
Coordination and Mobility

Gruia-Catalin Roman∗, Amy L. Murphy∗, Gian Pietro Picco‡

April 28, 2000

Abstract

Mobility entails the study of systems in which components change lo-
cation, in a voluntary or involuntary manner, and move across a space
that may be defined to be either logical or physical. Coordination is con-
cerned with what happens when two or more components come in contact
with each other. In this paper we put forth a working definition of co-
ordination, we construct arguments that demonstrate that coordination
is central to understanding mobility, we explore the intellectual richness
of the notion of coordination, and we consider the practical implications
of coordination-centered system design strategies. We develop these ideas
in two steps. First, we analyze the different dimensions that govern the
definition of a coordination strategy for mobility: the choice of an ap-
propriate unit of mobility, the treatment of space and its implications on
the way we think about mobility, and the manner in which contextual
changes induced by component movement are perceived and managed.
Then, we explore mechanisms that enable us to model and reason about
coordination of mobile components, and to make it available to software
developers in the form of middleware. Three very different models of
mobility (Mobile Unity, CodeWeave, and Lime) are used as principal
sources for illustration purposes.

1 Introduction

The term mobility has grown to the point that it encompasses a very broad
range of meanings and technological subcultures spanning from formal theoret-
ical models to wireless transmission protocols and standards. In this paper we
seek to explore the richness of this concept in a manner that transcends the dis-
tinctions between physical and logical mobility but to the exclusion of concerns
having to do with the communication technology and low level protocols. As
such, the kinds of issues we are about to consider are likely to be of interest
primarily to researchers concerned with models, languages, and middleware.
∗Department of Computer Science, Washington University, Campus Box 1045, One Brook-

ings Drive, Saint Louis, MO 63130-4899, USA. E-mail: {roman, alm}@cs.wustl.edu.
‡Dipartimento di Elettronica e Informazione, Politecnico di Milano, P.za Leonardo da Vinci

32, 20133 Milano, Italy. E-mail: picco@elet.polimi.it.

1



While logical mobility involves the movement of code (in all its forms) among
hosts, physical mobility entails the movement of hosts (of all sorts and sizes)
in the real world. Future generations of mobile systems are likely to include
both forms of mobility even though so far they have been treated as distinct
and have been studied by different research communities. For now, logical
mobility is viewed as offering designers a new set of conceptual and programming
tools that seek to exploit the opportunities made available by the distributed
computing infrastructure deployed over the last decade. Physical mobility, on
the other hand, is assumed to be closely tied into the next evolutionary step in
the development of the worldwide communication infrastructure, the extension
of wireline networks to fluid clouds of wireless devices. This new environment
presents designers with enormous challenges not the least among them being the
seamless integration of programming models with both the wired and wireless
platforms. It is for this reason that a unified treatment of physical and logical
mobility is important at this time. Clearly, at the most basic level they share
a view of the world in which components move through space (be it logical or
physical) and interact with each other in accordance with the rules governing
some particular model of mobility. Yet there is a wide range of variations among
models and systems involving mobility. It is our contention that variability is
essentially the result of differing decisions with respect to a narrow set of issues:
unit of mobility, properties of space, context definition, and the coordination
constructs that facilitate component interactions.

Our coordination perspective on the subject is fostered by the recognition
that building open systems requires designers to adopt a new viewpoint. In
defining a component, the designer must minimize any dependencies on the
mechanics of data communication. Coordination [9] accomplishes this by sep-
arating the functionality of individual components from the manner in which
interactions take place. Components may be logical or physical. Laptops and
PDAs equipped with wireless connectivity may travel around a building or across
the country alongside their owners. Code fragments may move from host to host
across both wireline and wireless networks and even among various points in
the structure of a single program. Mobile agents move of their own volition
while class definitions are downloaded on demand. Components may be simple
or complex structures. The types of components involved relate closely with the
kind of spatial domain one must consider.

Logical level interactions among components are made possible by special-
ized constructs which specify the coordination services to be provided and define
the interface to such services, when necessary. In the most extreme case, com-
ponents are totally oblivious to the coordination process. As movement occurs
and coordination takes place, components find themselves having access to a
changing array of resources, making new acquaintances, losing contact with
each other, etc. In other words, the dynamics of mobility place each component
in a continuously changing contextual setting. The very definition of the context
and the manner in which components handle change vary with the coordination
constructs available to them.

Coordination is the thread that ties together the dominant themes in mo-

2



bility today and the principal subject of this paper. Three specific models will
be used as primary sources for illustrative examples. Mobile Unity is a formal
model of mobility that provides a notation and proof logic for describing a broad
range of mobile systems, paradigms, and coordination constructs. CodeWeave

is a model that assumes a very fine grained perspective on code mobility, at the
level of single variables and statements. Finally, Lime is a middleware designed
to provide transient and transitive sharing of tuplespaces among agents and
hosts.

The remainder of the paper is organized as follows. Section 2 discusses
issues that are central to understanding the relation between coordination con-
cepts and mobility: Section 2.1 considers choices regarding the unit of mobility;
Section 2.2 explores variations in the definition of space and discusses issues
having to do with movement; Section 2.3 analyzes the definition of context and
the manner in which it is perceived by the mobile components. Section 3 is
concerned with the kinds of coordination constructs one may encounter. The
emphasis is not so much on offering a survey of coordination languages and
models as is on examining the range of options that may be considered and
the mechanics of how context is constructed in three different models: Mobile
Unity, CodeWeave, and Lime. Conclusions appear in Section 4.

2 Mobility Issues

Basic to the notion of mobility is the requirement that there be some entities
that perform the moves, some space within which movement takes place, and
rules that govern motion. Equally important is the way in which mobile entities
perceive the environment that surrounds them, the changes in such environment,
or the way it is actively being explored by them. This section considers each of
these issues in turn. We start by discussing possible choices regarding the unit
of mobility. We follow with a discussion of physical and logical space and its
relation to the units of mobility. Finally, we conclude the section by examining
the notion of context, i.e., the worldview of the individual units.

2.1 Unit of Mobility

The entities that move through space can be physical or logical, simple or com-
posite. Physical components are generally referred to as mobile hosts and they
can vary in size from a laptop to a PDA or other wearable device. The trend
towards miniaturization is likely to lead to the emergence of minuscule devices
and smart sensors that can be attached to people’s clothing, movable structures
and everyday objects. Robots of all sizes also serve as hosts. They can move
through space in a purposeful way under their own volition, can communicate
with each other, and are able to orchestrate activities none of them could ac-
complish in isolation. It is generally expected that the number of mobile hosts
connected to the Internet will rapidly reach into the millions. At the same
time the size of ad hoc networks [3] (i.e., wireless networks having no wireline

3



support) is also expected to reach into the hundreds. Some networks may be
relatively stable, e.g., an assembly line or an office involving tens of devices that
use wireless communication to interact with each other. Other situations are
much more dynamic and unpredictable, e.g., cars on a highway exchanging in-
formation among themselves and with stationary data kiosks. Finally, there are
situations in which the underlying application is a complex enterprise mobile
in nature, e.g., an emergency response team consisting of many vehicles and
individuals. What makes this kind of situation different is the heterogeneity
of the computing platforms involved and the level of logistics interwoven into
the behavior of the overall system. We rarely think of physically mobile units
as coming together and breaking apart, yet such applications clearly point to a
future in which the physical units of mobility will vary greatly in size and capa-
bilities and will engage in interactions that go beyond just relative movement
and wireless communication to include docking and complex physical reconfig-
uration.

In the realm of logical mobility, the unit of mobility naturally shifts from
being a host to being a code fragment. It should be noted from the onset that
the term “code fragment” implies some sort of syntactic element recognized by
the programming language. This is because of the necessity to reference it in
the code itself. Programs, agents, procedures, functions, classes, and objects
are reasonable choices frequently encountered in mobile code languages and
agent systems. Of course, language syntax recognizes also much finer grained
elements such as statements, expressions, and variables. They can also be moved
and such level of mobility it is referred to in this paper and others as fine-
grained mobility. Later in the paper we will show examples of units of mobility
associated with different syntactic elements and of various granularity. Another
point of differentiation among mobile units is the state of execution at the time
the movement takes place. If the code fragment is relocated by creating a
fresh copy at the destination point or prior to the start of its execution, the
movement involves pure code and it is often referred to as weak mobility. By
contrast, strong mobility entails the movement of code being executed, i.e., the
execution state is relocated along with the code thus allowing it to continue
running even after the move. Of course, since the relocation may result in
changes to some of the program bindings the actual state may have components
that are no longer the same as before the move. Associated with strong mobility
is usually the ability to exercise control over the movement both with respect
to timing and destination although one can easily envision systems in which the
fixed infrastructure has total control over who moves and when.

Is it possible to envision units of mobility that have no syntactic correspon-
dence? While we can argue that the basic unit of mobility must have a syntactic
correspondent, we can also see the possibility of creating, through a composition
process, computational environments which no longer have any relation to pro-
gram syntax. A simple example might be a swarm of agents that, once bound
to each other, may become a new entity endowed with the ability to move and
to restructure itself. Our own work on fine-grained mobility comes very close
to this view of mobility, as it will become evident in a later section.

4



2.2 Space

Current work on mobility has made very little effort to investigate and formalize
the concept of space and its properties. To date, physical components can vary
greatly in size and capabilities but, most of them perceive location as a pair of
coordinates on the earth surface provided by some GPS service. This is useful
in terms of being able to exhibit location-dependent behaviors in PDAs and
laptops. Robots can go one step further and actually control their position in
space. Such capability, however, brings with it the added complexity of a space
that is no longer continuous and homogeneous due to the presence of walls
and other limitations to movement. Space acquires structure and maybe even
semantics. Space can actually change over time as components move relative
to each other. A robot moving out of a doorway may all of a sudden open new
possibilities of movement for the others. Moreover, locations can be relative
rather than absolute and knowledge of the space may be limited to those areas
explored to date. This may become important when knowledge is shared among
components since in the absence of a global reference system it may be difficult
to reconcile the different views acquired by different components.

Can we think of physical space in a new light? We believe that we can
and we must rethink our treatment of physical space. Space can have structure
and the structure may be essential to making it possible to address important
application needs. Consider, for instance, the problem of delivering messages
among a group of mobile components that move through space and communicate
only when in immediate proximity to each other. Can we guarantee message
delivery? In general, this is impossible because one cannot be sure that two
specific components ever meet. Yet, if we assume that the components move
back and forth along a single line (a train track), the problem is easily solved.
Many situations are amenable to similar treatment. Of course these kinds of
issues can be handled in the application by superposing a suitable interpretation
on top of what amounts to a primitive space. But, a more formal and higher
level treatment may give us the tools to reason about such situations and to
provide programmers with high level interfaces that reduce the complexity of
the development effort.

Since much of the communication among mobile components entails the use
of wireless transmission, space and distance metrics are playing growing roles
in the way one thinks about the relation among components. Cellular networks
provide a prime example of structure being imposed onto the physical space.
The space is divided into regular patches with a base station supporting all
the communication needs of the components in that specific area. Transitions
among cells entail special handoff protocols, i.e., communication behavior is tied
to space structure. In the case of ad hoc networks, the space lacks structure
but the distance metric is important because communication can take place
only when components are within range. If ad hoc routing is available, i.e.,
mobile components serve as mobile routers as well, the space acquires structure
dynamically in response to the very presence of the mobile components. This
structure is being used in new kinds of protocols that factor relative location

5



information into their decision process, e.g., discovery protocols interested in
determining what neighbors are within a certain distance of a given component.
More sophisticated approaches are likely to take advantage of both distance and
velocity by predicting future component locations. The density of components
in a given region of space may also be exploited in the design of certain systems.
In natural situations, distance may be affected by terrain topology. Even in the
air, winds may be viewed as altering the properties of space, thus affecting
the predictive equations. In artificial environments apparent distances may be
altered by the presence of communication resources such as wireless bridges that
offer extended connectivity through wireline networks.

To the best of our knowledge no systems to date provide what we would
call a non-trivial view of physical space. The situation is quite different when it
comes to considering logical space in programming languages and models. One
can encounter a great deal of variability with respect to the choice of unit of
mobility, the perception of logical space, and even the kind of movement that
is permitted.

In Mobile Unity [12], for instance, a program consists of a set of statements
and the set of local variables being read and modified. A program becomes
mobile through the addition of a distinguished location variable. Changes to
the location variable represent movement and programs change location always
as a whole. Since movement is reduced to value assignment, reasoning about
mobility can be handled by employing the standard Unity [2] logic. By contrast,
CodeWeave [11] shares a common formal foundation with Mobile Unity but
adopts a fine-grained paradigm. Single variables and individual statements can
be moved from one location to another and can be injected in, aggregated into
and extracted from programs created on the fly. Large-grained aggregates can
be manipulated in exactly the same manner. The mobility and restructuring
of programs is not unique to CodeWeave. Algebraic models accomplish the
same thing by allowing for the movement of processes, be they elementary or
composite. In Mobile Ambients [1], for instance, rules are provided for moving
processes from one context to another regardless of the complexity of the process
involved in the move (the reader should think of context as being a location).

While our mental image of mobility is usually associated with some form
of autonomy this cannot be assumed in all cases. In mobile agent systems
the decision to move may indeed rest with the agent itself. Classes, however,
are loaded on demand. One can also envision systems in which agents are
pushed along (forced to move) when their services are no longer needed or when
a need arises at some other site. When modeling physical systems, devices
are carried around from one location to another without having any say. The
motion is actually induced by outside forces, which may need to be modeled
when reasoning about the resulting system.

In our discussion so far, we casually mentioned location without actually
considering what it might be. In the context of logical mobility, location is
often equated with a host in the network. Things are a little more complicated
than this because the ability to execute code presupposes the existence of an
appropriate computing environment. Nevertheless, treating space as a graph

6



with vertices representing locations and edges constraining movement is a rea-
sonable model. However, this is only one among many models one encounters
in the literature and there are many more that are likely to be studied in the
future. Consider, for instance, a program residing on a host and its structure
which, for discussion purposes, we assume to be hierarchical in nature. Each
node in its tree structure can be viewed as a location. The very structure of the
programs provides a notion of space. Code fragments may move to locations
in the program and may even extend the program. Thus, the notion of space
induced by the program may be used to support mobility and as the basis for
redefining the space itself. This is precisely the view adopted by CodeWeave,
which recognizes both hosts and structured programs residing on hosts. In Mo-
bile Ambients, the model is structured in terms of nested processes that define
administrative domains. Mobility is constrained by the structure of the model
while motion alters that very structure, i.e., the definition of space. MobiS [10]
too is a model that offers a hierarchical structure with mobility restricted among
parent child locations consisting of tuple spaces. Finally, in Mobile Unity the
space is left completely outside the model. Spatial properties may be used,
however, in reasoning about the behavior of the system.

This latter strategy allows one to explore a broad range of spaces having
different formal properties, purely abstract constructions or models of physical
reality. In general, the ability to unify logical and physical views of mobility
is useful in the analysis of mobile systems and also as the basis for developing
new models. Moreover, if such efforts result in a practical integration of logical
and physical mobility, a wide range of novel applications can be contemplated.
Lime [18] is one such attempt to integration. Mobile agents reside on mobile
hosts that can form ad hoc networks when in proximity of each other. When this
happens, the agents appear to be sharing a common data environment (tuple
space) and have the opportunity to jump from one host to another.

With the advent of mobility, space is fast becoming the new research frontier.
Our treatment of space impacts our ability to analyze systems and shapes the
models and languages we develop. The assumptions we make about the struc-
ture of space and the mobility profile of the components that inhabit it have
profound effects on the kinds of protocols and algorithms we develop. Problems
specific to mobility are often impossible to solve unless proper restrictions are
imposed. A more precise and formal evaluation of space holds the promise for
significant intellectual and practical advances in our treatment of mobility.

2.3 Context Management

As components move through space, their relation to other components and to
fixed resources changes over time. Of course, even if a component is stationary,
other components may move relative to it. The notion of context relates to
the way in which a component perceives the presence of other components and
available stationary resources at each point in time. While location plays an
important role in determining the current context, it is not the sole controlling
factor. Similar components at the same location are likely to see very distinct

7



contexts. Two components, for instance, may not have the same access rights at
that particular location because one is local while the other is a visitor. Their
respective needs may also be distinct thus forcing the components to look for
different things among the locally available resources. Even more interesting is
the fact that components may obey different binding rules, i.e., ways to associate
names to resources. Depending on the nature of the mobile system, when a
component leaves a site existing bindings may be severed permanently, may be
disabled temporarily and restored upon return, or may continue to be preserved
in spite of the location change. The first option is most common in settings
involving physical mobility while the third is readily implemented when logical
mobility takes place across connected sites, as in the case of the Internet.

A purely local context (i.e., involving a single location) is often favored be-
cause it appears to be easier to maintain and implement. This is only partially
true because even a local context may involve transparent coordination among
multiple hosts. In the ad hoc mobility setting, for instance, the maintenance of
a local context is very complex. Components need to discover each other and to
negotiate the extent to which they are willing to collaborate among themselves.
Keeping track of who else is in immediate proximity and which resources they
are willing to provide or seek to use is not an easy task. The level of complexity
is affected by the assumptions one can make about disconnection patterns, the
relative speeds of components, and the reliability of both components and wire-
less links. The degree of consistency demanded by the application is another
major factor. The trend is towards weak versions of consistency but they may
not be acceptable in all situations. Even in the case of logical mobility, a com-
ponent arriving at a site is required to establish new bindings. From the point
of view of the component, this entails a resource discovery process and possible
negotiations.

A distributed context (e.g., one that refers to distant hosts) entails all the
complexities associated with a local one plus a lot more. At a minimum, the
component navigating across the network must remember the identity of the
resources it needs from different locations (e.g., IP addresses) and the network
must provide the ability to support communication with the resources. However,
this is adequate only if the resources are essentially passive, i.e., respond to
requests but they do not initiate any. If the relation is such that resources
can actually initiate communication, the complexity rises dramatically. The
network must support delivery to components that move in space, be they agents
or nomadic devices that rely on base station support. Mobile IP [16] is one
protocol that provides this kind of service. Of course, the ultimate challenge
is to allow mobile components to send messages to each other while offering
delivery guarantees. Recently, we proposed several algorithms that support this
kind of communication in a nomadic setting [14, 15]. Systems that provide
notification services are another example in which resources need to contact
mobile components. It should be noted, however, that providing messaging
support is only the first step towards supporting the context management needs
of a mobile computing system.

While context management can be left in the hands of the individual com-

8



ponents, this is not a strategy likely to lead to rapid software development. It
is more reasonable to provide middleware that enforces a certain clean concep-
tual view while offering the right tools for managing contextual changes. We
draw a distinction here between maintaining the context and responding to
contextual changes, a topic we will return to at the end of this section. Re-
garding context maintenance, two issues seem to be particularly important in
differentiating among various software support strategies, whether they are im-
plemented as part of middleware, agent systems, or mobile code language: the
level of support provided by the underlying runtime system and the conceptual
model enforced. Regarding the former, the two extremes seem to be making
context maintenance explicitly the responsibility of the component or achieving
full transparency. When an agent changes location on its own and arrives at
a new site, it may be required to decide: how visible it is necessary to be to
others by engaging in some registration process; which old acquaintances should
be preserved; what services to register with the local site for availability to other
agents; what resources it needs to discover and access at the new location; etc.
All these activities, even if supported by some sort of mobility middleware, pro-
vide flexibility but also place significant demands on the component designer.

Much of our own work has centered on making context maintenance fully
transparent. In such cases, the conceptual model that underlies the basis for
the context maintenance is of paramount importance. The designer relies on its
understanding to generate correct code. One of the models supported by Mo-
bile Unity is the notion of transparent transient sharing of program variables.
Component code is simply written under the assumption that variables may
undergo spontaneous value changes in response to the arrival and departure of
other components in the vicinity or due to modifications made by them. What
variables are shared and under what conditions is specified using a declara-
tive notation—its operational semantics are ultimately reduced to coordination
actions associated with statements in the basic Mobile Unity notation. The
condition for sharing variables can be arbitrary but it is usually related to rel-
ative positions among components, e.g., at the same location or within radio
contact.

A more complex example of transparent context management involves the
use of global virtual data structures. In a virtual memory system the applica-
tion program perceives the memory space to be larger than the physical reality
and the support system takes upon itself the responsibility of maintaining this
illusion in a seamless manner. Similarly, a global virtual data structure creates
the appearance that the individual mobile unit has access to shared data despite
the presence of mobility. Consider, for instance, a graph and two very distinct
settings, one involving agents and the other ad hoc networks. In one case, the
graph is stored in a distributed fashion across the nodes of a fixed network.
Agents move from node to node like crawling ants carrying data from vertex to
vertex. Each agent is aware of the graph and of the presence of other agents co-
located at the same vertex. In the second case, the graph is distributed among
the mobile hosts but only that portion of the graph that is connected and stored
among hosts within communication range is accessible to the application. Hosts

9



can trade sections of the graph as long as such changes cannot have any effect
on hosts that are out of contact. In both cases, behavior analysis is carried out
by reasoning about the global structure but all actions are local. Furthermore,
the actions involving the structure are specific to it. Lime is one system that
follows this strategy by employing a tuple space partitioned among both hosts
and agents.

Context changes can be induced not only by movement (through associated
changes in data and resource availability) but also due to quality of service
considerations, e.g., variations in bandwidth and delay. Regardless of their
source, context changes are always important to the application and mechanisms
for responding to such changes are needed. The most commonly used strategy is
to provide an event notification mechanism. A predefined set of events is made
available to the application, which can register in turn appropriate responses
for specific events. A more general approach is to furnish the application with a
general event notification mechanism and allow it to define both the set of events
of interest and the choice of responses. A very different alternative involves the
notion of reactive statements. As used in Mobile Unity and Lime, the execution
of reactions is not triggered by events, rather by specific state properties. Once
activated, they continue to execute at high priority for as long as the condition
persists. We will return to this topic in the next section that covers coordination
constructs and the manner in which they contribute to context definition and
maintenance.

3 Coordination Constructs

Coordination is a programming paradigm that seeks to separate the definition
of components from the mechanics of interaction. In traditional models of con-
currency, processes communicate with each other via messages or shared vari-
ables. The code of each component is explicit about the use of communication
primitives and the components are very much aware of each other’s presence.
Actually, communication fails when one of the parties is missing. By contrast,
coordination approaches promote a certain level of decoupling among processes
and the code is usually less explicit about mechanics of the interactions. Ideally,
the interactions are defined totally outside the component’s code. Linda [6] is
generally credited with bringing coordination to the attention of the program-
ming community. By using a globally shared tuple space, Linda made temporal
and spatial decoupling a reality in parallel programming and simplified the pro-
gramming task by providing just three basic operations for accessing the tuple
space. Interactions among processes were brought up to a new level of abstrac-
tion and the programming task was made simpler. Reasonable implementations
of the tuple space made the approach effective.

Our concern, however, is not with coordination in general but with the role
it can play in simplifying the task of developing mobile applications. Mobility
can benefit from a coordination perspective because decoupling enhances one’s
ability to cope with open systems. At the same time, mobility adds a new and

10



challenging element to coordination, the dynamic changes taking place as com-
ponents move through space. Some properties that may be desirable in general
become even more important in the mobile setting. Promoting a coordination
style that is totally transparent to the participating components, for instance,
may enhance decoupling and increase the ability to interact with components
previously unknown. Other interesting properties are specific to mobility. The
notion of transient interactions is a direct result of the fact that components
move relative to each other going in and out of communication range. The con-
cept of transitive interactions surfaces when one needs to consider establishing
group-level interactions out of pairwise communications. At the other extreme,
logical mobility in the presence of full server access across global networks leads
to almost unreal modes of distant interaction where components move from
location to location while preserving the ability to access resources as if they
were local. In general, space becomes a major factor in formulating coordina-
tion issues. In physical mobility, the distance between components can become
a barrier to wireless communication thus making interactions conditional on
relative positions of components. Even in logical mobility, components may
be limited to interacting only when present at a common location. Finally,
spatial properties are commonly combined with quality of service and security
considerations to define the nature of the coordination process.

In the remainder of this section we discuss three models corresponding to
three distinct modes of coordination. While they involve both physical and logi-
cal mobility, separately and in a fully integrated fashion, the distinctions among
the three models are most striking when we examine the way coordination is
used to address similar problems in very different contexts. Mobile Unity is
illustrative of what one might call an active coordination strategy. Coordina-
tion is specified operationally and bridges (in a mostly transparent manner) the
states of components when they are found in specific relations to each other.
Lime is representative for a passive coordination style very similar to Linda but
adjusted to the realities of ad hoc mobility. Transiently and transitively shared
tuple spaces provide the coordination medium but programs need to make ex-
plicit use of tuple space operations to gain access the tuples located on hosts
within proximity. Finally, CodeWeave illustrates one of the more exotic ap-
plications of coordination. Components (codes fragments and aggregates) are
provided with primitives that facilitate code mobility. An operational specifi-
cation defines the meaning of these operations in terms of simpler coordination
primitives. One might call this style of coordination constructivist. The three
examples exhibit a great degree of similitude at the conceptual level but also
variability in the range of coordination constructs being employed. We view
this to be indicative of two complementary facts. On one hand, one can build a
common foundation and use it to examine the way coordination is used in mo-
bility. Mobile Unity seems to have many of the features required to accomplish
this. On the other hand, mobility covers such a vast expanse of possibilities that
many distinct models are likely to emerge. They will provide the conceptual
foundation for software systems (mostly middleware) designed to support the
development of mobile applications.

11



3.1 Mobile Unity

Mobile Unity [12] proposes a new notation and underlying formal model sup-
porting specification of and reasoning about mobile systems. The approach is
based on the Unity [2] model of concurrent computation. Its notation is ex-
tended with constructs for expressing transient interactions among components
in the presence of movement and reconfiguration.

Unity was conceived as a vehicle for the study of distributing computing,
and defined a minimalist model for specifying and reasoning about such systems.
The key elements of the Unity model are the concepts of variable and condi-
tional multiple assignment statement. Programs are simply sets of assignment
statements that execute atomically and are selected for execution in a weakly
fair manner. Multiple programs can be composed through the union operator.
The result is a new system that consists of the union of all the program variables
and the union of all the assignment statements. Variables with the same name
are assumed to be identical, i.e., they reference the same memory location. Our
interest in mobility forced us to reexamine the Unity model with the following
goals in mind: to provide for a strong degree of program decoupling, to model
movement and disconnection, and to offer high-level programming abstractions
for expressing the transient nature of interactions in a mobile setting.

One key design decision in the development of Mobile Unity was the choice
of the program as the unit of mobility. This is a natural choice for Unity

because it allows for simple functional decomposition and composition (e.g.,
through program union and the use of similarly named variables). Therefore,
the first major aspect of a Mobile Unity system description is the specification
of the individual mobile components, a standard Unity program for each. How-
ever, unlike standard Unity, Mobile Unity seeks to foster a highly decoupled
style of programming by requiring the namespaces of the programs to be dis-
joint. This allows each program to operate without interference from the other
programs it is composed with. As shown later, coordination among components
is allowed, but it is separated from normal processing. Additionally, each pro-
gram is augmented with a distinguished location variable. This variable may
correspond to latitude and longitude for a physically mobile component, or it
may be a network or memory address for a mobile agent. The specific definition
is left intentionally out of the model. However, by making location a part of the
program specification, it can be manipulated from within the program to allow a
program to control its own location. Furthermore, the location of the individual
components can be used in reasoning about the system behavior. Actually, by
reducing movement to value assignment, the standard Unity proof logic may
be used to verify program properties despite the presence of mobility.

The second major aspect of a Mobile Unity specification is the Interac-
tions section which defines all interactions among components. Because the
namespaces of the programs are disjoint, no statement within a program can
reference a variable in another program. The Interactions section is the only
place where variables from multiple programs can be addressed. In this man-
ner, the definition of coordination is separated from the definition of standard

12



processing.
In our work we have shown that only a very small set of primitive constructs

is needed to build a wide range of high-level coordination constructs and models.
These primitives include asynchronous value transfer, statement inhibition, and
reactive statements. Statement inhibition restricts the execution of a statement
in one program based on the state of another program. Reactive statements are
enabled by programmer specified global conditions and continue to execute at
high priority until they no longer cause any state changes. The standard Unity

proof logic has been extended to incorporate the new Mobile Unity primitives,
but the underlying proof logic remains unchanged. Using these three primitives
and a minor technical change to the basic Unity notation, Mobile Unity al-
lowed us to define a number of interesting coordination constructs including:
variables which are shared in a transient and transitive manner based on the
relative positions of the mobile programs; statements that are synchronized in a
transient and transitive manner according to a variety of synchronization rules;
clock synchronization with and without drift; etc.

Reactive statements provide a mechanism for extending the effect of indi-
vidual assignment statements with an arbitrary terminating computation. This
construct allows us to simulate the effects of the interrupt processing mecha-
nisms that are designed to react immediately to certain state changes. The
construct is particularly useful when its guard involves the relative locations
of components. The result is the execution of an additional state transition in
response to a new connection or disconnection.

The standard Unity model for shared variables is static. In Mobile Unity

transient variable sharing is implemented using the reactive statements. High
level constructs are provided for symmetric and asymmetric update of variables
throughout the period during which they are shared, for establishing a single
common value when a new sharing relation is established (engagement), and
for defining the values resulting from the disengagement of variables as compo-
nents move away. Transient statement synchronization is defined using variable
sharing as a building block.

The constructs provided by Mobile Unity have been put to test in the
specification and verification of Mobile IP [13] and of a variety of mobile code
paradigms including code-on-demand, remote evaluation, and mobile agents [19].
In the next two subsections we will present two other uses of Mobile Unity.
One involves its application to fine-grained code mobility and the other relates
to defining the formal foundation for mobility middleware involving transient
sharing of tuple spaces.

3.2 CodeWeave

The core concepts of Mobile Unity are geared towards the mobility of com-
ponents. Programs may represent mobile hosts moving across space, or mobile
agents roaming network hosts. Nevertheless, this coarse-grained view of mo-
bility is indeed limited, as evidenced by state of the art technology. In the
realm of logical mobility, mobile agent technology still awaits for massive ex-

13



ploitation in the design of distributed applications, while finer-grained forms of
mobility, often collectively referred to as mobile code, already found their way
into recent proposals for distributed middleware. For instance, Java Remote
Method Invocation (RMI) exploits the dynamic class loading capabilities of the
Java language to allow, on both client and server, on-the-fly retrieval of stub
and application classes that are needed to support a remote method invocation.
The capability of relocating portion of the code and of the state of a mobile
unit, rather than always moving all the constituents together, brings additional
flexibility in the design of distributed applications.

CodeWeave [11] is a specialization of Mobile Unity conceived for modeling
fine-grained mobility. CodeWeave retains the operational model underlying
Mobile Unity, but allows the designer to specify migration of the constituents
of a Mobile Unity program. The unit of mobility in CodeWeave can be as
small as a single Unity statement or variable. The former is referred to as
a code unit, while the latter is called a data unit. Units take part into the
general system behavior only when they are part of a process. Processes can
be organized in hierarchies, and the containment relation constrains the ambit
of visibility of a unit. Thus, processes are the unit of scoping and execution.
Processes and units exist at a given location, which may be a process or a site.
Units that reside on a site do not belong to any process, they represent available
resources that may be shared among the co-located processes.

CodeWeave provides primitives for moving (or cloning) units. Migration
of units across hosts may represent the relocation of a class or an object in a
distributed middleware. Migration of a unit from a host into a process may
represent dynamic linking or deserialization mechanisms. Relocation of state
and behavior is not the only dimension relevant to logical mobility. As dis-
cussed in [5], logical mobility is often exploited to gain access to a site’s shared
resources, hence the management of bindings to shared resources upon migra-
tion is a key issue. CodeWeave provides a notion of reference that enables
processes to access a unit without explicitly (and exclusively) containing it.

The same primitives discussed thus far actually apply to processes. For in-
stance, a move operation applied to a process causes its migration together with
all its constituents. Hence, the fine-grained model put forth by CodeWeave

subsumes, rather than replace, the coarse-grained perspective where the units
of execution and of mobility coincide. For instance, mobile agents are still mod-
eled naturally by using the process abstraction. Furthermore, the ability to
represent nested processes enables the modeling of complex structures built by
sites, places, and agents like those introduced in Telescript [20], similarly to
what Mobile Ambients or MobiS provide.

CodeWeave represents fine-grained mobility by relying completely on the
semantics of Mobile Unity. The units of mobility of CodeWeave, i.e., state-
ments and variables, are reinterpreted as Mobile Unity programs, whose move-
ment and sharing is ruled by statements in the Interactions section, according
to the semantics specified in CodeWeave. For instance, the movement of a
process along with all its constituents is actually reduced to the movement of
a Mobile Unity program representing the CodeWeave process, followed by

14



a set of reactions that migrate the Mobile Unity programs representing its
constituents in the same atomic step.

Several reflections can be made about the model fostered by CodeWeave.
The fact that the model’s semantics is reduced completely in terms of Mobile
Unity is indicative of the fact that the constructs of Mobile Unity effectively
capture the essence of mobile interactions. However, the ability to model and
reason about mobile systems at a level of abstraction that is closer to the domain
opens up new possibilities.

On one hand, the availability of fine-grained constructs fosters a design style
where mobile agents are represented at increasing levels of refinement. Existing
systems typically do not allow a mobile agent to move along with all its code, due
to performance reasons. Different systems employ different strategies, ranging
from a completely static code relocation strategy that separates at configuration
time the code that must be carried by the agent from the one that remains on
the source host (like in Aglets [8]), to completely dynamic forms under the
control of the programmer (like in µCode [17]). Our approach allows modeling
of a mobile agent application at different levels of detail. One can start with
a high level description in terms of processes representing the mobile agents
and continue to refine this view using the fine-grained constructs that specify
precisely which constituents of an agent are allowed to move with it and which
are not.

On the other hand, the perspective put forth by CodeWeave sheds a new
light on coordination. Coordination no longer involves just communication
about parties, which at most may be mobile and migrate to achieve local coor-
dination. When fine-grained logical mobility is part of the picture, components
are malleable and open to changes that may occur as part of the coordination
protocol. The cooperative behavior of components is no longer determined only
by the information exchanged during coordination, but also by new behaviors
that can be exchanged as program fragments, and dynamically become part of
a component. Examples include the ability to exploit new coordination primi-
tives and coordination protocols downloaded on the fly while the computation
is being executed.

This view may even lead to new models of computation. Insofar we always
assumed that moving a statement or a variable in a CodeWeave system does
not necessarily imply achieving this also in the implementation language. We
thought of it allowing us to model the movement of a unit of mobility (e.g., a
Java object or class) that is finer grained than the unit of execution (e.g., a Java
thread). Nevertheless, the ability to move a single statement or variable in a
real programming language is an intriguing possibility, one that may be realized
by exploiting the new generation of scripting languages. Some researchers [4]
proposed schemes where XML tags are migrated and dynamically “plugged
in” an XML script already executing at the destination. This scheme may
amplify the improvement in flexibility and customizability brought in by mobile
code. An even wilder scenario is the one where it is possible not only to add
or substitute programming language statements that conform to the semantics
of the language, but also to extend such semantics dynamically by migrating

15



statements along with a representation of the semantics of the constructs they
use. As proposed at a recent conference [7], this could open up an economic
model where the concept of software component includes not only application
code or libraries, but even the very constituents of a programming language.

Another interesting opportunity is grounded in the binding mechanism that
rules execution of units within a process. In our model, a statement can actually
execute only if it is within a process, and if all of its variables are bound to
corresponding data units. This represents the intuitive notion that a program
executes within a process only if the code is there and memory has been allocated
for its variables. In languages that provide remote dynamic linking, it is always
a code fragment that gets dynamically downloaded into a running program.
However, the symmetry between data and code units in our model suggests a
complementary approach where not only the code gets dynamically downloaded,
but also the data. Thus, for instance, much like a class loader is invoked to
resolve the name of a class during execution of a program, similarly an “object
loader” could be exploited to bring an object to be co-located with the program
and thus enable resumption of the computation. Another, even wilder, follow-up
on this idea is an alternative computation model where code and data are not
necessarily brought together to enable a program to proceed execution, rather
it is the program itself (or a whole swarm of them, to enhance probability of
success) that migrates and proceeds to execute based on the set of components
currently bound to it. This way, a program is like an empty “pallet” wandering
on the net and occasionally performing some computation based on the pieces
that fill its holes at a given point.

Verification may be considered under a new light as well. CodeWeave in-
herits the temporal logic of Mobile Unity and thus, besides enabling reasoning
about the location of mobile programs, it also allows reasoning about the loca-
tion of their constituents. Hence, verification can be exploited not only to prove
the overall correctness of the system, but also to optimize the placement of the
constituents of its mobile components, placing them only on the nodes where
they will be needed. For instance, a mobile agent could be written in such a
way that it does not need to carry with it a given class, because a formal proof
has been developed to guarantee that, for the given system in a given state, the
class will be already present at destination. Clearly, this approach potentially
enables bandwidth and storage savings, and is particularly amenable for use in
environments where resources are scarce, e.g., wireless computing with PDAs.

3.3 Lime

Lime [18] takes a pragmatic step toward the development of applications for mo-
bility by describing a model for coordination among mobile components which
frees the application programmer from direct concern with many complexities of
the environment while still providing a powerful programming paradigm. The
model itself is formed by adapting the well-known Linda coordination model to
accommodate the essential features of mobility, and the paradigm is presented
to the application programmer in the form of middleware.

16



The fundamental properties of the Linda model are a globally accessible,
static tuple space and a set of processes which interact by writing to and read-
ing from the shared tuple space. None of the processes need to co-exist in either
time or space to coordinate, and because access to the data is based on pattern
matching, a process need not know the identity of the other processes in order
to successfully interact. This decoupled style of interaction is of great utility in
a mobile setting where the parties involved in communication change dynam-
ically due to migration or shifts in connectivity patterns. On the other hand,
the decoupled nature of Linda is made possible by the global accessibility and
persistence of the tuple space.

When mobility is considered, especially the ad hoc model of physical mo-
bility, no predefined, static, global context can exist for the computation. The
current context is defined by transient communities of mobile components. The
idea underlying Lime is to maintain a global virtual tuple space, physically dis-
tributing the contents of this structure among the mobile units. As connectiv-
ity among components changes, different projections of the global virtual tuple
space are accessible to each component. From a more local perspective, each
mobile unit is responsible for a portion of the global state (i.e., one partition
of the global virtual tuple space). When two or more components are within
communication range, the contents of their tuple spaces are shared transiently
and transparently.

To the application programmer, all interactions with the shared data space
occur via local accesses to a component known as the interface tuple space, or
its. The its effectively provides a window into the global virtual tuple space
which expands as mobile components come within range and contracts as con-
nectivity among components is lost. Transient sharing of the contents of the
tuple spaces within the its constitutes a very powerful coordination abstrac-
tion, as it provides a mobile unit with the illusion of a local tuple space that
contains all the tuples belonging to the members of the currently connected
community, without the need to explicitly know their identities. Additionally,
because access to the its is entirely local, the application programmer can issue
local operations, while reasoning about their effect in the global context.

The operations provided on the its are identical to the basic Linda opera-
tions, and by default operate over the currently accessible data. This permits a
context dependent style of interaction by fulfilling queries based on the current
connectivity state. Additionally, Lime extends the basic Linda operations to al-
low data to be placed with a specific mobile component as connectivity allows,
and also to query a specific projection of the tuple space based on the mobile
component responsible for storing that data. Such interactions enable a pro-
gramming style in which the application programmer can access data based on
a specific, known location. Thus, Lime provides both location-transparent and
location-aware styles of data access, in order to support applications requiring
different styles of programming.

Thus far, the description of the mobile components has been left intentionally
abstract, however the Lime model provides a unique integration of physical and
logical mobility. Basically, the logically mobile components, or mobile agents,

17



form the active computational units of the Lime system, and it is their respon-
sibility to hold individual partitions of the tuple space. As an agent migrates, it
carries its portion of the tuple space with it as part of its state. The integration
with physical mobility comes because these logically mobile components must
reside on physical hosts that move through space and connect with one another
based on the distance between them. We assume that when two agents reside
on the same host, they are able to communicate, thus forming a host level tuple
space containing the tuples of the agents located on that host. Similarly, when
hosts are within communication range, the host level tuple spaces are shared to
form a federated tuple space. To emphasize the power of the abstraction pro-
vided by the model, we note again that the basic Linda operations function over
the federated tuple space. This makes coordination visible only as a changing
set of tuples over which operations are evaluated, protecting the programmer
from the changes inherent in the mobile environment.

As previously noted, the mobile environment is highly dynamic, and it is of-
ten desirable for applications to react to changes in the environment. In Mobile
Unity, this led to the development and integration of the reactive programming
model. Linda already supports one model to react to the state of the system,
namely a “pull” model in which a process blocks until a tuple matching a query
appears in the tuple space. Because Lime provides the same primitive opera-
tions as Linda, this functionality is present in the mobile environment, however
Lime also makes available Mobile Unity’s reactive model of programming, en-
abling a “push” style of coordination. In other words, instead of a process
waiting to pull information from the tuple space when it is written, the tuple
space itself is charged with pushing information about the state to a process or
executing a piece of code which has been registered. Because the reactions are
controlled from within the Lime system, a higher degree of atomicity between
the discovery of a matching tuple and the execution of the user’s registered
reaction can be guaranteed. Pragmatic considerations about how to enforce
atomicity guarantees in the distributed setting forced us to incorporate in Lime

two kinds of reactions, weak and strong. They provide differing degrees of atom-
icity and are subject to different applicability constraints motivated by the need
to provide an effective implementation. In our experience, the combination of
this form of reactive programming with the transiently shared tuple space pro-
vides a programming abstraction that is extremely powerful and useful. Thus,
for instance, programmers are able to specify once and for all that a reaction
must be executed whenever a given condition takes place in any point of the
federated tuple space, and possibly even within the context of a component that
was unknown at registration time.

The reactive mechanism of Lime has proven useful not only for reacting to
changes in the data state of applications, but also for reacting to changes in the
system context, specifically the arrival and departure of agents and hosts. This
hints at another feature of Lime, namely the exposure of the system context to
the application programmer. Specifically the system context consists of the mo-
bile hosts that are within communication range and the mobile agents contained
on each of those hosts. It is also possible to augment this basic information with

18



other system characteristics such as the available bandwidth between a pair of
hosts or the resources available within a host. We approach the system context
as the dual to the data context, making it available as a read only tuple space
maintained wholly from within the Lime system and accessible with the same
primitives as all other transiently shared Lime tuple spaces. In other words, the
application programmer can query and react to this Lime system tuple space
in the same manner it operates over the data tuple space, with the exception
that the system tuple space cannot be written to.

Lime has been successful primarily on two fronts. First, a formal specifica-
tion of the Lime model has been written in Mobile Unity, providing both clear
semantics for the operations, and serving as an example of the practical use of
Mobile Unity as the specification language for a mobile middleware system.
With this semantic definition in hand, it is possible to prove properties about
the overall Lime system. Examples include the completion of the engagement
protocol when a new host joins the Lime system and properties of applications
which have been specified in Mobile Unity using the Lime constructs. Second,
an implementation of Lime exists as a Java package available for distribution. It
has been used to develop a variety of mobile applications ranging from collabo-
rative work scenarios to spatial games. The simplicity of the Linda coordination
model and its natural adaptation to transiently shared tuple spaces leads to a
shallow learning curve for the Lime programmer and to ease of implementation.

4 Conclusions

Mobility is an area rich in research opportunities, both intellectually and prag-
matically. It demands a new way of thinking and requires design strategies
that are distinct from the traditional distributed computing. Our own research
into mobility spans a broad range of issues, from formal models to middleware
development. Regardless of the direction we explored, three issues emerged as
central to our investigation in each case: the choice of the unit of mobility, the
definition of space, and the manner in which context is maintained and per-
ceived. In this paper we tried to develop these themes by exploring the range
of options one can envision and by contrasting what is possible with what we
actually employed in three specific models. Another important message of this
paper is the notion that coordination played a key role both in our ability to
provide a clean formal treatment of mobility and in our attempt to simplify the
development of mobile applications. On one hand, a coordination perspective
facilitated an abstract and modular treatment of mobility. On the other hand,
a coordination-centered design of the middleware made it possible to offer the
programmer a simpler conceptual model of interaction among mobile units and
to delegate to the runtime support system much of the effort associated with
maintaining and updating the context visible to the individual units. Because
coordination promotes global thinking and local action, it is ideally suited for
addressing the needs of mobility in all its forms.

19



References

[1] L. Cardelli and A. Gordon. Mobile Ambients. Theoretical Computer Science,
240(1), 2000. To appear.

[2] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

[3] M. Corson, J. Macker, and G. Cinciarone. Internet-Based Mobile Ad Hoc Net-
working. IEEE Internet Computing, 3(4), July 1999.

[4] W. Emmerich, C. Mascolo, and A. Finkelstein. Incremental Code Mobility with
XML. Technical Report 99-95, University College London, October 1999. Sub-
mitted for publication.

[5] A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. IEEE
Trans. on Software Engineering, 24(5), 1998.

[6] D. Gelernter. Generative Communication in Linda. ACM Computing Surveys,
7(1):80–112, Jan. 1985.

[7] G. Glass. Agents and Internet Component Technology. Invited talk at 3rd Int.
Conf. on Autonomous Agents (Agents’99), May 1999.

[8] D. B. Lange and M. Oshima, editors. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

[9] T.M. Malone and K. Crowston. The Interdisciplinary Study of Coordination.
ACM Computing Surveys, 26(1):87–119, March 1994.

[10] C. Mascolo. MobiS: A Specification Language for Mobile Systems. In P. Ciancarini
and A. Wolf, editors, Proceedings of the 3rd Int. Conf. on Coordination Languages
and Models (COORDINATION), volume 1594 of LNCS, pages 37–52. Springer,
April 1999.

[11] C. Mascolo, G.P. Picco, and G.-C. Roman. A Fine-Grained Model for Code
Mobility. In Proc. of the 7th European Software Engineering Conf. held jointly
with the 7th ACM SIGSOFT Symp. on the Foundations of Software Engineering
(ESEC/FSE ’99), LNCS, Toulouse (France), September 1999. Springer.

[12] P.J. McCann and G.-C. Roman. Compositional Programming Abstractions for
Mobile Computing. IEEE Trans. on Software Engineering, 24(2), 1998.

[13] P.J. McCann and G-.C. Roman. Modeling Mobile IP in Mobile Unity. ACM
Transactions on Software Engineering and Methodology, 8(2), April 1999.

[14] A.L. Murphy and G.P. Picco. Reliable Communication for Highly Mobile Agents.
In Proc. of the 1st Int. Symp. on Agent Systems and Applications and 3rd Int.
Symp. on Mobile Agents (ASA/MA ’99), pages 141–150, Palm Springs, CA, USA,
October 1999. IEEE Computer Society.

[15] A.L. Murphy, G.-C. Roman, and G. Varghese. Tracking Mobile Units for Depend-
able Message Delivery. Technical Report WUCS-99-30, Washington University,
Dept. of Computer Science, St. Louis, MO, USA, December 1999.

[16] C. Perkins. IP Mobility Support. RFC 2002, IETF Network Working Group,
1996.

[17] G.P. Picco. µCode: A Lightweight and Flexible Mobile Code Toolkit. In Proc.
of the 2nd Int. Workshop on Mobile Agents, LNCS 1477. Springer, 1998.

20



[18] G.P. Picco, A.L. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In
D. Garlan, editor, Proc. of the 21st Int. Conf. on Software Engineering, pages
368–377, May 1999.

[19] G.P. Picco, G.-C. Roman, and P.J. McCann. Expressing Code Mobility in Mobile
UNITY. In M. Jazayeri and H. Schauer, editors, Proc. of the 6th European Soft-
ware Engineering Conf. held jointly with the 5th ACM SIGSOFT Symp. on the
Foundations of Software Engineering (ESEC/FSE ’97), volume 1301 of LNCS,
pages 500–518, Zurich, Switzerland, September 1997. Springer.

[20] J.E. White. Telescript Technology: Mobile Agents. In J. Bradshaw, editor,
Software Agents. AAAI Press/MIT Press, 1996.

21


