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Abstract—The need to monitor groups of mobile entities arises
in many application contexts. Examples include the study of
the social behavior of humans and wildlife, the shepherding of
livestock, the care giving to people that are not self-sufficient.

Human- or animal-borne wireless devices can be used to detect
the joining or leaving of group members, even in infrastructure-
less scenarios. In this work, we apply wireless sensor networks
devices to this problem that has hitherto received little attention.
We analyze three points of the solution space. At one extreme,
group membership information is proactively and collectively
maintained by each node in the group. At the other extreme,
the dissemination of group membership updates is triggered
reactively by relying on a lower-level neighbor discovery protocol.
In the middle lies a solution borrowing ideas from the two
extremes. We compare our solutions through simulation of
synthetic scenarios and real-world mobility traces of humans.

I. INTRODUCTION

The miniaturization fostered by wireless sensor networks
(WSNs) enables scenarios where these tiny, untethered devices
are carried by mobile entities. In these applications, the radio
is often used as a sensor, enabling the detection of “contact”
(i.e., physical proximity) among nodes, and in turn the study
(or monitoring) of the dynamics of groups of mobile entities.
The goal of this paper is to design an efficient communication
protocol providing applications with knowledge about who is
member of a group at any given time.
Application examples. The research we present here was
originally motivated by two of our recent projects that, albeit
targeting different application domains, share the common
challenge of group monitoring:

• Social care. In the first project, WSNs are used in an
Alzheimer’s daycare facility to monitor the patients’
activities. A concern of the caregivers is the safety of
patients when outside the facility: the caregivers must
ensure that patients move together, and should be alerted
as soon as some go astray. Similar requirements are found
in other contexts, e.g., shepherding or school trips.

• Wildlife monitoring. In the second project we collaborate
with biologists studying the social behavior of roe deer.
Wildlife is studied either through direct observation or
by using localization technologies such as GPS [1]. The
former cannot be done on a large scale and is too invasive
(or impractical) for some species. The latter is energy-
hungry, requires a clear sky, and provides only an indirect
measure of interaction: to study social groups [2] biolo-
gists need to know which animals spend time together,

while GPS forces scientists to infer interaction from
position traces—often sparse, to save energy.

The group membership problem. We assume that each of
the potential group members carries a battery-powered WSN
device (e.g., a TMote Sky [3]), consisting of a microcontroller,
memory and storage capabilities, and a radio transceiver. In
this context, a group is a set of mobile entities that are “in
contact” with each other either directly or indirectly. In other
words, it is the set of WSN nodes that are either in wireless
range of each other, or for which a multi-hop path connecting
them exists. Our objective is to identify who is currently
part of a given group. The group composition changes over
time, either because existing members leave or new members,
possibly previously unknown, join the group.

Solving the problem when all the nodes are in direct com-
munication among themselves, or towards a central node, is
simple: it suffices for the WSN nodes to periodically broadcast
a beacon announcing their presence. Otherwise, the problem is
considerably more complex, but the application scenario is sig-
nificantly richer and less constrained. For instance, caregivers
need not be in direct communication with all patients: it is
sufficient that they are in range of some, and that each patient
is in range of at least another one. Similarly, a flock of animals
may stretch over a considerable area, rendering impractical
solutions that are centralized or rely on 1-hop connectivity.
Therefore, we focus on a decentralized multi-hop solution.

Because of mobility, a group may split, or distinct groups
may merge in a larger one. Ideally, nodes should learn about
changes as soon as they occur. This, however, is unfeasible in
a distributed system, and even more so in the highly dynamic,
resource-constrained scenario we target. Therefore, we ensure
instead that the group view of each node eventually mirrors
the physical one. In other words, transient inconsistencies are
allowed to occur, but these must disappear “as soon as” the
network topology stops changing. In practice, we found this
requirement to be sufficient, at least in the scenarios we target.

Finally, applications use the group membership information
differently. For instance, the case where one or more nodes
disappear from a node’s own group view may trigger an alarm
to caregivers in the social care scenario, or be simply logged
on flash memory in wildlife monitoring. These aspects are
orthogonal to our contribution, and not mentioned further.
Roadmap and contribution. From our survey of related work
in Section II it appears that no solution is immediately appli-



cable to the above requirements. In this paper we design and
compare three protocols. At one extreme, Section III describes
a solution in which nodes proactively and collectively refresh
soft-state group information, based on vector clocks. At the
other extreme, the protocol in Section IV, inspired by link
state routing, reactively triggers the dissemination of group
information based on a lower-level neighbor discovery layer.
Finally, the protocol in Section V, inspired by distance vector
routing, attempts to strike a balance between the two.

The protocols we design build upon well-known techniques.
Nevertheless, these are applied to a novel problem in a
challenging context—mobile WSNs. Section VI evaluates and
compares these alternatives, implemented in Contiki [4], to
determine their feasibility and tradeoffs. Finally, Section VII
ends the paper with brief concluding remarks.

II. RELATED WORK

Wireless sensor networks. In a 1-hop environment, the
problem of group membership reduces to the simpler problem
of neighbor discovery, already covered in the WSN literature.
The works in [5]–[9] carefully schedule the broadcasting of
beacons, the listening on the channel, and the radio power-
down to obtain an energy-efficient duty cycle. We regard these
protocols as a stepping stone to solving the group membership
problem in a multi-hop environment.

The problem becomes considerably more complex when
nodes are to be discovered across several hops. This is because
distinguishing between mobility (i.e., the node is still part
of the group although with different links) and link or node
failure is a non-trivial problem, impossible to solve with only
local knowledge, as pointed out in [10], [11]. These works
suggest the use of gossiping or restricted flooding as a viable
approach. In this paper, we design dedicated protocols able to
identify whether a moving node remains member of the same
group, even if its links change because of mobility.
Distributed systems and ad-hoc networks. Group member-
ship is a problem long studied by the distributed systems com-
munity [12], although with a slightly different focus. Indeed,
the emphasis is on providing high-level abstractions enabling
group communication, and therefore on their semantics and
expressiveness in the presence of faulty processes [13].

In mobile ad hoc networks, somehow closer to our context,
the main emphasis has been on unicast and multicast routing
protocols. A notable exception is [14], which addresses how
multi-hop group communication can be kept consistent with
node movement. The authors introduce the concept of “safe
distance”, defined as the number of communication tasks a pair
of nodes can complete in a given time and for a given mobility
pattern. The paper extends this concept to multi-hop routes and
presents protocols that allow a node to identify which are the
groups it can safely communicate with. In contrast to these
works, our emphasis is not on communication, rather on the
simpler problem of providing each node with an up-to-date
view of the current group, in a resource-constrained WSN.
Alternative devices. As we mentioned in the introduction,
using the on-board radio is only one, and arguably the most

recent, alternative. GPS has already been applied to study the
interaction patterns of wildlife [1], [15]. However, GPS is
energy-hungry: frequent positions locks do not play well with
lightweight batteries. Moreover, GPS is limited to a clear-sky
environment and inappropriate for burrowing animals. To this
end, RFID based solutions [16] have been designed. However,
RFID readers are expensive, both cost- and energy-wise; the
technology is limited to small ranges; and finally, interactions
are captured only in the range of the, usually fixed, RFID
readers, rather than directly among the mobile nodes.

In all these solutions, group membership is determined
indirectly, typically through a post-deployment analysis of
position traces and contact logs. A fundamental asset of our
approach is that the protocols we describe next empower each
node with a run-time global view of the group membership.

III. USING LOGICAL CLOCKS

Our first protocol is based on a “soft-state” approach. Each
node periodically advertises its presence. After an interval
when no advertisement is received, the advertising node is con-
sidered missing. We further refer to this solution as CLOCKS.

Our solution is inspired by vector clocks [17]. Each node
maintains i) a local (logical) clock and ii) an array con-
taining the (logical) clocks of all the nodes currently part
of the group—the vector clock. Every node broadcasts the
vector clock periodically with the same frequency, yet asyn-
chronously. When a message is received, the incoming vector
clock and the local one are merged to preserve only the largest
timestamps. However, in our case, differently from the original
formulation, a node’s local clock is incremented periodically
and not when the node receives or sends messages.
Node leaving and joining. To identify a member that left
the group, a node compares its local clock against every entry
in the vector clock. If the difference between the local clock
and a vector clock entry crosses a predefined threshold, the
corresponding node is deemed departed and the entry evicted
from the vector clock, to save space. When a node joins the
group, its local clock is appended to the vector clock. However,
before this, all local clocks must be realigned as follows.
Managing local clocks. The local clock of a node may
accumulate enough offset w.r.t. those at other nodes, leading
the former to incorrectly believe that some of the latter are
departed. This is particularly troublesome for nodes joining
with a “fresh”, small value of the local clock. The problem
is solved if clocks reflect absolute time. However, a time
synchronization protocol (e.g., [18]) is not only expensive but
also overkill. In our context, it is sufficient that, upon receiving
a vector clock, the local clock is set to the largest among the
clocks in the vector, therefore “realigning” the local clock with
the logical time in the rest of the system.
Message failures. As all nodes broadcast periodically and
indefinitely their vector clock, its delivery is guaranteed to
be eventually performed at neighboring nodes. �

CLOCKS has a reasonable memory footprint: it maintains a
vector of pairs 〈node ID, clock〉 that grows linearly with the
network size. On the negative side, this entire data structure
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Fig. 1. Operation of LINKS.

must be exchanged periodically. Depending on the network
size and radio characteristics, this may require fragmentation
into multiple packets, increasing overhead. Moreover, vec-
tor clocks are exchanged even in absence of configuration
changes, wasting communication. This last observation mo-
tivates the design choices of the next protocol.

IV. USING LINK STATE INFORMATION

At the other extreme, group membership information can be
managed as “hard-state”, i.e., a node considers the group com-
position as stable until it receives a message saying otherwise.
In this protocol, called LINKS, periodic messages to refresh
state are not required, and nodes communicate only upon
group configuration changes. To detect these, nodes rely on a
lower-level neighbor discovery service, notifying the presence
of new neighbors or the departure of existing ones. LINKS
is independent of the neighbor discovery layer: any of the
protocols in [5]–[9] can be used. Nevertheless, these generate
their own traffic, which must be accounted for in the energy
expenditure. We come back to this issue in Section VI, where
we take into account the overhead introduced by Contiki’s
neighbor discovery [19] used in our implementation.

We take inspiration from link state routing protocols such as
OSPF [20] and build each node’s view of the group by using
topology information received from other nodes. Each node
maintains a topology set summarizing all links in the network.
Nodes run a topological sort on this set to determine all
reachable nodes, i.e., the group members. Figure 1 illustrates
how changes in the topology are discovered and propagated.
In the example we assume nodes are initially connected in a
chain and know all network links (step 1). For now, we also
assume reliable links: later in this section we describe how
communication faults are dealt with.
Node leaving and joining. Whenever the underlying neighbor
discovery layer notifies a neighbor departure, LINKS dissemi-
nates link information. For instance, upon the breakage of the
link between B and C in step 2, both nodes broadcast a link
update 〈#sequence, DROP, source, neighbor〉.

Upon receiving an update tuple, a node checks its topol-
ogy set to identify links that must be removed, and waits
for a short time interval during which it buffers additional

updates generated by the reconfiguration. Then, it packs the
performed topology changes in as few messages as possible
and broadcasts them. Any other receiving node repeats the
process. Updates travel far away from the node that observed
the change: in step 3, this process allows A to determine that
C and D are no longer reachable, i.e., outside A’s group.

Joining nodes are dealt with in a similar way. When a
new neighbor is discovered, or a previously-broken link is re-
established as in step 4, the link end-points exchange updates
in the form 〈#sequence, ADD, source, neighbor〉. In the figure,
B notifies C about the existence of the link (A, B), allowing
C to reconstruct the full topology. After the buffering interval,
nodes re-propagate all changes in their topology set, e.g., in
step 5 C broadcasts an update containing (A, B) and (B, C).

A node receiving an update may determine that no changes
to its topology set are required. This happens, for instance,
in the case where updates about the same links, triggered by
different nodes, are received by the same node through distinct
paths. In this case, the node does not re-propagate the update,
therefore avoiding unnecessary communication.
Message failures. Unlike CLOCKS, in LINKS broadcasts
are not idempotent and therefore cannot be sent repeatedly.
Updates are generated and broadcast only once, i.e., when
a change appears in a node’s topology set. Unfortunately,
missing an update may lead to permanent errors. For instance,
imagine that the update 〈#sequence, ADD, A, B〉 in step 4
of Figure 1 is lost. As B will never re-broadcast the update,
neither C nor D will become aware of A’s existence.

To alleviate this problem, we implemented a positive ac-
knowledgment scheme based on the update sequence numbers,
ensuring reliable 1-hop broadcast. A node receiving an update
(e.g., A in step 5) replies with a message containing a pair
〈#sequence, ACK〉 for all updates received in a predefined
time window. If the update originator (B in this case) does
not receive an acknowledgment from all of its neighbors in a
given time frame, it repeats the operation for a limited number
of times, hoping that the update is eventually received. �

LINKS enjoys the desirable property that communication
is proportional to the number of group changes. However,
the need for reliability comes at a high cost, as described in
Section VI. This problem is overcome by the next protocol.

V. USING DISTANCE VECTORS

Our last protocol, called DIST, is inspired by distance vector
routing protocols such as RIP [21]. Each node maintains
a distance vector, i.e., a set of tuples 〈node ID, next hop,
minimum hop count〉 for every other node in the WSN. This
information is managed as hard state, similarly to LINKS,
therefore communication is required only upon group changes.
Moreover, these are detected by an underlying neighbor dis-
covery layer, as we already described in Section IV for LINKS.

We rely on the example in Figure 2 to illustrate the operation
of DIST, initially assuming reliable links. In step 1 the network
is partitioned: A is out of range w.r.t. the group formed by B,
C, and D. Nodes in the latter group have already exchanged
their distance vector, represented as an array for simplicity. For
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Fig. 2. Operation of DIST.

example, the one on B indicates that this node is 0 hops from
itself, 1 hop from C, and 2 hops from D (reachable through
C). The ∞ denotes that A is not a member of B’s group.
Node joining. In step 2, node A approaches the group and the
neighbor discovery layer notifies both A and B accordingly.
The two nodes update and exchange their distance vectors in
broadcast. B’s broadcast reaches also C, which identifies A
as a new group member, reachable through B over 2 hops.
Next, C updates its own distance vector with the proper hop
count and broadcasts it (step 3), enabling D to discover A.
Node leaving. When neighbor discovery notifies a node that
a neighbor is no longer reachable, the node searches for
alternative paths towards the departed node and the routes
originally including it. If these exist, they include one of the
remaining neighbors. If no alternative is found, the entry is
purged from the distance vector. To find out, the node can
either pull the distance vector from its neighbors or cache
them locally. In our implementation, we chose the latter to
limit complexity and communication overhead.

For instance, upon A’s departure in step 4, neighbor discov-
ery notifies A that B is no longer in direct radio range. As B
was A’s only link to C and D, no alternative paths to these
nodes exists and therefore their entries are purged from A’s
distance vector. Similarly, B searches for alternative paths to
A; its only option is a path through C. Still, this is invalid as B
previously linked A and C. B is able to determine that the path
is unsuitable by inspecting the next-hop field in the distance
vector. Thus, B correctly purges A from its distance vector
and broadcasts an update to its neighbors. The update allows
C, after searching through the distance vector of its neighbors,
to identify that no viable path to A exists. C prunes A from its
distance vector and broadcasts an update (step 5). Eventually,
D also evicts A, and the network reverts to the state in step 1.
Handling loops. To avoid counting to infinity when loops
occur, DIST measures the hop count to a destination on the
shortest path. For instance, in step 3 B discards C’s broadcast
due to its direct link to A, and correctly identifies A at 1 hop.
Beyond a maximum hop count, a node is deemed unreachable.

More interesting is the case of finding alternative paths over
routing loops. Imagine a ring configuration as in Figure 3.
At some point in time, the link (A, B) fails. According to
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the previous reasoning, B advertises an infinite distance to A,
forcing C to discover the alternative path to A that passes
through D. C advertises the found path further, and thus B
identifies A as being still a member of the group.
Message failures. For DIST to work properly, messages
containing distance vectors cannot be lost. An easy solution
is to retransmit them periodically, but all advantages over
CLOCKS would be lost. However, unlike LINKS where updates
are incremental, in DIST a single retransmission can make up
for an earlier loss, restoring a node’s entire group view. Based
on this observation, we employ a negative acknowledgment
scheme that guarantees that nodes eventually update their
distance vector in the correct way.

A version number is associated to the distance vector of
each node, incremented on every change and piggybacked
on all broadcasts. Each node broadcasts periodically a digest,
that is, a list of pairs 〈node ID, last known version number〉.
When another node receives a pair containing its identifier, it
compares the received version number to its own—the true
one. The receiving node is then able to determine gaps in the
sequence, denoting that the sender missed earlier updates. If
and only if this is the case, a rebroadcast of the full distance
vector is required to bring the outdated node on par.

VI. EVALUATION

In this section we evaluate and compare our three protocols,
implemented in Contiki [4], and simulated using COOJA [22].

We perform the evaluation in two settings. The first one
is a synthetic scenario that allows us to control precisely the
mobility patterns inside groups. The results gathered in this
scenario, described in Section VI-A, are then validated in
Section VI-B against simulations where the mobility patterns
are instead derived from real-world GPS traces of humans.
Goals. Our first objective is to assess the impact each protocol
bears on the energy budget. In principle, one could use
LPL [23] or other duty-cycling mechanisms in conjunction
with our protocols, however biasing the overall energy figures.
We decided to avoid this bias by performing our experiments
with the radio always on and without taking into account the
contribution of idle listening. Therefore, we compare protocols
in their “purest” form, by focusing solely on the cost of
message exchanges, and consequently by measuring energy
consumption indirectly through the total number of bytes
transmitted and received by each node:

energy ∆= V × (ITX ×
bitsTX

b
+ IRX ×

bitsRX

b
)

For the popular TMote Sky platform we used in our exper-
iments, V = 3 V, ITX = 21 mA, IRX = 23 mA, and b =
250 kbps [3]. For LINKS and DIST, our evaluation includes the
traffic generated by the underlying neighbor discovery layer,
in our case the one in Contiki’s RIME stack [19].



TABLE I
PROTOCOL PARAMETERS.

Description Value
Beaconing period (for neighbor discovery
and vector clock exchange)

B ∈ {5, 10} s

Timeout for declaring a neighbor missing T = 120 s
Radio range 30 m

CLOCKS
Vector clock element size 2 B

LINKS
Update tuple size 3 B
Minimum timespan between retransmissions 1.5 s
Maximum retransmissions 5

DIST
Distance vector element size 3 B
Digest retransmission period D ∈ {30, 120} s

Our second objective is to evaluate the protocols’ accuracy,
represented by two metrics: i) the error, i.e., the difference
between the reported group size and the actual one— an
instantaneous property whose value changes while protocols
are detecting group changes; ii) the detection latency, i.e., the
(average) delay between the group change and the time at
which nodes become aware of it. The two metrics are related:
given an initial error of zero, detection latency can be regarded
as the time a protocol takes to bring the error back to zero after
a group change occurs.
Parameters. Key to the configuration of all protocols is the
neighbor discovery latency, i.e., the delay after which a node
becomes aware of the arrival or departure of a neighbor, which
in turn may trigger a group membership change. There are two
concerns that must be taken into account, as follows.

First, while discovering a new neighbor is as simple as
receiving a beacon from it, ascertaining a neighbor’s departure
is significantly more difficult. Indeed, missing a beacon from
a neighbor can be caused by movement, node crashes, or
packet losses. In practice, neighbor discovery services declare
a neighbor missing only after no beacons are received for a
given predefined time interval T . In the discovery service we
used [19], T =120 s.

Second, the value of T affects the behavior of LINKS and
DIST, which rely directly on neighbor discovery. However,
in practice the configuration of CLOCKS is also affected
by T , to ensure that results are comparable. We configured
CLOCKS to identify departed nodes after the same timeout
T = 120 s. Although the latter is managed as logical time,
as described in Section III, this choice strikes the best trade-
off between a fair comparison and practical implementation
concerns. We evaluate the impact of this value in more detail
in Section VI-A2. We also match the vector clock broadcast
rate with the beacon rate of the neighbor discovery service,
noted hereafter B. We evaluate scenarios with B ∈ {5, 10} s.

The DIST protocol has an additional parameter, namely the
period D with which the digests are broadcast in our negative
acknowledgment reliability scheme. We evaluate two instances
of DIST, corresponding to D ∈ {30, 120} s. We show the other
simulation and protocol parameters in Table I. The results for
a given simulated scenario are averaged over 40 repetitions.

A. Synthetic mobility patterns

1) Energy consumption: We simulate our protocols using
a 25-node group moving in a single direction with a constant
velocity (1 m/s) for 3500 s, long enough to retrieve interesting
insights about the protocols’ operation. Figure 4 illustrates
our synthetic setting. The group is initially arranged in a
grid configuration. Along the way, the group passes through a
series of checkpoints (only one is illustrated). In between two
consecutive checkpoints most nodes keep the same position
within the group, except for a given, simulation-controlled
number of nodes that swap positions, e.g., A and B. The
swaps take place in between checkpoints, with the selected
nodes moving at 1 m/s towards their target positions, and
must complete at the destination checkpoint. At a checkpoint,
a different set of nodes (e.g., C and D) are selected and
begin swapping positions. Note that, in this scenario the group
members change their positions within the group, but the group
does not change its composition, i.e., no node joins or leaves
the group. Indeed, our objective in this section is to analyze the
impact of mobility alone on group maintenance. We analyze
joining and leaving nodes in Section VI-A2, as this bears a
direct impact on the accuracy of our protocols.

Our synthetic scenario allows us to define a simple measure
of the churn caused by mobility, as a combination of number
of swaps and the distance between consecutive checkpoints:

churn ∆=
number of position swaps

distance between checkpoints
× 100

We setup simulations for all dimensions affecting churn. The
first one is the distance between checkpoints, which we con-
sider to be either 10, 50, or 100 m. The second dimension is the
number of position swaps: we take into consideration groups
without swaps and groups experiencing 1 to 5 swaps between
checkpoints. The last dimension we explore is the network
density, which we control through the relationship between
the grid unit (distance between nodes) and the radio range
that, as shown in Table I, is fixed to 30 m. The configurations
we simulate are:

• a “sparse” one where the grid unit of 15 m allows nodes
to communicate 2 hops (grid units) away.

• a “dense” one where the grid unit of 8 m allows nodes
to communicate 3 hops (grid units) away.

The combination of all these parameters yields 64 different
simulated scenarios per protocol, each repeated 40 times.
Results. Figure 5 compares the protocols for churn = 20,
corresponding to 2 position swaps every 10 m. In all scenarios,
LINKS is the most energy-hungry among our protocols, espe-
cially in the case of a dense network. Logs show that the culprit
for the high consumption is the acknowledgment scheme
ensuring reliable broadcast. In fact, approximately 40% of the
traffic is due to acknowledgments and retransmissions.

Figure 5 also shows that the impact of the B parameter is
bigger in CLOCKS than in DIST. This, however, is expected.
In CLOCKS, B represents the period with which vector clocks
are exchanged, and thus bears a direct influence on traffic, and
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Fig. 5. Cumulative energy for churn = 20, corresponding to 2 swaps every 10 m.
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Fig. 6. Power consumed as a function of churn.

in turn energy consumption. Instead, in DIST B is the beacon
period used for neighbor discovery, which is only a fraction
of the total traffic: the update and recovery messages in the
network cannot be directly correlated to changes in the local
neighborhood, yielding a reduced influence of B.

Figure 5 also highlights the impact of density on energy
consumption. For the dense scenario, each broadcast (i.e., a
neighbor discovery beacon or the transmission of a vector
clock, link update, or distance vector) reaches more nodes and
therefore consumes more battery w.r.t. sparser networks.

We now turn our attention to the impact of churn (i.e.,
mobility) on energy consumption. Instead of plotting the
cumulative energy for all the aforementioned 64 scenarios
covering all parameter combinations, we chose to analyze
the slope ∆energy/∆time of the energy curves (i.e., the power
consumed) as a function of churn, as shown in Figure 6.
This approach is more concise, and captures effectively the
impact of mobility on energy consumption. These charts report

results only for the time interval between 500 and 3500 s, to
exclude the initial traffic required to “bootstrap” a network
with an empty group view. Also, note that the “humps” around
churn = 10 (evident for LINKS but present also in the other
protocols) is caused by the non-linearity of our definition of
churn. For instance, churn = 8 may correspond to 4 swaps
every 50 m, and churn = 10 to a single swap every 10 m.

The charts in Figure 6 show that LINKS is greatly affected
by churn even in a static dense group, and becomes a viable
alternative only for quasi-static groups in the sparse config-
uration. In our dense configuration, the energy consumption
of LINKS is dominated by the reliability scheme, due the
increased likelihood of collisions. On the other hand, the
performance of CLOCKS and DIST is very similar for B = 5 s,
where the short periodicity (of beacons and vector clock
exchanges) affects directly the overhead. For B = 10 s,
instead, DIST has an extra overhead caused by the exchange
of distance vectors and their recovery, the latter clearly more
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Fig. 7. Error and detection latency vs time (B = 10 s).

marked in the dense scenario.
2) Error and detection latency: As mentioned at the be-

ginning of Section VI, detecting node departure is more
difficult than detecting node join. Consequently, we design
our scenario around node departures and use it to measure
accuracy. We start from a 25-node network displaced ran-
domly in a 100×100 m2 area, with a radio range of 30 m.
The network bootstraps and identifies all group members.
Then, at 300 s, a number of randomly-selected nodes are
suddenly separated from the rest of the network, creating a
new partition. This actually represents a worst-case w.r.t. the
more realistic scenario where nodes move away, instead of
being instantaneously relocated, because in the former case the
departure can be discovered gradually. We perform simulations
where 25%, 40%, and 60% of the nodes are separated from
the main group.
Results. Figure 7 illustrates the accuracy of our protocols
by showing i) how the error changes over time, and ii) the
detection latency, i.e., the time necessary to reconstruct a
correct group view on all nodes. We show only the experiments
with B = 10 s, as those with B = 5 s yield similar results.

LINKS and DIST both rely on the neighbor discovery layer
for detecting the departed nodes. Nevertheless, as discussed
earlier, this layer declares a neighbor as unavailable only upon
a timeout, whose value in the RIME stack is T = 120 s. This
explains the constant error in the initial part of curves: only
at 420 s the nodes, alerted by the neighbor discovery layer,
begin the propagation of information of the group change.

The same timeout is used for CLOCKS, but in this case
there are two interesting differences: i) in LINKS and DIST,
no action other than local neighbor discovery is taken until the
timeout T expires. Instead, in CLOCKS the nodes continuously
propagate their vector clocks with a period B < T , therefore
actively and continuously cooperating in reconstructing the
global view; ii) recall that in CLOCKS the (logical) clocks in
the network continuously realign themselves to the largest one.
Therefore, it is as if “time runs faster” for CLOCKS, reaching
the deadline set by T faster than in physical time.

The net effect of the considerations above is that, in all
configurations of Figure 7, CLOCKS is much faster than the
other protocols in converging to a consistent group view.
However, this should not be taken as a direct comparison
given that, in the absence of better choices, we use the same
T = 120 s for both physical and logical time, and therefore a
direct comparison is somewhat biased. In principle, one could

set the value of T appropriately for LINKS and DIST, to reduce
their initial “waiting time”; indeed we have simulations for
T = 30 s which show a much shorter initial plateau for these
protocols. Still, because of the first consideration above, during
this time CLOCKS actively works to reconcile the global view:
this is an intrinsic property of the protocol that may help
speed up convergence w.r.t. LINKS and DIST when these use
relatively high values of T . Remember that if T is too small,
packet losses are mistaken for neighbor departures.

Figure 7 shows another interesting difference between
CLOCKS and the other two protocols, in terms of how the
network converges to the same global view, ultimately de-
termining the group detection latency. Detection latency is
a function of the number of hops in the network, but the
delay at each hop depends on the protocol. In CLOCKS, the
global view of all nodes is maintained in synchronous steps: as
evidenced in the figure, convergence occurs by an alternation
of plateaus (where nodes wait for T to expire) and bursts of
node evictions. Instead, the other two protocols propagate the
global information entirely asynchronously, at a faster pace
but with longer tails.

B. Real-world GPS traces
We now seek validation of the results in our synthetic

scenarios through experiments on real-world GPS traces. We
use the CRAWDAD KAIST data [24] representing daily
records of students in a university campus over 3 months.
We pick randomly 25 out of the 92 traces, and scale them
into a 300×300 m2 area. We use B = 10 s and a 30 m radio
range. Due to the nature of the traces, the scenario is very
challenging because i) nodes are continuously moving, i.e., the
system never stabilizes; ii) nodes move of their own volition,
not as a group: therefore, the ratio of joining and leaving nodes
is much higher than in the applications we target.

The energy consumption is reported in Figure 8(a) along
with the average number of neighborhood changes. We notice
trends similar to Figure 5: an excessive overhead for LINKS,
similar performance of CLOCKS and DIST, a slightly better
performance of DIST (120) due to the lighter recovery traffic.

More interesting is the error, reported in Figure 8(b) along
with neighborhood changes. Because nodes are continuously
moving at a high rate the error never stabilizes at zero,
unlike the experiments in Section VI-A2. This is also the
reason why the detection latency is not shown, as it cannot
be computed. Nevertheless, the chart is interesting because
the three protocols exhibit very different behaviors. LINKS is
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Fig. 8. Experiments with the real-world GPS traces in [24].

able to reduce progressively the error and stabilize it around
10-15%. In contrast, both versions of DIST cannot keep up
with the mobility rate, although they have the same B and T
configuration of LINKS: their error appears to grow with time.
The best performance is achieved by CLOCKS, which keeps
the error very close to zero despite the high mobility.

VII. CONCLUSION AND FUTURE WORK

In this paper we tackled the problem of monitoring groups
of mobile nodes equipped with WSN devices, a problem
that has hitherto received little attention. We presented and
compared three protocols covering a big fraction of the so-
lution space. Our study indicates that CLOCKS is resilient
to the changes induced by mobility, has comparatively low
energy demands and quick convergence time. CLOCKS is
the protocol of choice if the sole goal of the network is to
monitor groups. However, in many mobile WSN applications
a neighbor discovery service is necessary for other purposes.
For instance, in our applications it is used to detect proximity
to hazards or log “contacts” with other mobile nodes. If this
is the case, the DIST protocol allows one to build upon this
already-present functionality with promising results: DIST has
energy demands comparable to CLOCKS (and even lower
for slowly-changing groups) and, if properly configured, can
achieve similarly fast convergence, although this aspect must
be studied further. This issue is already on our research
agenda, along with a concrete test of CLOCKS and DIST in the
real-world deployments we concisely discussed in Section I,
namely, the care of Alzheimer’s patients, and the study of the
social behavior of roe deer.
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[22] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-

level sensor network simulation with COOJA,” in Proc. of the 1st Int.
Workshop on Practical Issues in Building Sensor Network Applications
(SenseApp 2006), 2006.

[23] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for
wireless sensor networks,” in Proc. of the 2nd Int. Conf. on Embedded
networked sensor systems (SenSys), 2004.

[24] I. Rhee, M. Shin, S. Hong, K. Lee, S. Kim, and S. Chong, “CRAW-
DAD trace ncsu/mobilitymodels/gps/kaist (v. 2009-07-23),” From
http://crawdad.cs.dartmouth.edu/ncsu/mobilitymodels/GPS/KAIST.


