
TRIDENT: In-field Connectivity Assessment
for Wireless Sensor Networks

Timofei Istomin1, Ramona Marfievici1, Amy L. Murphy2, Gian Pietro Picco1

1 University of Trento, Italy — firstname.lastname@unitn.it
2 Bruno Kessler Foundation, Trento, Italy — murphy@fbk.eu

ABSTRACT
Real-world deployments of wireless sensor networks (WSNs) are
notoriously difficult to get right, partly due to the fact that their
low-power wireless communication is greatly affected by the char-
acteristics of the target environment. An early in-field connectivity
assessment of the latter provides fundamental input to the WSN
development. Unfortunately, state-of-the-art tools require a sec-
ondary networking infrastructure (e.g., USB cables) for gathering
experimental data—a luxury one can rarely afford in-field.

We present TRIDENT, a tool expressly designed to support in-
field connectivity assessment by relying only on the WSN nodes,
without additional infrastructure. The tool is also designed to be
easy to use, enabling domain experts (instead of WSN experts)
to directly configure connectivity assessment towards their specific
needs, without requiring coding. The tool is provided in two vari-
ants, targeting TMote Sky motes running TinyOS, and Waspmotes
running the standard ZigBee stack, covering popular platforms in
research and industry, respectively.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques; C.2.1
[Network Architecture and Design]: Wireless communication

Keywords
802.15.4, Link quality, Connectivity assessment

1. INTRODUCTION
Wireless sensor networks (WSNs) are finding their way into real-

world applications, whose successful deployments are increasingly
reported. This accrued experience has also evidenced how the task
of deploying a WSN entails a number of challenges. One of the
most important concerns the low-power wireless communication
exploited by WSNs. This type of wireless communication has pe-
culiar characteristics, that have been studied by many researchers;
a summary is provided by a recent empirical study [11].
Motivation. Communication in the 2.4 GHz band of IEEE 802.15.4,
commonly employed by WSN devices, is also affected by fac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExtremeCom ’14, August 11-15, 2014, Galapagos Islands, Ecuador.
Copyright 2014 ACM 978-1-4503-2929-3 ...$15.00.

tors strongly dependent on the environment where the WSN is de-
ployed, and hard to capture in the controlled setups typically used
in the studies above. These factors include the shape of the deploy-
ment site [10], variations in temperature [3] and humidity [14] and
their combination in outdoor [8, 15] or industrial [4] scenarios.

Figure 1 provides a concrete idea of the extent to which com-
munication can be affected by these factors, albeit using a small-
scale setup. A single link between two nodes communicating at
0 dBm and placed 40 m apart in an outdoor open field is observed
over a 2-day period. Figure 1(a) shows the average temperature in-
side the plastic boxes holding the motes; Figure 1(b) shows that,
for TMote Sky devices, this temperature is negatively correlated
with the Received Signal Strength Indicator (RSSI) and Packet
Delivery Rate (PDR) of the link. A 40◦C temperature increase
in the box (caused by a mere 11◦C increase outside of it) causes a
−13 dBm decrease in RSSI . This is enough to turn a perfect link
(PDR = 100%) into a dead one (PDR = 0%).

Assessing quantitatively the characteristics of low-power wire-
less links in-field, i.e., in the target environment where a WSN must
be deployed, is key for several, intertwined goals:

• supporting the WSN deployment, by determining where to
place the motes to ensure communication among them;

• informing the selection (or design) of protocols, to ensure
they are well-suited to the target environment;

• deriving models, to push the envelope of what can be pre-
dicted (or simulated) beforehand.

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00

T
em

pe
ra

tu
re

 (
C

)

Time

(a) Temperature.

 0

 20

 40

 60

 80

 100

20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00
-92

-90

-88

-86

-84

-82

-80

-78

P
D

R
 (

%
)

R
S

S
I (

dB
m

)

Time

PDR RSSI

(b) TMote Sky.

 0

 20

 40

 60

 80

 100

20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00
-92

-90

-88

-86

-84

-82

-80

-78

P
D

R
 (

%
)

R
S

S
I (

dB
m

)

Time

PDR RSSI

(c) Waspmote.
Figure 1: Effect of temperature on RSSI and PDR.

Unfortunately, the tools supporting connectivity assessment (e.g.,
SWAT [13], SCALE [7], RadiaLE [2]) were conceived to study the
properties of low-power wireless links in controlled environments,
e.g., an office testbed. Therefore, they require a secondary, wired
networking infrastructure (e.g., USB cables) for gathering experi-
mental data—a luxury one can rarely afford in real-world settings.
Contribution. This paper presents TRIDENT [1], a tool expressly
designed to simplify the chore of in-field connectivity assessment.
TRIDENT relies only on the WSN nodes whose connectivity needs
to be ascertained, without any external infrastructure.

TRIDENT is useful to WSN researchers and practitioners, who
may use it towards any of the three aforementioned goals. How-
ever, the tool is designed to be easy to use also for domain experts
who, being the “users”, have precise knowledge of where the WSN
nodes should be deployed from the application standpoint, but typ-
ically do not have a very deep knowledge about the inner working
of the WSN, and definitely do not take part in programming it. The
connectivity experiments can be configured easily without requir-
ing any coding, and the data collected with a straightforward pro-
cedure. Therefore, TRIDENT empowers domain experts with the
ability to assess the connectivity of WSN nodes deployed in-field,
without the need for a supporting WSN expert. The goals and re-
quirements we set for TRIDENT are described in Section 2.

TRIDENT covers the entire workflow concerned with connectiv-
ity assessment experiments. After the WSN nodes are flashed with
the TRIDENT software, appropriate user interfaces enable the op-
erator to (re)configure the experiment settings, discover nodes, and
download the results. The latter are stored in a database, simplify-
ing the storage and analysis of the (typically large volumes of) data
gathered. The main operation of TRIDENT is described in Sec-
tion 3, along with the various components of the tool.

We originally developed TRIDENT for the popular research-ori-
ented platform constituted by TMote Sky motes running TinyOS.
However, connectivity assessment is relevant also to industry-ori-
ented platforms, for which we chose Waspmote devices running the
standard ZigBee stack as a representative. Interestingly, supporting
the latter platform is not simply a matter of porting the code from
the former; the fact that the ZigBee stack is “closed”, unlike the
TinyOS one, forced us to find ways to reliably measure the main
metric of PDR, which cannot be derived directly otherwise.

Although both platforms are based on radio chips compliant with
IEEE 802.15.4, their behavior is very different, as shown again
in Figure 1. The same setup and observations we described ear-
lier were also performed for a link between a pair of Waspmote
nodes, whose behavior is shown in Figure 1(c). The two experi-
ments were performed in exactly the same conditions, by placing
the two pairs of motes side-by-side on different channels. The chart
shows that, for Waspmote, temperature is also negatively correlated
with RSSI , but to a much lesser extent w.r.t. TMote Sky, allowing
the PDR to remain at 100%. These sharp differences motivated
different implementations of TRIDENT, discussed in Section 4.

Finally, Section 5 ends the paper with brief concluding remarks
and an outlook on future work on TRIDENT.

2. REQUIREMENTS
In this section we describe the requirements we set for ourselves

in designing TRIDENT, grouped according to their nature.

2.1 Type of Data Collected
Metrics. We want to support in-field collection of several metrics
typically used to perform connectivity assessment.

The key metric provided is the Packet Delivery Rate (PDR), i.e.,

the ratio of packets received over those sent. PDR provides a direct
assessment of the ability of a link to reliably communicate packets.

A number of metrics are extracted directly from the radio chip:
Received Signal Strength (RSSI), Link Quality Indicator (LQI),
and RSSI noise floor, sampled after sending or receiving a packet.
These metrics provide insights about physical layer parameters in-
fluencing PDR, and their correlation with it. Moreover, noise floor
is useful to indirectly determine the presence of interference.

Finally, TRIDENT supports the acquisition, upon packet sending
or receiving, of environmental parameters (e.g., temperature and
humidity) from on-board sensors. These are useful to determine
how the environment affects communication, as highlighted by the
works mentioned earlier and concretely shown in Figure 1.
Aggregated vs. per-packet samples. The reason for which con-
nectivity assessment is performed determines the nature of the data
gathered. If a long-term observation is necessary, the amount of
data recorded can rapidly become prohibitive for a resource-con-
strained platform like TMote Sky. Therefore, the tool should sup-
port the ability to store only an aggregate of the metrics collected,
computed over a well-defined sequence of packet exchanges.

On the other hand, recording the individual metrics (e.g., RSSI
and noise floor) associated with each packet provides a fine-grained
detail that is necessary in some cases, e.g., when the goal is to as-
certain the time-variant characteristics of links with the resolution
necessary to inform the design of network protocols.

The choice between aggregated or per-packet samples should
therefore be left to the user, balancing the goals of connectivity
assessment against the storage limitations of the platform at hand.
Single packets vs. bursts. Another related dimension is the way
the channel is observed. Connectivity assessment is often per-
formed by sending probe packets with an inter-message interval
(IMI) relatively high (e.g., seconds), representative of several WSN
applications. Nevertheless, some applications (e.g., recording data
from accelerometers [6, 16]) require the transmission of bursts of
packets. Moreover, a well-known property of the wireless chan-
nel is that the transmission of packets sent with a small-enough
IMI [12] is more reliable. The tool should allow the user to choose
whether to use single packets or bursts of packets as probes.

2.2 Type of Experiments Supported
Interactive vs. batch. Connectivity assessment may be needed for
reasons yielding different requirements, as described earlier.

If the ultimate goal is to support a WSN deployment by helping
determine a node placement enabling communication, this is often
achieved by performing tests of short duration (e.g., a few minutes).
These are useful to quickly evidence which nodes experience low
PDR values; this information is used by the operator to relocate
nodes and re-assess connectivity with another short test. To effec-
tively support this process, the tool must provide a way to quickly
(e.g., graphically) represent the PDR associated with WSN links.

On the other hand, connectivity assessment is often performed
also to characterize the target environment. This requires long-
term observations (e.g., days); the continuous presence of an oper-
ator would be impractical. The tool must provide the option to run
automatically a battery of tests, including different settings, defined
by the operator but executed without her involvement.

In our experience, the two modes of operation are often used
in conjunction. Indeed, before starting a long-term batch experi-
ment, a short-term interactive one is performed, to make sure that
all nodes are functioning properly, and that the baseline connectiv-
ity is appropriate to the purpose of the experiment.
Mobile nodes. Mobile WSN applications, e.g., involving nodes
placed on humans, animals, robots, or vehicles, are becoming in-

creasingly popular. Therefore, the tool should support experiments
where some of the nodes are mobile, to assess the connectivity be-
tween these and the fixed nodes. An interesting possibility, partially
explored in our previous work [5], is to use mobile nodes as a way
to perform a preliminary exploration of the deployment area. As the
mobile node moves across the field and exchanges messages with
fixed nodes, it samples the connectivity of a high number of loca-
tions, cumbersome to explore individually only with fixed nodes.

2.3 Support to Operators
In-field, wireless interaction with nodes. In-field operators must
interact with the nodes for various purposes. The primary reason
is to retrieve the results of experiments, stored on the nodes taking
part in them. Another key operation is the re-tasking of the nodes
with a new set of experiments. The operator may also need to inter-
act with the nodes for the sake of monitoring the correct execution
of the experiment, e.g., to retrieve statistics about the experiments
performed or the battery level. Other useful operations are the abil-
ity to put selected nodes (or the entire WSN) in stand-by when they
are not involved in an experiment, and wake them up later on.

In principle, some of these operations can be performed by di-
rectly accessing the node; for instance, data can be downloaded via
USB. However, while this operation is trivial in a lab, it becomes
cumbersome when nodes are deployed in-field in a harsh environ-
ments, e.g., outdoor in winter, or in places that are not easily ac-
cessible. Therefore, all of the interactions with the nodes should be
performed over-the-air, by leveraging the wireless channel.
Data storage and processing. Connectivity assessment experi-
ments may generate a huge quantity of data. Handling these as
individual files becomes rapidly impractical. Further, the raw data
gathered often needs to be processed in an automated way to sim-
plify interpretation. The tool should therefore integrate a database
for storing experimental data, enabling structured access and query-
ing, and the definition of stored procedures providing a layer of
abstraction in data manipulation and interpretation.

2.4 Non-functional Requirements
No infrastructure. As we already argued in the introduction, this
non-functional requirement is a defining one. In-field experiments
cannot afford the luxury of a secondary network; the experiment
execution must rely only on the WSN nodes under test.
No coding required. Our desire to support domain experts implies
that using the tool should not require writing even a single line of
code. The configuration of experiments should occur entirely via
the user interface; at most, domain experts must learn how to flash
motes with a pre-canned binary before going in-field.
Ease of use. The logistics of in-field experiments makes them
effort-demanding and time-consuming. The situation should not
be exacerbated by a complex or cumbersome interaction with the
tool. A graphical user interface, providing intuitive support for all
the phases of the experiments, is therefore an obvious requirement.
Flexibility. The experiment settings, including number of nodes,
their nature and role in the experiment, power and channel settings,
number of messages, inter-message interval, number of test repeti-
tions, etc., should be designed in a way that allows users to combine
them freely, to explore different portions of the parameter space.
Decoupling from hardware platform. The tool should work on
standard nodes without modifications to hardware. Nevertheless,
as there are many WSN platforms available, supporting a new one
in the tool should be simplified by its software architecture, by con-
fining platform-specific details in well-identified components.

s
t
a
r
t

s
t
a
r
t

1

2

3
burst

Round 1 Round 2

Experiment

IPI
IMI

IPI

Figure 2: Sample TRIDENT experiment showing two rounds,
staggered transmissions using single-packet and burst probes,
and per-round synchronization.

3. DESIGN
Next we describe the design of TRIDENT. We begin with a de-

scription of the execution of connectivity assessment experiments,
then provide an overview of the TRIDENT toolset.

3.1 Experiment Execution
Definitions. An entire TRIDENT experimental campaign is defined
as a sequence of rounds, as shown in Figure 2. Each round has
its own configuration parameters, detailed next, including whether
it uses single-packet probes or burst probes, i.e., multiple packets
transmitted in rapid sequence. The time between the beginning
of two consecutive probes from the same node is the inter-probe
interval (IPI). For burst probes, we also define the inter-message
interval (IMI) as the time between two messages belonging to the
same burst. Both IPI and IMI are configurable on a per-round basis.
Probing the links. Connectivity is assessed by probing the com-
munication link with packet transmissions and evaluating the re-
ceived packets and their properties. Therefore, TRIDENT experi-
ments must define precisely when each node transmits and listens.

All nodes behave the same: transmit a probe, pause for the IPI
duration, repeat this process a configurable number of times. In be-
tween transmissions, nodes can be configured to listen for packets
from other nodes. TRIDENT does not duty-cycle the radio dur-
ing experiments, ensuring that no packets are lost due to the radio
state. Moreover, to avoid collisions among simultaneously trans-
mitted packets, which can confound the link evaluation, TRIDENT
ensures that only one sender transmits at any given time.

This is achieved by having nodes begin their probe sequence in
a staggered way based on their node identifiers. Specifically, the
transmit time for the i-th probe of node n is defined as

tn,i = tstart + nTIPI + iNTIPI

where tstart is the start time of the round, TIPI is the value of the
IPI, n is the node identifier, and N is the overall number of nodes.
n and N are setup statically during the experiment design phase.

Staggering transmissions by assigning each nodes its transmit
slot, requires the nodes to be time-synchronized. In TRIDENT this
is achieved at the beginning of each round, as shown in Figure 2.
This synchronization allows the system to compensate for clock
drift during a long running experimental campaign.
Master node. Time synchronization is initiated by a special node,
called the master. The latter acts in general as a coordinator to-
wards the rest of the WSN nodes, as well as the “access point”
enabling the operator to change the configuration of experiments.
The master has the same binary code of the other nodes; its special
role is determined by its identifier, n = 0.

The parameters describing the round configuration are also dis-
seminated by the master node during synchronization at the begin-
ning of each round. The option to change parameters in each round
allows the interleaving of rounds with different power levels, or
interleaving single-packet and bursty rounds, as shown in Figure 2.

Table 1: Per-round configuration parameters and their exam-
ple values from [8].

Parameter Example Parameter Example
of nodes (N) 16 # of probes per sender 115

list of senders 0 . . . 15 single-packet probe yes

list of listeners 0 . . . 15 inter-probe interval 16 s

transmit power 27(−1 dBm) inter-message interval N/A

probing channel 18 aggregate logging yes

This choice has multiple consequences. First, only the master
node is aware of the experimental campaign, and therefore is the
only one affected by changes to the latter. As the master can receive
an entire experimental campaign configuration over-the-air, physi-
cal access to nodes is not required to change or initiate a campaign.
Second, prior to starting a long-running campaign, the operators
can interactively run a number of small experiments, each time up-
loading the round description to the master, instructing the master
to initiate the round, then collecting the results. After analysis, an-
other short experiment can be carried out, or the long-running ex-
periment can be initiated. This is all possible because the nodes are
experiment-agnostic and the master can be controlled over-the-air.
Per-round configuration parameters. Table 1 shows the per-
round configuration parameters available in TRIDENT, communi-
cated by the master before starting a round. We already mentioned
some of them, e.g., the overall number of nodes, the role (sender or
listener), the type of probe, the values of IPI and IMI. Additional
parameters include the radio channel, transmission power, overall
number of probes transmitted per node, and number of packets per
burst. The logging method must also be defined, choosing between
storing information about every packet, or only the average over the
entire round, based on the needs of the experiment and the available
storage. Finally, rounds and/or entire experiments can be repeated
a configurable number of times, to increase statistical relevance.

As for metrics, not shown in the table, PDR, RSSI , and (if
available) LQI are collected by default. If the platform allows,
sender and receiver can acquire per-packet environmental condi-
tions such as noise floor, temperature, and humidity. These values
are recorded according to the per-round logging policy.
Interacting with the nodes under experiment. Changing the per-
round configuration parameters is not the only option to interact
in-field with nodes. Table 2 describes the commands available to
the operator. As already mentioned, the operator can upload the de-
scription of an entire campaign configuration on the master, which
then uses it to orchestrate the various rounds with the appropriate
per-round configuration. However, the operator can also start and
stop the execution of the experiment; these commands are propa-
gated network-wide, with a mechanism similar to the one used to
mark the start of a single round, described in Section 4.

Table 2: In-field commands.
Command Target Description

UPLOAD master load a campaign configuration

START network start the execution of an experiment

STOP network stop the execution of an experiment

POLL 1-hop query battery level

SLEEP 1-hop place nodes in low-power listening

WAKE-UP 1-hop remove nodes from low-power listening

DOWNLOAD(n) node download logs from selected node

ERASE(n) node erase flash of selected node

SNIFF operator toggle packet sniffing

in-field
assistant

WSN

database

experiment
planner

operator's laptop
configuration commands

reports scripts

data

Figure 3: The TRIDENT toolset.
The master node can instruct all nodes to automatically enter a

sleep state upon the end of an entire experimental campaign, allow-
ing them to save their remaining battery power. In TinyOS, nodes
in this state use the default low-power listening (LPL) MAC with
a long sleep interval, currently set to 1 s. By duty-cycling the ra-
dio, nodes save battery power, but can be woken up later, e.g., to
initiate over-the-air data download or to start a new experimental
campaign. Alternately, the operator can also put to (or wake-up
from) sleep a subset of the nodes, and query for their battery level.

Other commands enable the operator to download the experi-
ment logs from a selected node, and to erase its flash memory after
successful data transfer is verified. Finally, passive packet sniffing
can be activated on the node managed by the operator, enabling the
latter to ascertain whether all nodes properly started the experiment.

3.2 Toolset Overview
Figure 3 depicts the main structure of TRIDENT. WSN nodes,

the subject of the experiment, are programmed with a platform-
specific mote-level runtime that is experiment-agnostic; its behavior
is established by the operator without requiring any coding.

This configuration is performed through the GUI of a dedicated
component, the experiment planner, which resides on the opera-
tor’s laptop. The experiment planner essentially enables the oper-
ator to quickly and easily define the various details of the experi-
ment, by properly setting the values for the parameters in Table 1.
This step does not need to be performed in-field, as the planner
enables only the definition and storage of experiments.

The actual upload of experiments to the master, and from there to
the rest of the WSN, is instead supported by the in-field assistant,
which also enables the execution of the other commands in Table 2.
Communication with the WSN is enabled by a mote acting as a
gateway, connected to the USB port of the operator’s laptop.

The in-field assistant provides also a simple visualization of the
connectivity map built from available collected traces. An example
is shown in Figure 4, visualizing the quality of the inbound links
for node 0 according to a intuitive green/yellow/red color-coding,
whose semantics in terms of PDR is configurable. This feature

Figure 4: The “results view” of the TRIDENT in-field assistant,
showing one-hop inbound connectivity and PDR for node 0.

Table 3: Platform support in TRIDENT.
hardware TMote Sky Waspmote + XBee

software TinyOS Arduino

PHY layer 802.15.4 (2.4 GHz) 802.15.4 (2.4 GHz)
radio chip CC2420 EM250
TX power −25 . . . 0 dBm −8 . . . 2 dBm

metrics RSSI, LQI, noise RSSI
burst probes yes no

storage flash chip, 1 MB microSD, 2 GB
aggregate logging per round, on motes on operator’s laptop

sensors temperature, humidity —

is particularly useful when TRIDENT is used for a short-term as-
sessment, as it quickly informs the operator about areas with con-
nectivity problems, whose nodes can then be re-arranged. A similar
visualization is provided also for mobile nodes; once the in-field as-
sistant is fed with a sequence of locations, it can “replay” the maps,
showing to the operator how connectivity evolved due to mobility.

Finally, the database and the associated plotting scripts sim-
plify the storage of the collected data and its offline analysis. The
database contains generic and customizable stored procedures for
data manipulation. The set of pre-canned scripts allows the user to
quickly plot trends derived from the data collected, e.g., currently
including network-wide PDR, cumulative distribution functions of
the links w.r.t. their PDR, spatial and temporal variations of the
metrics, correlation of PDR with RSSI and LQI .

4. PLATFORM-SPECIFIC DETAILS
TRIDENT currently supports two hardware platforms: TMote Sky

and Waspmote. The former directly integrates the CC2420 ra-
dio chip, while the latter relies on an extension module for radio
communications, in our case the XBee S2 integrating the ZigBee-
compliant EM250 system-on-chip. Both transceivers implement
the 2.4 GHz IEEE 802.15.4 physical layer.

The software architecture of TRIDENT confines the differences
mostly in the platform-specific runtime installed on motes, although
a few changes are needed also to parts of the in-field assistant han-
dling communication with the WSN and parsing the logs for visual-
ization. We refer to these platform-specific portions of the software
as the backend, and summarize the differences in Table 3. The
Waspmote variant provides less features than the TMote Sky coun-
terpart, as TinyOS allows low-level access to the radio chip while
Waspmote provides only the high-level interface of the ZigBee ap-
plication support sublayer (APS). These trade-offs are discussed in
the rest of the section, along with other implementation details.
Available metrics. The two platforms provide different metrics.
TinyOS records RSSI and LQI for each received message, while
the XBee radio module reports only RSSI . Moreover, unlike Zig-
Bee, the low-level API available to TinyOS applications allows re-
questing RSSI when the channel is idle to measure the noise floor.

The temperature and humidity sensor of TMote Sky provides
important information for our studies of the environmental effects
on connectivity. In principle, the same holds for Waspmote, given
the wide range of sensors available for this platform. However, we
have not yet implemented support for them in TRIDENT, although
this does not pose any particular technical problem.
Experiment execution. On both platforms the experiment config-
uration is installed in the non-volatile storage of the master node.
The TMote Sky backend supports uploading the configuration wire-
lessly or via USB, and stores it in a dedicated flash partition, while

TX TX TX TX TX TX

? x ?

se
nd

er

PHY

re
ce

iv
er PHY

APP

0.5s

TX TX TX

x x ?

IPI

application-level packet arrival timestamps

1 2APP 3

R1 R2 R3

RX

2

RX

1

RX

3

Figure 5: ZigBee transmits each broadcast packet three times.

the Waspmote backend relies on a configuration file on the SD card.
As described in Section 3, the network is time-synchronized at

the beginning of each round to avoid collisions among probes. The
backends implement different techniques. In the case of TMote Sky,
dissemination relies on a TDMA scheme where each node has its
own time slots to repropagate commands, in a way similar to the
mechanism outlined for probe transmission in Section 3. The com-
mon time reference needed for both the TDMA dissemination phase
and to calculate tstart is established with TinyOS packet-level time
synchronization service [9], yielding sub-millisecond precision.

As ZigBee does not provide such a synchronization service, we
rely on the standard multi-hop broadcast feature, basically a net-
work flooding. However, based on the ZigBee Pro feature set [17],
broadcast packets are always sent 3 times in a row, increasing re-
liability at the expense of energy consumption. These broadcast
packets are separated by a 500 ms interval plus a random delay be-
tween 0 and 40 ms. Therefore, in the worst case where the start
synchronization message is received only upon third attempt, the
time synchronization error goes slightly above 1 s per hop.

To secure a collision-free transmission schedule the IMI should
be set long enough to compensate for these synchronization errors
and also for the time drift of the nodes. On TMote Sky the synchro-
nization error is negligible; the typical time drift of 100 ppm results
in two nodes drifting apart by 36 ms in half an hour. Therefore the
use of 250 ms time slots during 30-minute rounds can be consid-
ered safe, counting also the time needed for internal processing of
the received packets. Instead, on Waspmote the second-per-hop er-
ror should be compensated; we achieve this by using 3 s time slots.

Moreover, transmission of probes as one-hop broadcast requires
an additional second, again due to the triple transmission performed
by the ZigBee network layer. Therefore, it is impossible to send
bursts of packets with Waspmote; on TMote Sky, bursts are instead
supported with a configurable IMI, set to 20 ms by default.

Another implication of ZigBee compliance is that nodes must
join the wireless PAN (personal area network) before sending ap-
plication data. A multi-hop ZigBee network is built around its co-
ordinator with the standard join procedure, including channel scan-
ning and handshaking, one hop at a time. This process requires up
to minutes, depending on the network diameter. In case the channel
is changed in between rounds, this affects the minimum interval be-
tween them, as the network topology must be rebuilt from scratch.
Determining the link-level PDR. In principle, the value of PDR
can be obtained straightforwardly, since the number of transmit-
ted and received packets is known for each link. However, Wasp-

0

500

1000

1500

2000

14000 14500 15000 15500 16000
packet arrival interval, ms

nu
m

be
r o

f p
ac

ke
ts

Figure 6: Distribution of packet arrival time.

mote introduce additional complexity due to the triple transmission
of broadcast packets mandated by the ZigBee network layer. As
shown in Figure 5, since duplicates are automatically filtered at
the receiver, the link-level PDR cannot be determined by simply
counting the delivered packets at the application layer. Consider
two hypothetical experiment runs, one where each probe sent is
always received upon first attempt, and one where it is received
always upon the third attempt. The link-level PDR would be a
meager 33% in the second case, yet the application-level PDR (the
only directly measurable) would be 100% in both cases, providing
a false representation of the quality of the wireless link.

Nevertheless, we can infer the number of failed attempts by look-
ing at the packet arrival time, based on the fact that the three broad-
cast transmissions in ZigBee are spaced relatively far apart (500 ms).
It is therefore possible to determine, upon receiving a broadcast
packet, whether this was the first, second, or third transmission.
We confirmed this experimentally: Figure 6 shows the distribution
of the packet arrival interval (modulo the nominal IPI) measured at
the application level for an intermediate-quality link. For a perfect
link, all packets would be received with the same IPI, 15 s in this
case; however, this is not the case when packets are lost. Consider
an application-level packet i, received on first attempt. If the pre-
vious packet, i − 1, was received only on second or third attempt,
the IPI between the two packets is smaller than 15 s. A similar rea-
soning holds in case the next packet i+1 is not received upon first
attempt, yielding an IPI greater than 15 s. Clearly, the histograms
to the left and right of the central one in Figure 6 can be gener-
ated also by intermediate combinations, e.g., if i is received upon
second attempt and i+ 1 upon third, the IPI will be around 14.5 s.

Packet loss can be inferred by comparing the application-level
packet arrival timestamps (e.g., R1 and R2 in Figure 5), provided
there is at least one packet in the received sequence known to have
arrived upon first attempt. This can be stated certainly when at least
one pair of packets (not necessarily consecutive) has either the min-
imum or maximum possible recorded arrival interval (modulo the
IPI), i.e., placed leftmost or rightmost on the histogram of Figure 6.
Indeed, this means that the one of the packets was delivered on first
attempt and the other on last, as in the case of R1 and R2.

In principle, it may happen that no such IPI is recorded during the
whole test. In practice, this is unlikely to happen for intermediate-
quality links. However, one can still infer the characteristics of the
link based on the application-level PDR. If the latter is very good,
one can assume that the majority of the packets were received on
the first attempt and base the analysis on this fact. For very bad
links, it may be impossible to measure the actual PDR precisely
when there are just few packets received from the whole sequence.
Storing the experiment data. Due to the storage limitations of
TMote Sky, per-message logging can replaced by storing per-round
averages of the recorded values, computed on the nodes themselves.
Waspmote does not have strict storage capacity limitation; full logs
are always stored and the log analysis performed on the operator’s
laptop. However, we plan to implement on-board log processing
also on Waspmote, to reduce the downloading time of large logs.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented TRIDENT, a tool for in-field con-

nectivity assessment. Unlike similar tools in the literature, TRI-
DENT does not require any communication infrastructure besides
the WSN nodes. Moreover, it is designed to be easy to use for
domain experts, which can perform their connectivity experiments
(e.g., to determine a correct placement of WSN nodes) without cod-
ing. TRIDENT supports several configuration parameters and met-
rics, enabling the investigation of many aspects of low-power com-

munication. Moreover, the operator’s interface provides a rich set
of commands that simplify in-field management of experiments.

We continuously modify TRIDENT based on the lessons we learn
from in-field experience in our deployments and experimental cam-
paigns. Plans for the near future include support for remote control
of experiments and in-network collection of their results, therefore
significantly reducing the need for operators to be present in-field.
Acknowledgments. The authors wish to thank Matteo Chini and
Matteo Ceriotti for their work on early versions of TRIDENT. The
research we described is partly funded by the European Institute of
Innovation and Technology (EIT) ICT Labs, under activity n. 12149
“From WSN Testbeds to CPS Testbeds” and n. 14280 “I3C—Intelli-
gent Integrated critical Infrastructures for smarter future Cities” .

6. REFERENCES
[1] http://wirelesstrident.sourceforge.net.
[2] N. Baccour, M. Ben Jamaa, D. do Rosario, A. Koubaa, H. Youssef,

M. Alves, and L. B. Becker. A testbed for the evaluation of link
quality estimators in wireless sensor networks. In Proc. of the 8th

Int. Conf. on Computer Systems and Applications (AICCSA), 2010.
[3] K. Bannister, G. Giorgetti, and E. K. S. Gupta. Wireless sensor

networking for “hot” applications: Effects of temperature on signal
strength, data collection and localization. In Proc. of the 5th

Workshop on Embedded Networked Sensors (HotEmNets), 2008.
[4] C. A. Boano, J. Brown, N. Tsiftes, U. Roedig, and T. Voigt. The

impact of temperature on outdoor industrial sensornet applications.
IEEE Trans. on Industrial Informatics, 6(3), 2010.

[5] M. Ceriotti, M. Chini, A. L. Murphy, G. P. Picco, F. Cagnacci, and
B. Tolhurst. Motes in the jungle: lessons learned from a short-term
wsn deployment in the ecuador cloud forest. In Proc. of the 4th Int.
Workshop on Real-World Wireless Sensor Networks Applications
(REALWSN), 2010.

[6] M. Ceriotti, L. Mottola, G. Picco, A. Murphy, S. Guna, M. Corrà,
M. Pozzi, D. Zonta, and P. Zanon. Monitoring Heritage Buildings
with Wireless Sensor Networks: The Torre Aquila Deployment. In
Proc. of the 8th Int. Conf. on Information Processing in Sensor
Networks (IPSN), 2009.

[7] A. Cerpa, N. Busek, and D. Estrin. SCALE: A tool for simple
connectivity assessment in lossy environments. Technical report,
UCLA, 2003.

[8] R. Marfievici, A. L. Murphy, G. P. Picco, F. Cagnacci, and F. Ossi.
How Environmental Factors Impact Outdoor Wireless Sensor
Networks: A Case Study. In Proc. of the 10th Int. Conf. on Mobile
Ad-hoc and Sensor Systems (MASS), 2013.

[9] M. Maroti and J. Sallai. Packet-level time synchronization (TEP
133). http://www.tinyos.net/tinyos-2.1.0/doc/
html/tep133.html, 2008.

[10] L. Mottola, G. P. Picco, M. Ceriotti, S. Guna, and A. L. Murphy. Not
all wireless sensor networks are created equal: A comparative study
on tunnels. ACM Trans. on Sensor Networks, 7(2), 2010.

[11] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An empirical study
of low-power wireless. ACM Trans. on Sensor Networks, 6(2), 2010.

[12] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis. The
β-factor: Measuring Wireless Link Burstiness. In Proc. of the 6th

Int. Conf. on Embedded Networked Sensor Systems (SenSys), 2008.
[13] K. Srinivasan, M. A. Kazandjieva, M. Jain, E. Kim, and P. Levis.

SWAT: enabling wireless network measurements. In Proc. of the 6th

Int. Conf. on Embedded Networked Sensor Systems (SenSys), 2008.
[14] J. Thelen and D. Goense. Radio wave propagation in potato fields. In

Proc. of the 1st Workshop on Wireless Network Measurements, 2005.
[15] H. Wennerstrom, F. Hermans, O. Rensfelt, C. Rohner, and L. Norden.

A long-term study of correlations between meteorological conditions
and 802.15.4 link performance. In Proc. of 10th Int. Conf. on Sensor,
Mesh and Ad Hoc Communications and Networks (SECON), 2013.

[16] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh.
Fidelity and yield in a volcano monitoring sensor network. In Proc.
of the 7th Symp. on Operating Systems Design and Implementation
(OSDI), 2006.

[17] Zigbee Alliance. ZigBee-2007 PICS and stack profiles, 2008.

