
Selective Reprogramming of Mobile Sensor Networks
through Social Community Detection

Bence Pásztor1, Luca Mottola2, Cecilia Mascolo1, Gian Pietro Picco3,
Stephen Ellwood4 and David Macdonald4

1 Computer Laboratory, University of Cambridge, UK
2Swedish Institute of Computer Science, Sweden

3Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy
4 Wildlife Conservation Research Unit, University of Oxford, UK

Abstract. We target application domains where the behavior of animals or hu-
mans is monitored using wireless sensor network (WSN) devices. The code on
these devices is updated frequently, as scientists acquire in-field data and refine
their hypotheses. Wireless reprogramming is therefore fundamental to avoid the
(expensive) re-collection of the devices. Moreover, the code carried by the moni-
tored individuals often depends on their characteristics, e.g., the behavior or pre-
ferred habitat. We propose a selective reprogramming approach that simplifies
and automates the process of delivering a code update to a target subset of nodes.
Target selection is expressed through constraints injected in the WSN, triggering
automatic dissemination of code updates whenever verified. Update dissemina-
tion relies on a novel protocol exploiting the social behavior of the monitored in-
dividuals. We evaluate our approach through simulation, using real-world animal
and human traces. The results shows that our protocol is able to capture the social
network structure in a way comparable to existing offline algorithms with global
knowledge while allowing runtime adaptation to community structure changes,
and that existing dissemination approaches based on gossip generate up to three
times more network overhead than our socially-aware dissemination.

1 Introduction

Wireless sensor networks (WSNs) are increasingly being used to monitor mobile enti-
ties in domains ranging from wildlife monitoring [16,20] to human health-care [22]. In
these contexts, WSN nodes are physically attached to animals or people being moni-
tored. Therefore, unlike traditional WSN architectures where all nodes perform a single
system-wide task, in these mobile WSNs the code running on a node is often specific
to the monitored individual, and may change over time according to the individual’s
behavior or context. As an example, WSN devices attached to wildlife species (e.g.,
zebras [16], turtles [13], or badgers [10]) are currently used to study various aspects
of their behavior. In the early stages of the deployment, all nodes monitor the same
quantities for domain experts to get an initial insight, which can then be used to re-task
some of the nodes to further study certain quantities. For instance, the devices carried
by badgers that stay close to their burrows may be used to study the environment around
the burrows themselves and explain why this subset of animals are following specific



paths in the forest instead of others, and how their movements depend on the climate.
However, re-capturing the animals to manually re-program the nodes would be very
costly, if at all possible.

Techniques for run-time reprogramming of WSNs do exist [33]. However, they fail
to tackle two fundamental challenges of the application domain we target:

– The area where monitored individuals dwell is likely to extend beyond the commu-
nication range of current sensor devices. Thus, the network is most often character-
ized by intermittent connectivity among the mobile WSN nodes [23]. This prevents
re-using well-established solutions for static networks [25].

– The few solutions addressing mobile WSNs disseminate code updates to the entire
network, and are therefore ill-suited for a selective dissemination of code updates to
a target subset. Indeed, the updates would reach more nodes than necessary, wasting
resources and reducing lifetime.

On the other hand, animals and humans are social beings, with recognizable pat-
terns of movement and community interaction, that can be exploited as a vehicle for
delivering code to the intended targets. The core contribution of this paper is a novel
approach to selective reprogramming in highly-disconnected, mobile WSNs that, based
on the individual’s interactions detects communities at runtime, and exploits their ex-
istence and relationships towards efficient update dissemination. For instance, a single
WSN node attached to a badger known to roam often between two communities (i.e., a
so-called “central” badger, with a socially-bridging role) can be enough to disseminate
code from one community of badgers to the other. In our approach, communities are
discerned entirely at run-time. This sets us apart from the few existing dissemination
approaches based on social communities, that rely on offline centralized protocols [5] or
are otherwise unable to adapt to all changes to the social community structure [7,14,31].

An overview of our approach is provided in Sec. 2, where we introduce a sample
scenario showing how a user can target a set of nodes of interest. In Sec. 3, we give
details of how the protocol is able automatically select these nodes, and deliver the
code efficiently.

In Sec. 4, we evaluate the effectiveness of our solution through simulations using
animal and human traces collected in real-world experiments. We review related ap-
proaches in Sec. 5, and provide brief concluding remarks and directions for future work
in Sec. 6.

2 Reference Scenario and System Overview

We illustrate the overview of our approach hand-in-hand with a reference scenario that
provides the main application focus for the entire paper. Although the scenario is drawn
from the wildlife domain, our techniques are applicable to other mobile WSN scenarios,
as we show in Sec. 4 by applying them to human interaction traces. Next, we describe
how users specify persistent, network-wide constraints identifying the subset of nodes
targeted by reprogramming.
Reference scenario. Fig. 1 depicts the phases of our reprogramming approach in a ref-
erence scenario concerned with badger monitoring. As shown in Fig. 1(a), reprogram-
ming entails generating a bundle containing i) the code update to be installed on a target



Base 
station

Co
ns

tra
in

t

User

Code

(a)

Base 
station

Co
ns

tra
in

t

Code

(b)

Base 
station

Co
ns

tra
in

t
Co

ns
tra

in
t

Co
ns

tra
in

t

Co
ns

tra
in

t

Co
ns

tra
in

t

Code

(c)

Fig. 1. Sample scenario showing: (a) code and constraint injection at base station, (b) constraint
dissemination to all nodes, and (c) delivery of code to selected nodes (in dashed squares).

subset of the WSN, and ii) the constraint that identifies these target nodes by means of
logical expressions involving their properties. For instance, the constraint may single
out only the nodes attached to badgers that spend most of their time close to a cold
burrow. The constraints are encoded in periodic beacons for transmission. The bundle
is then injected at the base station, or at any other node.

The two constituents of the bundle have a different fate, as show in Fig. 1(b). The
constraint is spread to all WSN nodes. Upon reception, a node matches the constraint
against its local state, and re-evaluates it periodically. The code update, on the other
hand, remains at the base station until at least one node matches the constraint. When
this happens, our socially-aware protocol (described in Sec. 3) disseminates the code
update only to the target nodes matching the constraint, as shown in Fig. 1(c).

It is important to note that reprogramming can be requested even when no node
matching the characteristics specified by the constraint currently exists. In the mobile
setting with intermittent connectivity we target, it would be difficult (if not impossi-
ble) for users to know and await the moment when the target subset is not empty. Our
solution enables users to rely on the system to detect the presence of target nodes au-
tomatically, by self-adapting to changes in the state of nodes. For instance, one might
define constraints to target nodes roaming around different burrows, and inject the code
before any node satisfies the constraint. The code will stay at the base station until such
behaviour is detected, and will be delivered automatically.
Specifiying constraints. The constraints identifying the target subset are expressed
through dedicated constructs. We characterize the state of nodes based on attributes.
These are name-value pairs describing properties of a node, e.g., the current location
or the gender of the individual it is attached to. The construct attribute(NAME)
declares an attribute, registered by the run-time layer that takes care of updating the
associated value. For instance, in the case of a LOCATION attribute, the run-time peri-
odically queries the attached GPS device, and stores the value time-series in memory.

Selecting badgers that stay around cold burrows can be specified as

constraint(n_occurrence(LOCATION == burrow) > loc_threshold &&
avg(TEMPERATURE) < temp_threshold)

where LOCATION and TEMPERATURE are attribute names, and burrow is an en-
coding of a burrow’s location in some coordinate system. The built-in functions avg
and n occurrence are made available by the underlying run-time support: the latter
returns the number of occurrences in an attribute’s time series that match the boolean



Leader badger

Route to 
target badger(s)

Social groups

Social relation

Base 
station

A

B

C

D

Target badger

Fig. 2. Example of social communities and their leaders. The target subset includes nodes often
visiting a specific area.

condition given as argument. We provide several built-in functions (e.g., avg, max and
min) covering a range of common constraints.

A constraint essentially specifies a boolean function that establishes the member-
ship of a node in a given subset (constraint(TRUE) targets the entire WSN). This
addressing scheme is well-suited to our scenarios where the target subset changes based
on the state of nodes—that we capture through attributes, and could hardly be captured
through node identifiers. Similar approaches exist in the literature [25, 34]. However,
their supporting communication layer targets only static WSNs, while we bring the ex-
pressive power of attribute-based node selection into mobile WSNs, as discussed next.

3 Socially-aware Dissemination of Code Updates

Once the appropriate constraint is stored at the base station, the problem is to efficiently
disseminate the code update to the corresponding target nodes. In principle, this could
be done using direct transmissions, however in our scenario, we cannot ensure that all
the nodes come in range of the base station due to the limited power and radio range of
the devices.

In our dissemination protocol, code updates are relayed opportunistically from one
animal to the other upon contact. However, unlike existing approaches that propagate
updates to the entire network, we limit dissemination as much as possible to the target
nodes. This substantially reduces the network overhead, as evaluated quantitatively in
Sec. 4. To achieve this goal, we use a characteristic common to many mobile WSN sce-
narios, namely, the fact that the monitored individuals exhibit social behavior. The im-
plicit structure of social interactions, once elicited, provides an effective tool for steering
efficient routing decisions. In the rest of this section we describe the aspects of social
interaction that are relevant to our goals, along with the way we exploit them in our
dissemination protocol. The social foundation of our protocol holds for many animal
species [2] [30], including humans [14].

3.1 Overview

Social foundation. A social network is a logical structure of entities tied by some social
relation, e.g., friendship. These networks are characterized by strong clustering [7, 17].



Members of a cluster, or community, are usually closer to each other socially, than to
the rest of the network – i.e., they interact more and spend more time together. Com-
munities tend to be stable over time, although they occasionally vary. An example is
animals sharing the same burrow or foraging in the same areas: when cubs grow up, at
some point they separate and move to a different area. Moreover, not all members of a
community behave the same way, some animals/people are more active or popular than
others.

We use the highly mobile and more socially central members to aid the dissemina-
tion, since they are more likely to meet other individuals. We call these nodes leaders.
Protocol operation. We assume that the base station, where the bundle containing the
code update and constraint reside (Sec. 2), is placed in an area where one or more ani-
mals dwell. Animals identified as leaders are used to carry code updates to communities
where at least one member is in the target subset as shown in Fig. 2.

Our protocol dynamically identifies communities and leaders in a fully decentral-
ized way, as discussed next. As illustrated in Fig. 2, communities and leaders determine
a logical topology where links represent spatio-temporal relations between two individ-
uals, essentially denoting that they are frequently co-located. We exploit these links to
disseminate the code updates according to the forwarding rules described in Sec. 3.4.

3.2 Identifying Communities

Social foundation. Members of the same social community are co-located according to
a regular pattern and for long periods of time. For instance, at night, badgers roam inde-
pendently. During the day, however, they tend to congregate around in burrows, where
they sleep. Animals using the same burrow tend to spend considerable time together
and are therefore often associated to the same community. Our definition of community
is a set of nodes spending a certain percentage of their time together.
Protocol operation. To identify communities, we need to quantify the extent of co-
location between nodes. To do so, nodes send periodic beacon messages to discover
neighbors. Upon receiving a beacon, a node increments by the beacon interval the con-
tact time relative to the sending neighbor. This quantity is divided by the time since
the first detection of the same node, yielding a contact ratio measuring how frequently
the two nodes are co-located. Higher ratios indicate more frequent co-location. As time
elapses, the contact ratio becomes an accurate indicator of the amount of interaction
between two animals. This metric is better at capturing dynamic changes in the com-
munity structure than the often-used total-contact duration [14], since it captures not
only the order of encounters, but also is able to decay if two nodes become separated.

To create and maintain communities, all nodes send periodic beacons and evaluate
each other’s contact ratios, which are embedded within these beacons. Two nodes are
considered part of the same community when their contact ratios cross a given thresh-
old. For instance, the aforementioned behavior of badgers, sharing the same burrow for
about half of the day, can be modeled by setting a 50% threshold. This indeed corre-
sponds to nodes that are in contact for about half of the time. Thresholds are expected
to be defined by domain experts, e.g., based on the species under study. If the ratio
crosses the threshold and neither node is yet part of a community, the node with the



smaller identifier creates a unique community identifier and includes it in subsequent
beacons; the other node joins the new community upon receiving the beacon. If either
node is already part of a community, the other joins the same one. If they belong to
different communities, the node in the community with fewer members joins the larger
one. To enable these decisions, beacons also carry the community size. Our mechanism
captures the time evolution of social relations among individuals as nodes can join and
leave communities.

An important observation is that the dissemination protocol uses one layer of clus-
tering. More precisely, a node is either a member of a community or not, we do not
consider nodes belonging to multiple communities. One can argue that this applies to
animals [2], but not for humans. While similar approaches have been adopted for human
networks [14, 31], human social structures are more complex. If the target application
heavily involves membership in multiple communities, our protocol would need to be
properly extended to cater for it.

3.3 Identifying Leaders

Social foundation. The behavior of members of the same community may differ [29].
Moreover, this behavior can change over time. For instance, during mating season, adult
male badgers travel further from their burrow than other community members, looking
for females to mate. Therefore, they are more likely to meet badgers from other com-
munities.
Protocol operation. To accurately and dynamically identify leaders within a commu-
nity, every node keeps track of two quantities:

– Its total neighbor count N , i.e., the number of all distinct nodes it has ever met.
– Its change-degree of connectivity C, i.e., the number of neighbors it acquires or

looses within a time window.

The two metrics account for different aspects, and leaders should score high in both.
For instance, a node with high neighbor count can probably reach many members of
its community. The same node, however, may have a low value of change-degree of
connectivity, e.g., if it does not move often. This node is not well-suited as a leader. The
relative weight of the two metrics must be tuned by domain experts based on the species
under study. This is achieved by defining a single leader score as L = αN +(1−α)C,
and properly setting the weight α. In this paper, unless otherwise noted, we use α = 0.5.
In principle, other metrics could be used, e.g., ego-centrality and betweenness [7]. How-
ever, our priority was to disseminate updates as quickly as possible, therefore we fo-
cused on identifying the most mobile nodes. Further, an improvement on the neighbour
count metric is to use a sliding time window, and consider the neighbour count in this
window only. Though we did not use this method in this paper, it is our intention in the
future.

Nodes that do not belong to any community or are not associated with a leader (e.g.,
at start-up or when the community threshold is not reached) are considered leaders
of a fictitious community of size one. When a real community with more than one
member is created, the node with the highest score L becomes its leader. The identifier



of community leader and its score are embedded within beacons, and broadcast to the
1-hop neighbours of the leader, while nodes who are in direct contact with the leader
beacon a score L = 0. This ensures that each node in a community is logically one hop
away from a leader, since the node with the local maximum score is always chosen. If a
node in a community finds its score to be higher than that of the current leader, it takes
over the leadership. The same processing applies when a node joins a community.

Leaders do not need to be unique in a community. Although an unlikely situation, it
may happen that the leader identifier and score are too slow to disseminate for this in-
formation to stabilize. Nonetheless, the presence of multiple leaders with similar scores
is not problematic in the dissemination process, described next.

3.4 Code Dissemination

The process of disseminating code updates is logically divided in two steps. First, the
opportunistic routes leading to nodes in the target set are determined. Then, the actual
code is disseminated along these routes. In practice, however, the latter step is pipelined
with the former to reduce latency.

LeaderID Target NextHop Distance
A Yes Base 2
B No C 2
C Yes C 1
D Yes - -

Fig. 3. Routing table of
node D in Fig. 2.

Route establishment. The routes are determined by the
constraint selecting the target subset. Constraints, en-
coded in a compact form, are disseminated to all nodes
in the network by piggybacking them on beacons. Upon
receiving a constraint, a node evaluates whether it be-
longs to the target subset. If so, it informs its community
leader whenever in range.

Leaders use this information to build routing tables like the one in Fig. 3, based on
the network shown in Fig. 2. Besides a leader’s own entry, the table is populated by ex-
changing entries with other leaders whenever they meet, through the periodic beacons.
The Target field indicates whether at least one member in a leader’s community is tar-
geted by the constraint. The NextHop field identifies the leader that forwarded a given
entry. The Distance field is the hop-count measure of how “far” a leader is. Multiple
constraints can be disseminated in parallel, distinguished by a unique identifier carried
by beacons and used to index multiple routing tables at each node.

Update dissemination.
Update dissemination is governed by the following rules:

– a non-leader can only update its own leader;
– a leader can only update other leaders and the members of its own community.

These rules ensure an efficient dissemination, as shown in Sec. 4, as well as consistent
delivery. All leaders (including nodes without a community) receive the update. All
other nodes in the target set (i.e., the community members) receive the update from
their leader.

Updates follow the routes stored in the leaders’ routing tables. Consider for instance
Fig. 3. When node D receives an update to be disseminated, it determines through the
Target field that some of its community members are selected by the constraint, along



with members of C’s and A’s communities. To deliver the update to the selected com-
munity members, D waits until it becomes co-located with a sufficient number of com-
munity members that require the update (i.e. it receives beacons from these members).
These can then receive it simultaneously through broadcast, reducing the communica-
tion overhead.

This makes sense for species where the probability of colocation is reasonably high.
However, this policy may be revised and the leader could decide to broadcast more
often, for example when a given percentage of the required members are present. To
reach A and C, D looks at the NextHop field in its routing table: the code update is
forwarded the next time D meets with C or the base station, respectively.

As constraints are piggybacked on beacons, they propagate faster than code, which
is often larger. The routing tables are therefore usually built before the code arrives. If
not, the code is buffered until at least one positive value appears in the Target field.

Short-lived vs. persistent updates. Constraints and code updates are associated to a
version number and a time-to-live (TTL). The version number avoids duplicate delivery.
Constraints are re-evaluated periodically and the corresponding entries in the routing ta-
ble are retained until the TTL expires. When a node matching the constraint is detected,
our protocol automatically starts the code dissemination following the mechanisms de-
scribed. Along with this short-lived updates, which disappear from the network after a
given time, we also easily support persistent updates by setting an infinite TTL. In this
case, our scheme caters for a powerful way to make the system self-adapt.

3.5 Implementation Highlights

Our current prototype is based on the Contiki [9] OS, targeting TMote Sky nodes.
The system is composed of three core components. A Communication component
is responsible for building and maintaining routing information. Specifically, it main-
tains the neighbor table, calculates the contact ratio for every neighbor, and maintains
information on the leaders. In addition, the module is also responsible for the reli-
able delivery of the code updates. To do so, we use a simple broadcast mechanism
based on a RTS/CTS mechanism and acknowledgments sent back by the target nodes.
A Constraint Evaluator module parses received constraints and checks them
against the current values of node attributes. This determines whether the local node is
included in the target subset. Finally, a Reprogramming module dynamically links
received code updates (typically of size 2-10 Kb) using the hooks available in Contiki.

4 Evaluation

We first compare the effectiveness of our distributed community detection protocol
against a centralized algorithm based on global knowledge of the social graph. The
two schemes have similar performance in terms of communities detected, yet our dis-
tributed solution is able to detect dynamic changes in the community structure. Next,
we assess how community knowledge improves code dissemination. Based on this, our
protocol reduces network traffic by a factor of 66% compared to a gossip protocol.



General settings. We used a one month subset of both the Reality Mining traces [12]
and mobility traces from a badger-monitoring deployment [10]. The former include
proximity information gathered using 43 mobile phones carried by people moving on a
university campus. The latter are collected from the movements of 32 badgers equipped
with RFID collars and 28 RFID readers deployed in a forest. These data include time-
stamped detection of animals by readers at specific places. Therefore, there would be no
explicit information on the connectivity between the RFID tags carried by the animals.
We convert these traces into connectivity information by considering the nodes within
wireless range when the animals are detected by the same RFID reader within a 5-
minute time-window. Further, we assume animals stay at the burrow between the time
they enter and exit - even though the RFID is unable to detect them underground.

The traces present a different radio model from the traditional WSNs, however here
we are more interested in the social model governing the movements of the nodes, rather
than modeling the radio, and the these traces are ideal for the former.

We use the Cooja simulator [27], along with a plug-in we implemented to replace
the propagation model in the simulator based on the aforementioned mobility traces. In
the community detection protocol, we set the community threshold to 50%. We chose
this threshold based on the trace set: badgers sleep during the day in their burrows,
therefore they are co-located for at least half a day every day. The threshold is also a
good representation of human contacts: if two people spend more than half of their time
together, they are more than likely to belong to the same social group. An investigation
of the effect of the choice of the threshold is reported later in this section.

4.1 Community Detection

On the badger trace set we compare the performance of our community detection proto-
col against a well-known algorithm based on modularity optimization [1]. This runs in
a centralized fashion and requires global topology knowledge. The communities iden-
tified by this algorithm largely reflect the findings obtained through direct observation
by the zoologists involved in the study.

Modularity optimization algorithm. Given a specific partitioning of a graph, modu-
larity measures the density of links inside every partition with respect to links between
partitions. Higher values correspond to configurations with dense connections inside
partitions and sparse connections between different ones. When applied to the study of
social networks, partitions are naturally mapped to communities.

The algorithm we consider explores different community configurations to optimize
modularity. Initially, every node is in its own community. For every pair of nodes, the
algorithm examines the modularity gain obtained by moving either of the two nodes in
the other’s community. The communities are then changed to maximize this gain. This
process repeats for every pair of nodes until no further improvements are achieved.
Next, the algorithm creates a new graph with nodes which are the communities found
earlier, and the link weights are the sum of the weights of links between the original
nodes in the two communities. The algorithm then re-applies the first step on the new
graph. The process continues until no further improvements are possible.



1050

1053

1054

1055

1056

1057

1058

1059

1

1038

1044

1033

1030

1036

1037

1034

1035

1024
1021

1042

1027

1026

1047

1046

1045

1022

1060

1049

1048

1029

1028

1023

(a) Communities after five days.

1048

1050

1052

1053

1054
1055

1056

1057

1058

1059

1038

1033

1030

1036

1037

1034

1035
1042

1047

1024

1027

1026

1021

1046

1045

1044

1060

1049

1022

1029

1028

1023

(b) Communities after twenty days.
Fig. 4. Communities found using the contact ratio as metric for link weight.

The input to the algorithm is a social graph where there is a link between two nodes
if they meet at least once during the simulation time, and the link weights are the ones
calculated by our protocol.

Results. We consider different points in time in the badger trace set. Our solution uses
the contact ratio to detect dynamic changes in the community structure, therefore, we
run the centralized algorithm using this figure as link weight. In this case, both schemes
identify the same communities after one, five, and twenty days of traces. The commu-
nities found after day five are shown on Fig. 4(a). Nevertheless, our distributed solution
runs inside the network. The centralized algorithm, on the other hand, may run only at
the fringes of the system because of significant computational demands. In addition, it
would require periodic topology discovery to provide global information as input. This
is hardly possible in a mobile scenario with intermittent connectivity.

Even if the conditions to run the centralized algorithm were satisfied, however, the
distributed nature of our scheme brings a unique advantage: that of immediately rec-
ognizing changes in the community structure. For instance, in the badger scenario the
community structure does not change much after day five. This might appear as the
long-term behavior. However, by day twenty we see a new community emerging, as
shown in Fig. 4(b). Our scheme immediately detects this change, as it is running right
on the WSN devices whose behavior caused the formation of an additional community.
The centralized approach would identify the new community with significant latency
and high overhead, due to the need of periodically collecting global topology informa-
tion.

4.2 Code Dissemination

We study the performance of our selective code dissemination protocol against state-
of-the-art solutions. We compare our approach against:

– the GCP [4] gossip protocol for code propagation in mobile sensor networks. This
protocol is agnostic of selective dissemination and distributes the update to every



node. To do so, it uses a token-based mechanism to limit the number of transmis-
sions per node, forwarding a code update to any node in range provided the sender
still has tokens to spend.

– a constraint-based gossip protocol we implemented. Like ours, this uses the con-
straints to identify the nodes requiring a code update. The difference with ours is the
lack of community knowledge. A node forwards a code update to a nearby device
only if i) the neighbor belongs to the target subset, or ii) the neighbor met a node in
the target subset within a specified period (set to half a day). The latter is required
to reach nodes in the target subset that may never be in contact with a sender.

Using version numbers, neither protocols transmit a code update if the intended receiver
is already equipped with it.

Settings and metrics. A code update consists of a variable number of packets. Each
packet is 128 bytes long. We inject the code update at a random node 5 days after start-
up. This delay is necessary for the communities to stabilize. We define the target subsets
as a given percentage of nodes out of the total. Based on this value, each simulation run
considers a different subset to avoid biases due to the subset chosen. GCP is equipped
with 15 tokens per node, after we experimentally verified that this value provides a
good trade-off between network traffic and overall delivery. For all protocols, we used
a one-minute beacon interval for neighbor discovery.

Based on this setting, we measure the following quantities:

– The code update delivery, defined as the fraction of nodes in the target subsets that
receive the code update. This essentially measures to what extent the dissemination
protocol achieves its goal.

– The number of code update transmissions, namely the number of bulk data transfers
performed during a simulation. This indicates the cost—at the network level—to
reach the protocol goal.

– The latency required to reach the nodes in the target subset, which provides a com-
plementary measure of cost from a user perspective.

We considered message transmissions as opposed to radio-on-time to evaluate the
energy cost of our protocol. Our protocol does not assume that the radio is always on,
and is independent of any underlying MAC protocol duty cycling the radio, as long as
it provides the ability to discover neighbors and to perform bulk-transfers. There are
already efficient MAC protocols for WSN such as [3,11], and it is also easy to see how
the social cluster information could be used for duty cycling the nodes - this is however
subject of a future work. Further, we do not consider beacons, as all three protocols send
them at the same rate. All protocol messages are embedded in beacons, therefore they
do not pose additional overhead (the beacons of GCP are, however, 21 bytes lighter).

We run 20 repetitions for each setting. The following results are averages over these
repetitions, while the error bars represent the standard deviation around the average.

Results. Hereafter, we show results obtained with code updates of 10 packets. We ver-
ified that changing this figure within the range of 5-20 does not influence our results.
This is because the bulk transfer of a code image takes little time compared to node
mobility, and always completes before the two nodes disconnect.



 0

 5

 10

 15

 20

 25

 30

rm_100%rm_50% rm_10% br_100% br_50% br_10%

N
um

be
r 

of
 u

pd
at

e 
tr

an
sm

is
si

on
s

GCP
constraint-based gossip

social dissemination

 0

 5

 10

 15

 20

 25

 30

rm_100%rm_50% rm_10% br_100% br_50% br_10%

N
um

be
r 

of
 u

pd
at

e 
tr

an
sm

is
si

on
s

GCP
constraint-based gossip

social dissemination

(a) Overhead

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

rm_100%rm_50% rm_10% br_100% br_50% br_10%

T
im

e 
to

 d
el

iv
er

 u
pd

at
e 

(m
in

)

GCP
constraint-based gossip

social dissemination

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

rm_100%rm_50% rm_10% br_100% br_50% br_10%

T
im

e 
to

 d
el

iv
er

 u
pd

at
e 

(m
in

)

GCP
constraint-based gossip

social dissemination

(b) Latency

 0

 5

 10

 15

 20

 25

 30

10% 30% 50% 60% 70% 90%

N
um

be
r 

of
 u

pd
at

e 
tr

an
sm

is
si

on
s

social - badger set
gcp - badger set

constraint-based - badger set
social - rm

gcp - rm
constraint-based rm

(c) Threshold

Fig. 5. Overhead, latency and the effect of clustering threshold of our protocol compared to GCP
and constraint-based gossip.

In all simulations, the three protocols always deliver the code update to all nodes
in the target subset. To do so, however, they incur in drastically different costs at the
network level. Figure 5(a) shows the number of code update transmissions against vary-
ing target subsets. On average, our community-based protocol improves by a factor of
3.1 and 1.8 over GCP and constraint-based gossip, respectively. However, the gains
are smaller as the cardinality of the target subset decreases. This is because the leader
nodes that carry code around are a fixed cost that we must pay to reach every part of the
system. The impact of this cost is greater as the target subset is smaller. As expected,
GCP exhibits the same performance regardless of the target subset. Indeed, it stops only
when all nodes are reached, even if the ones in the target subsets already received the
code update. constraint-based gossip improves on this behavior, as it may stop earlier if
there are no more nodes in the target subset requiring the code update.

To achieve this performance, the community-based protocol trades-off transmis-
sions for latency. The latter is shown in Figure 5(b). Nevertheless, the increased latency
in our protocol is limited given the absolute values at stake. On average, we have an
increase of a factor of only 1.3 in delay compared to GCP, while the worst case is an
increase of a factor of 2.6. GCP shows the best performance in this metric, as it has no
restrictions on when to forward a code update. Therefore, it takes advantage of every
opportunity, at the cost of redundant transmissions. In our protocol, instead, the leader
node knows which nodes in its community need the update, therefore it can wait until
it is collocated with these nodes. Once they are all in range, the leader node can update
them in one go using broadcast transmissions.

In presence of intermittent connectivity, it may take a long time for some nodes to
receive the updates. In the case of targeting 50% of the Reality Mining trace set, this
results in a large variation in latency, but some variation is also observed in other cases.
This is a characteristic of the network, and affects all three protocols.

We also investigate the behavior of leader nodes, as they play a critical role in our
solution. Particularly, we study whether their use may lead to an uneven degradation of
available energy among the nodes, e.g., because leaders need to handle more network
traffic. To do so, we examine the average number of code updates that leader nodes
deliver in our solution, compared to the number of nodes in GCP and constraint-based



gossip that deliver an update at least once. We found that the average number of update
transmissions a leader sends is 2.3 in the reality mining and 1.2 for the badger trace set.
Both GCP and the constraint-based approaches send 3 and 1.3 update transmissions
on average per node, for the reality mining and badger trace set, respectively. We con-
clude that the leader nodes are not depleting their resources more quickly compared to
other solutions. Particularly, the leaders we identify largely correspond to nodes that—
because of the patterns of colocation—would deliver the code updates anyways. On
average, 87% of leader nodes deliver code updates also in GCP and constraint-based
gossip. However, our community-detection mechanism identifies apriori such nodes.
By doing so, we can make them wait for a good opportunity, e.g., when they are in
contact with members of their community, to save on unnecessary transmissions.

To further study the effect of leader selection, we also compared our results from
targeting the entire network to the performance of the same protocol with random leader
selection. This scheme selects leaders randomly from the members of each group.
While our overhead is 56% of that of GCP when targeting the entire network, averaged
over the two trace set, the random leader selection uses 84%. It is still better than GCP,
since the protocol can take advantage of the colocation of the community members,
though uses more than necessary transmissions to deliver the code to the communities.

We have also analyzed the effect of the threshold on which communities are sepa-
rated, which for this analysis has been 50%. In Fig. 5(c) we plot the number of updates
sent by all three protocols on both the reality mining and the badger datasets, target-
ing the entire network. As it can be seen, the threshold choice does affect our results:
a different threshold means different community structures and a different number of
leaders, thus leads to different overhead. Note, however, that even in the case of bad
choices of thresholds, the performance falls back to that of the gossip-based protocols.

5 Related Work

Social routing. A few recent approaches leverage social-inspired metrics for routing.
SimBet [7] achieves efficient data dissemination by exploiting “betweenness”, a mea-
sure of how an individual may socially connect other entities not necessarily known
to each other. Bubblerap [15] and Island Hopping [31] use a centralized algorithm to
detect communities, based on global knowledge. Bubblerap describes also a distributed
extension which detects communities at run-time only if their cardinality grows over
time. Thus, every node is bound to the first community it is mapped to, missing the
dynamic evolution of social interactions.

In contrast to these approaches, our solution detects communities at run-time and in
a fully decentralized fashion. Moreover, we are able to adapt to dynamic changes in the
community structure and in the mapping of entities to communities. These features are
pivotal to leverage communities for routing in the scenarios we target.

Delay tolerant routing approaches use notions of previous encounters and mobility
patterns to decide on best message carriers [19,28,32]. This approach was also extended
to mobile sensor networks [28]: while the use of mobility and connectivity to identify
good carriers is shared in our approach, with respect to dissemination we go one step



further and use community knowledge to improve on the number of messages needed
to spread the updates.
WSN reprogramming. To the best of our knowledge, our work is the first to provide
a solution for selective code dissemination in mobile sensor networks. However, the
literature includes a wealth of approaches for system-wide reprogramming in static
networks [33]. For instance, Trickle [18] disseminates code updates using a “polite
gossip” technique to suppress redundant transmissions. The rate of control traffic is
adjusted at every device based on the state of neighbor nodes. As neighborhoods keep
changing in the scenarios we target, a similar solution would be very inefficient.

Solutions for selective code dissemination in static networks also exist. For instance,
Figaro [26] allows selecting subsets of nodes based on node attributes. It employs a tree-
based routing scheme for code dissemination, which is difficult to apply in a mobile,
disconnected scenario like ours. In TinyCubus [24], code is disseminated to all nodes
with a given role, e.g., all cluster-heads. At the network level, TinyCubus assumes a
priori knowledge of the system topology, as it requires to specify an upper bound on the
number of hops separating nodes with the same role. Such scheme is hardly applicable
in presence of dynamic topologies and intermittent connectivity.

In a mobile setting, Impala [21] leverages gossip dissemination to distribute code
updates to every device. Version numbers are used to cater for eventual delivery. GCP [4]
also targets system-wide reprogramming in mobile sensor networks, using a polite gos-
sip technique similar to Trickle. However, GCP limits network traffic using a token-
based scheme whereby nodes can transmit only if they possess enough tokens. ReMo [8]
focuses on both static and mobile networks, using physical-layer metrics such as the
Link Quality Indicator (LQI) [6] to establish routes for code dissemination. Although
these solutions target scenarios similar to ours, they still do not tackle the problem of se-
lective code dissemination. Therefore, being unaware of the selection criteria specified
by our users, their use would correspond to significant energy waste.

6 Conclusion

We presented a system for selective reprogramming in mobile WSNs, based on social
community detection. Our solution allows users to target a subset of the WSN nodes us-
ing constraints on node attributes. A dedicated protocol exploits the social interactions
among the monitored entities to disseminate code updates efficiently. We evaluated our
framework through real mobility traces. The results showed that, although experiencing
a small latency overhead, our protocol saves up to 66% of the transmissions even when
reprogramming targets the entire system. These performance gains increase when tar-
geting a subset of the nodes, by virtue of our routing strategy that builds routes to the
target nodes based on the social communities. Our future work includes deploying the
system on animals in the context of a wildlife monitoring project.

7 Acknowledgments

The work described in this paper was partially supported by ESF MiNEMA, EPSRC
grants EP/E012914 and EP/C544773, the Autonomous Province of Trento under the



call for proposals “Major Projects 2006” (project ACube), CONET under EU contract
FP7-2007-2-224053 and Swedish Foundation for Strategic Research (SSF).

References

1. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communi-
ties in large networks. J.STAT.MECH., page P10008, 2008.

2. J. L. Brown and G. H. Orians. Spacing patterns in mobile animals. Annual Review of Ecology
and Systematics,, 1, 1970.

3. M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-mac: a short preamble mac protocol for
duty-cycled wireless sensor networks. In SenSys ’06: Proc. of the 4th Int. Conf. on Embedded
Networked Sensor Systems, pages 307–320, New York, NY, USA, 2006. ACM.

4. Y. Busnel, M. Bertier, E. Fleury, and A.-M. Kermarrec. GCP: Gossip-based Code Prop-
agation for Large-scale Mobile Wireless Sensor Networks. In Proc. of the Int. Conf. on
Autonomic Computing and Communication Systems, 2007.

5. S.-Y. Chan, P. Hui, and K. Xu. Community Detection of Time-Varying Mobile Social Net-
works. In Proc. of the First Int. Conf. on Complex Sciences: Theory and Applications (Com-
plex 2009), 2009.

6. Chipcon Tech. CC2420 Datasheet. focus.ti.com/docs/prod/folders/print/
cc2420.html.

7. E. M. Daly and M. Haahr. Social Network Analysis for Routing in Disconnected Delay-
tolerant MANETs. In Proc. of the Int. Symp. on Mobile Ad-Hoc Networking and Computing
(MobiHoc), 2007.

8. P. De, Y. Liu, and S. K. Das. ReMo: An Energy Efficient Reprogramming Protocol for
Mobile Sensor Networks. In Proc. of the Int. Conf. on Pervasive Computing and Communi-
cations (PERCOM), 2008.

9. A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a Lightweight and Flexible Operating Sys-
tem for Tiny Networked Sensors. In Proc. of 1st Wkshp. on Embedded Networked Sensors,
2004.

10. V. Dyo, S. A. Ellwood, D. W. Macdonald, A. Markham, C. Mascolo, B. Pasztor, N. Trigoni,
and R. Wohlers. Poster Abstract: Wildlife and Environmental Monitoring using RFID and
WSN Technology. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (Sen-
Sys), 2009.

11. V. Dyo and C. Mascolo. Efficient node discovery in mobile wireless sensor networks. In
DCOSS ’08: Proc. of the 4th IEEE Int. Conf. on Distributed Computing in Sensor Systems,
pages 478–485, Berlin, Heidelberg, 2008. Springer-Verlag.

12. N. Eagle and A. S. Pentland. Reality mining: sensing complex social systems. Personal
Ubiquitous Comput., 10(4), 2006.

13. A. Gorlick. Turtles to test wireless network, July 2007.
14. P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: Social-based Forwarding in Delay Tol-

erant Networks. In Proc. of the Int. Symp. on Mobile Ad-Hoc Networking and Computing
(MobiHoc), 2008.

15. P. Hui, E. Yoneki, S. Y. Chan, and J. Crowcroft. Distributed community detection in delay
tolerant networks. In Proc. of Int. Wrkshp. on Mobility in the Evolving Internet Architecture
(MobiArch), 2007.

16. P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet. In
Proc. of the Int. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), 2002.



17. J. Krause, D. Croft, and R. James. Social Network Theory in the Behavioural Sciences:
Potential Applications. Behavioral Ecology and Sociobiology, 62(1), 2007.

18. P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: a Self-Regulating Algorithm for Code
Propagation and Maintenance in Wireless Sensor Networks. In Proc. of the Symp. on Net-
worked Systems Design and Implementation (NSDI), 2004.

19. A. Lindgren, A. Doria, and O. Schelén. Probabilistic Routing in Intermittently Connected
Networks. In Proc. of the Int. Wkshp. on Service Assurance with Partial and Intermittent
Resources (SAPIR), 2004.

20. A. Lindgren, C. Mascolo, M. Lonegan, and B. McConnell. Seal2Seal: A Delay-Tolerant
Protocol for Contact Logging in Wildlife Monitoring Sensor Networks. In Proc. of Int.
Conf. on Mobile Ad-hoc and Sensor Systems (MASS), 2008.

21. T. Liu and M. Martonosi. Impala: A middleware system for managing autonomic, parallel
sensor systems. In Proc. of the SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2003.

22. K. Lorincz, B.-R. Chen, G. Werner Challen, A. Roy Chowdhury, S. Patel, P. Bonato, and
M. Welsh. Mercury: A Wearable Sensor Network Platform for High-fidelity motion Analy-
sis. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (SenSys), 2009.

23. M. Lukac, L. Girod, and D. Estrin. Disruption Tolerant Shell. In Proc. of the SIGCOMM
Wkshp. on Challenged Networks (CHANTS), 2006.

24. P. J. Marrón, A. Lachenmann, D. Minder, J. Hahner, R. Sauter, and K. Rothermel. Tiny-
Cubus: a flexible and adaptive framework sensor networks. In Proc. of the European Wkshp.
on Wireless Sensor Networks (EWSN), 2005.

25. L. Mottola and G. P. Picco. Logical Neighborhoods: A Programming Abstraction for Wire-
less Sensor Networks. In Proc. of the Int. Conf. on Distr. Computing in Sensor Systems
(DCOSS), 2006.

26. L. Mottola, G. P. Picco, and A. Amjad. Fine-Grained Software Reconfiguration in Wireless
Sensor Networks. In Proc. of European Conf. on Wireless Sensor Networks (EWSN), 2008.

27. F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level Simulation in
COOJA. In Proc. of the European Conf. on Wireless Sensor Networks (EWSN), 2007.

28. B. Pasztor, M. Musolesi, and C. Mascolo. Opportunistic mobile sensor data collection with
scar. In Proc. of the 4th IEEE Int. Conf. on Mobile Ad-hoc and Sensor Systems (MASS’07),
Pisa, Italy, October 2007. IEEE Press.

29. G. Ramos-Fernández, J. Mateos, O. Miramontes, G. Cocho, H. Larralde, and B. Ayala-
Orozco. Lévy Walk Patterns in the Foraging Movements of Spider Monkeys (Ateles ge-
offroyi). Behavioral Ecology and Sociobiology, 55(3), 2004.

30. G. C. Sanderson. The Study of Mammal Movements: A Review. The Journal of Wildlife
Management, 30(1), 1966.

31. N. Sarafijanovic-Djukic, M. Pidrkowski, and M. Grossglauser. Island Hopping: Efficient
Mobility-Assisted Forwarding in Partitioned Networks. In Proc. of the Int. Conf. on Sensor
and Ad Hoc Communications and Networks (SECON), 2006.

32. T. Small and Z. J. Haas. The shared wireless infostation model: a new ad hoc networking
paradigm (or where there is a whale, there is a way). In Proc. of the 4th ACM Int. Symp. on
Mobile ad hoc networking & computing(MobiHoc), pages 233–244, New York, NY, USA,
2003. ACM.

33. Q. Wang, Y. Zhu, and L. Cheng. Reprogramming wireless sensor networks: challenges and
approaches. IEEE Network, 20(3), 2006.

34. M. Welsh and G. Mainland. Programming Sensor Networks Using Abstract Regions. In
Proc. of the Symp. on Networked Systems Design and Implementation (NSDI), 2004.


