. Nevertheless, our
main goal is to reduce bandwidth utilization. Hence, in some cases (e.g., in mobile
environments with low-bandwidth links) it is reasonable to trade computation
for bandwidth, and perform some if not all of our analysis at run-time.

The advantage of this approach lies in the accuracy of information about the
program that becomes available at run-time. For instance, if the analysis were to
be performed right upon a remote method invocation there would be no need to
consider all the possible combinations of concrete graphs for a given parameter
and control flow graphs of the possible servers. Considering the single concrete
graph matching the parameter being passed and the specific server target of the
invocation would be sufficient. Hence, while on one hand there is a computational
overhead to be paid at run-time, this overhead would arguably be significantly
smaller than the one to be paid by an entirely static analysis.

Closed vs. open world We implicitly assumed that the whole code base of the
distributed application is available for analysis, and it is not going to change
after the code is deployed. This “closed world” scenario holds for a number of
distributed applications. RMI, however, was designed to support an “open world”
scenario where the application code base can change dynamically and seamlessly,
by virtue of encapsulation and mobile code. In this case, our analysis would no
longer be applicable as is. Let us assume that, in our example, IPrinter exports
an additional method getPage returning the page currently being printed. This
method can be invoked by a client C2, different from the client C1 that required
the page printout. No assumption can be made in general about how C2 uses
the page. For instance C2 might require the serialization of the entire page as



originally stated by the programmer. Now the question is whether the code of
C2 is available at the time of the analysis. If so, the need to serialize all the
fields of a page is discovered when the analysis is run on the remote method
invocation of getPage issued by C2. Instead, if the code of the clients that may
invoke getPage is not available, our approach does not work.

We are currently extending our analysis to encompass an open world scenario.
This can be achieved by exploiting escape analysis [3], to determine if a given
object cannot escape the code base known at analysis time. In case it is, the
result of our analysis is still valid as is, since an object that has been only partly
serialized is never passed outside the boundaries of the analyzed code. Instead,
if an object escapes such boundaries no assumption can be made about its use.

7 Related Work

The existing approaches to RMI optimization focus on optimizing the compu-
tational overhead of serialization, rather than its bandwidth consumption. Most
of these approaches are intended for scientific applications exploiting parallel
computing, where computational efficiency is the main concern. To the best of
our knowledge no published research has tackled the problem of using program
analysis to reduce the traffic overhead of serialization. Thus, no other approach
is directly comparable to ours.

Krishanswamy et al. [8] reduce the computational overhead on the client side
by exploiting object caching. For each call, a copy of the byte array storing the
serialized object is cached to be possibly reused in later calls. Braux [1] exploits
static analysis to reduce the computational overhead of an invocation due to the
reflective calls needed to discover the dynamic type information. The work of
Kono and Masuda [7] relies on the existence of run-time knowledge about the
receiver’s platform, and redefines the serialization routine accordingly. On the
sender side, the object to be serialized is converted directly into the receiver’s
in-memory representation, so that the receiver can access it immediately with-
out any data copy and conversion. Breg and Polychronopoulos [2] explicitly
target homogeneous cluster architectures, and provide a native implementation
of a subset of the serialization protocol. Their approach leverages on knowledge
about the data layout in the cluster, so that complex data structures are encoded
directly in the byte stream by using only a minimal amount of control informa-
tion. Philippsen et al. [12] integrate various approaches to obtain a slightly more
efficient RMI implementation. They simplify the type information encoded in
the serialization stream, improve the buffering strategies for dealing with the
stream, and introduce a special handling of float and double. Nevertheless,
their optimizations are again closely tied to the parallel computing domain.

8 Conclusions

We presented a novel program analysis technique that aims at optimizing pa-
rameter serialization in remote method invocations on a per-invocation basis.



The analysis identifies which portion of a parameter is actually used on the
receiving side. This information can be exploited to redefine the serialization
mechanism and reduce the run-time communication overhead. We implemented
a toolkit supporting our approach, and we are currently using it for an empirical
evaluation of our method against real-world RMI applications.
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