

ANALYSING SECURITY REQUIREMENTS OF INFORMATION
SYSTEMS USING TROPOS

Keywords: Information Systems Analysis, Security Analysis, Early Requirements stage, Tropos methodology

Abstract: Security is an important issue when developing complex information systems, however very little work has
been done in integrating security concerns during the analysis of information systems. Current
methodologies fail to adequately integrate security and systems engineering, basically because they lack
concepts and models as well as a systematic approach towards security. We believe that security should be
considered during the whole development process and it should be defined together with the requirements
specification. This paper introduces extensions to the Tropos methodology to accommodate security. A
description of new concepts is given along with an explanation of how these concepts are integrated to the
current stages of Tropos. The above is illustrated using an agent-based health and social care information
system as a case study.

1 INTRODUCTION

Analysis is one of the most important stages in the
whole software engineering process. If the analysis
of the system is wrong all the following stages will
end up wrong. Thus, it is very important during the
analysis stage that the software engineers understand
exactly the problem that they have to tackle. This
can be a very difficult process especially if the
system is new and there is no previous version of a
computer system to serve as a model. To understand
the problem, the software engineer must understand
the user needs and requirements. Concepts and
languages for analysis are needed to deal with the
system as a whole with organisational and
coordination properties, as well as the individual
components of the system and their properties.

Tropos (Castro, 2001) is an information system
development methodology, tailored to describe both
the organisational environment of a system and the
system itself, employing the same concepts
throughout the development stages. Tropos adopts
the i* modelling framework (Yu, 1995), which uses
the concepts of actors, goals, soft goals, tasks,
resources and social dependencies for defining the
obligations of actors (dependees) to other actors
(dependers). Actors have strategic goals and
intentions within the system or the organisation and
represent (social) agents (organisational, human or
software), roles or positions (represent a set of
roles). A goal represents the strategic interests of an
actor. In Tropos we differentiate between hard (only
goals hereafter) and soft goals. The latter having no
clear definition or criteria for deciding whether they

are satisfied or not. A task represents a way of doing
something. Thus, for example a task can be executed
in order to satisfy a goal. A resource represents a
physical or an informational entity while a
dependency between two actors indicates that one
actor depends on another to accomplish a goal,
execute a task, or deliver a resource.

One distinctive characteristic of Tropos is the
fact that it covers the very early phases of
requirements analysis. This allows for a deeper
understanding of the environment where the
software must operate, and of the kind of
interactions that should occur between software and
human users. By considering early phases of the
requirements analysis, the main advantage is that
one can capture not only the what or the how, but
also the why a piece of software is developed. This,
in turn, supports a more refined analysis of the
system dependencies and, in particular, for a much
better and uniform treatment, not only of the
system's functional requirements, but also of the
non-functional requirements (the latter being usually
very hard to deal with). Tropos covers four main
software development phases:

Early Requirements, concerned with the
understanding of a problem by studying an existing
organisational setting; the output of this phase is an
organisational model, which includes relevant actors
and their respective dependencies;

Late requirements, where the system-to-be is
described within its operational environment, along
with relevant functions and qualities; this description
models the system as a (small) number of actors
which have a number of dependencies with actors in
their environment; these dependencies define the
system’s functional and non-functional
requirements;

Architectural design, where the system’s global
architecture is defined in terms of subsystems,
interconnected through data and control flows;
within the framework, subsystems are represented as
actors and data/control interconnections are
represented as (system) actor dependencies;

Detailed design, where each architectural
component is defined in further detail in terms of
inputs, outputs, control, and other relevant
information. Tropos is using elements of UML
(Jacobson, 1999) to complement the features of i*.

In addition to the graphical representation,
Tropos provides a formal specification language
called Formal Tropos (Fuxman, 2001).

Although Tropos can partially model security
concerns (Mouratidis, 2002 – Yu, 2002), it has not
conceived with security on mind and it does not
provide enough models and notations to adequately
model security aspects. Security is an important
issue when developing complex information systems
and the lack of models and notation to capture it,
restricts the usefulness of a development
methodology.

However, so far very little work has taken place
in integrating security and systems engineering. The
common approach towards the inclusion of security
within a system is to identify security requirements
after the definition of a system. This approach has
provoked the emergence of computer systems
afflicted with security vulnerabilities (Stallings,
1999). From the viewpoint of the traditional security
paradigm, it should be possible to eliminate such
problems through more extensive use of formal
methods and better software engineering.

We believe that security should be considered
during the whole development process and it should
be defined together with the requirements
specification. By considering security only in certain
stages of the development process, more likely,
security needs will conflict with functional
requirements of the system. Taking security into
account along with the functional requirements
throughout the development stages helps to limit the
cases of conflict, by identifying them very early in
the system development, and find ways to overcome
them. On the other hand, adding security as an
afterthought not only increases the chances of such a
conflict to exist, but it requires huge amount of
money and valuable time to overcome it, once they
have been identified (usually a major rebuild of the
system is needed).

This paper introduces extensions to Tropos, to
accommodate security concerns during the early
requirements analysis. The proposed extensions are
illustrated with the aid of a case study, the electronic
Single Assessment Process (eSAP) system, a real-

life integrated health and social care information
system for older people (Mouratidis, 2002b). The
eSAP project is a joint research project, between the
Computer Science Department and the Sheffield
Institute for Studies on Ageing (SISA), both at the
University of Sheffield, and it aims to deliver the
Single Assessment Process, a national policy in
England of an integrated assessment of health and
social care needs of older people
[www.doh.gov.uk/scg/sap/].

This paper is structured as follows. Section 2
presents security concerns in software engineering.
Section 3 introduces an extension to the Tropos
methodology in order to accommodate security and
in Section 4 such an extension is applied to the
eSAP case study. Finally, Section 5 summarizes the
contributions of the paper and points to further work.

2 SOFTWARE ENGINEERING
AND SECURITY

Software engineering considers security
requirements, as well as performance and reliability
requirements, as non-functional requirements. Non-
functional requirements represent the constraints
under which the system must operate but also
introduce quality characteristics to the system.
Software designers have already recognised the
importance of integrating non-functional
requirements, such as performance and reliability,
into software design processes (Lampson, 2000)
however security requirements are still an
afterthought.

This typically means that security enforcement
mechanisms have to be fitted into a pre-existing
design therefore leading to serious design
challenges, which usually translate into software
vulnerabilities. Modern computer systems,
applications and operating systems are full of
security vulnerabilities in many levels therefore
leading to the violation of the security policy.
Adopting a security focus through the overall system
development process represents a solution to
mitigate such problems.

There are at least two reasons for the lack of
support for security engineering (Meadows, 1994).
The first reason is that security requirements are
generally difficult to analyse and model. A second
important reason is lack of developer acceptance and
expertise for secure software development. For
software developers, security interferes with features
and time to market. Furthermore security policies
are generally specified in terms of security models

that are not integrated with general software
engineering models.

A major problem in analysing non-functional
requirements is that there is a need to separate
functional and non-functional requirements yet, at
the same time, individual non-functional
requirements may relate to one or more functional
requirements. If the non-functional requirements are
stated separately from the functional requirements, it
is sometimes difficult to see the correspondence
between them. If stated with the functional
requirements, it may be difficult to separate
functional and non-functional considerations.

However, security is an important aspect in the
development of complex computerised systems and
according to Devanbu (Devanbu, 2000) “Security
concerns must inform every phase of software
development, from requirements engineering to
design, implementation, testing and deployment”.
The consideration of security in early software
development stages will aid in the elimination of
security vulnerabilities that are difficult and
expensive to correct during later stages.

3 MODELING SECURITY WITH
TROPOS

As mentioned above, Tropos has not been
conceived with security on mind. Thus, we have
extended Tropos, introducing concepts such as
security constraint, secure dependency, and secure
goal/ task/ resource in order to provide a systematic
process that will guide the developer in considering
security requirements during the whole development
phases.

Basically, security analysis consists of analysing
the security needs in terms of security constraints,
imposed to the system and the stakeholders, and of
the identification of secure entities that can
guarantee the satisfaction of such constraints. The
analysis allows also for the identification of
capabilities of the system in order to help towards
the satisfaction of the secure entities. In this work,
we focus manly in the integration of security
analysis in the early requirement stage of the Tropos
methodology.

3.1 Security Constraints

Constraints can be categorised according to the
non-functional requirement they are related to (e.g.,
reliability, performance or security constraints). In
this work we are interested in imposing to the
system constraints that help towards the security of

the system. We define security constraint as a
constraint that is related to the security of the
system. Since constraints can influence the security
of the system either positively (e.g., Allow Access
Only to Personal Record) or negatively (e.g., Send
Record Plain Text, not encrypted), we further define
positive and negative security constraints,
respectively.

In the early requirements analysis security
constraints are identified and analysed according to
the constraint analysis processes we have proposed
in (Mouratidis – 2002c). Security constraints are
then imposed to different parts of the system, and
possible conflicts between security and other
(functional and non functional) requirements of the
system are identified and solved. To identify these
conflicts we differentiate between security
constraints that contribute positively or negatively to
the other requirements of the system. It is worth
mentioning that we consider a security constraint
contributing to a higher level of abstraction,
meaning that a security constraint does not involve
the identification of particular security protocols so
that it does not restrict the development of the
system to a specific security solution. This means we
are not taking into consideration specific security
protocols that should be decided during the
implementation of the system, and that most of the
times restrict the design with the use of a particular
implementation language.

A security constraint is represented graphically
as shown in figure 1.

Figure 1: A graphical representation of a security
constraint

3.2 Secure Entities

The term secure entities involves any secure
goals, tasks and resources of the system. A secure
entity is introduced to the actor (or the system) in
order to help in the achievement of a security
constraint. For example, if a health professional
actor has the security constraint Share Info Only If
Consent Obtained, the secure goal Obtain Patient
Consent can be introduced to this actor in order to
help in the achievement of the constraint.

A secure goal does not particularly define how
the security constraint can be achieved, since (as in
the definition of goal, see (Yu, 1995)) alternatives
can be considered. However, this is possible through
a secure task, since a task specifies a way of doing
something (Yu, 1995). Thus, a secure task
represents a particular way for satisfying a secure
goal. For example, for the secure goal Check
Authorisation, we might have secure tasks such as
Check Password or Check Digital Signatures.

A resource that is related to a secure entity or a
security constraint is considered a secure resource.
For example, an actor depends on another actor to
receive some information and this dependency
(resource dependency) is restricted by a constraint
Only Encrypted Info.

Secure Entities are represented graphically by
introducing an S within brackets (S) before the text
description as shown in figure 2.

Figure 2: Graphical representation of secure entities (task,
goal, and resource, respectively)

3.3 Secure Dependencies

A secure dependency introduces security
constraint(s), proposed either by the depender (most
likely) or the dependee (most unlikely) in order to
successfully satisfy the dependency. For example a
Doctor (depender) depends on a Patient (dependee)
to obtain Health Information (dependum). However,
the Patient imposes a security constraint to the
Doctor to share health information only if consent is
achieved. Both the depender and the dependee must
agree in this constraint (or constraints) for the secure
dependency to be valid. That means, in the depender
side, the depender expects from the dependee to
satisfy the security constraints while in the dependee
side, a secure dependency means that the dependee
will make an effort to deliver the dependum by
satisfying the security constraint(s). There are two
degrees of security: Open Secure dependency
(normal dependency) and Secure dependency. In an
Open Secure Dependency some security conditions
might be introduced but if the dependee fail to
satisfy them, the consequences will not be serious.
This means that the security of the system will not
be in danger if some of these conditions are not

satisfied. An Open Secure Dependency is
graphically represented (Figure 3-a) as unmarked (as
the normal dependency). On the other side, there are
three different types of a secure dependency:
− Dependee Secure Dependency, depender

depends on dependee and dependee introduces
security constraints for the dependency.
Depender must satisfy the security constraints
introduced by the dependee in order to help in
the achievement of the secure dependency. This
type of secure dependency is graphically
represented with a constraint at the side of the
depender (Figure 3-b).

− Depender Secure Dependency, depender
depends on dependee, and depender introduces
security constraints for the dependency. The
dependee must satisfy the security constraints
introduced by the depender, otherwise the
security of the dependency will be in risk. This
type of secure dependency is graphically
represented with a constraint at the side of the
dependee (Figure 3-c).

− Double Secure Dependency, depender depends
on dependee and both depender and dependee
introduce security constraints for the
dependency. Both must satisfy the security
constraints introduced to achieve the secure
dependency. This type of secure dependency is
represented with constraints on both sides
(Figure 3-d).

Figure 3: The Different Types of Secure

Dependencies

3.4 Formal Tropos

Formal Tropos (Fuxman, 2001) complements
graphical Tropos by extending the Tropos graphical
language into a formal specification language
(Fuxman, 2001). The language offers all the
primitive concepts of graphical Tropos,
supplemented with a rich temporal specification
language, inspired by KAOS (Dardenne, 1993), that
has formal semantics and it is amenable to formal
analysis. In addition, Formal Tropos offers a textual
notation for i* models and allows the description of
different elements of the specification in a first order
linear-time temporal logic. A specification of
formal Tropos consists of a sequence of declarations
of entities, actors, and dependencies (Fuxman,
2001).

Formal Tropos can be used to perform a formal
analysis of the system and also verify the model of
the system by employing formal verification
techniques such as model checking to allow for an
automatic verification of the system properties
(Fuxman, 2001).

As with the graphical Tropos, Formal Tropos has
not been conceived with security on mind. Thus we
felt that extending Formal Tropos was the next
natural step in our security extensions for two
reasons. Firstly, formal Tropos fails to adequately
model some security aspects (such as secure
dependencies and security constraints), and secondly
formal Tropos allows the formal analysis of our
introduced concepts and thus provides formalism to
our approach. Towards this direction, we have
extended Formal Tropos grammar as shown below
(bold letters indicate the extensions).

entity:= Entity name [attributes] [creation-

properties] [invar-properties] [security-properties]

actor:= Actor name [attributes] [creation-

properties] [invar-properties] [security-properties]
[actor-goals]

dependency:= Dependency name type security-

type mode Depender name Dependee name
[attributes] [creation-properties] [invar-properties] [
fulfil-properties] [security-properties]

security-type:= security type (Depender

|Dependee |Double |Open Secure)

security-properties:= Security security-

property+

security-property:= Constraint property-

origin temporal-formula

4 THE ESAP EXAMPLE

In the early requirements analysis the goals and
the dependencies between the stakeholders (actors)
are modelled. For this purpose Tropos introduces
actor diagrams. In such a diagram each node
represents an actor, and the links between the
different actors indicate that one depends on the
other to accomplish some goals. In addition, security
constraints are imposed to the stakeholders of the
system (by other stakeholders). These constraints are
analysed and security entities are introduced.

In the case of the eSAP system, we have four
actors (Figure 4):

� Older Person: The Older Person that

wishes to receive appropriate health and
social care (patient)

� Professional: The health and/or social care
professional

� DoH: The English Department of Health
� Benefits Agency: An agency that helps the

older person financially

Figure 4: Actor diagram of the eSAP including security
constraints

Figure 4 illustrates part of the actor diagram of
the eSAP system taking into consideration security
constraints that are imposed to the stakeholders of
the system.

The Older Person depends on the Benefits
Agency to Receive Financial Support. However, the
Older Person worries about the privacy of their
finances so they impose a constraint to the Benefits
Agency actor, to keep their financial information
private. The Professional depends on the Older
Person to Obtain Information, however one of the
most important and delicate matters for a patient (in

our case the older person) is the privacy of their
personal medical information, and the sharing of it.
Thus most of the times the Professional is imposed a
constraint to share this information if and only if
consent is achieved. In addition, one of the main
goals of the R&D Agency is to Obtain Clinical
Information in order to perform tests and research.
To get this information the R&D Agency depends on
the Professional. However, the Professional is
imposed a constraint (by the Department of Health)
to Keep Patient Anonymity.

In addition, the security constraints imposed at
each actor are further analysed by identifying which
goals of the actor they restrict (Figure 5). The
assignment of a security constraint to a goal is
indicated using a constraint link (a link that has the
“restricts” tag). For example, the Professional actor
has been imposed two security constraints (Share
Info Only If Consent Obtained and Keep Patient
Anonymity). During the means-end analysis of the
Professional actor we have identified the Share
Medical Info goal. However, this goal is restricted
by the Share Info Only If Consent Obtained
constraint imposed to the Professional by the Older
Person. For the Professional to satisfy the
constraint, a secure goal is introduced Obtain Older
Person Consent. However this goal can be achieved
with many different ways, for example a
Professional can obtain the consent personally or
can ask a nurse to obtain the consent on their behalf.
Thus a sub-constraint is introduced, Only Obtain
Consent Personally. This sub constraint introduces
another secure goal Personally Obtain Consent.
This goal is divided into two sub-tasks Obtain
Consent by Mail or Obtain Consent by Phone.

The Professional has also a goal to Provide
Medical Information for Research. However, the
constraint Keep Patient Anonymity has been
imposed to the Professional, which restricts the
Provide Medical Information for Research goal. As
a result of this constraint a secure goal is introduced
to the Professional, Provide Only anonymous Info.

To illustrate the extensions to the Formal
Tropos, we take into account the secure dependency
Obtain OP information between the Older Person
and the Professional. This dependency can be
represented in the extended Formal Tropos as
follows.

Entity HealthInformation
 Attribute constant Record: Record

Entity Record
Attribute constant
 content: CarePlan
 accessControl: Boolean

 patient: Patient
 consent: boolean
Security Constraint
 ∃hi: HealthInformation ((hi.record=self) →

self.accessControl)

Actor Professional
 Attribute patients: PatientList
Goal provideCare
Creation condition
 ∃ p: Patient (In(p,self.patients) ∧ ¬p.helthOK)

 Actor Older Person
 Attribute healthOK: boolean
Goal MaintainGoodHealth
 Creation condition ¬self.healthOK
Security constraint
 ∀ rec: Record ((rec.patient=self) →

 rec.accessControl)

Dependency ObtainOPInformation
 Type Goal
 Security Type Dependee
 Mode Achieve and Maintain
 Depender Professional
 Dependee Older Person
 Attribute constant
 Creation condition

In(self.dependee,self.depender.patients)
∧self.dependee.healthOK

Security Constraint for depender
∀ rec: Record ((rec.patient=dependee) ∧

rec.consent)

5 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented extensions to the
early requirements stage of the Tropos methodology.
Security related concepts and notations were
introduced to the existing Tropos concepts in order
to allow the modelling of security concerns during
the early requirements stage. In addition, to provide
formalism for our newly introduced concepts, we
have extended Formal Tropos, a specification
language amenable to formal analysis.

During the process of extending Tropos it was
concluded that Tropos methodology facilitates the
consideration of security requirements for different
reasons:

− By considering the overall software

development process it is easy to identify
security requirements at the early requirements

Figure 5: Analysis of the Professional Actor

stage and propagate them until the implementation
stage. This introduces a security-oriented paradigm
to the software engineering process.
− Tropos allows a hierarchical approach towards

security. Security would be defined in
different levels of complexity, which will
allow the software engineer a better
understanding while advancing through the
process.

− Iteration allows the re-definition of security
requirements in different levels therefore
providing a better integration with system
functionality.

− Consideration of the organisational
environment facilitates the understanding of
the security needs in terms of the security
policy.

− Functional and non-functional requirements
are defined together however a clear
distinction is provided.

As mentioned above the proposed extensions

apply only on the early requirements stage of the
methodology. However, our aim is to provide a
clear well guided process of integrating security
and functional requirements throughout the whole
range of the development stages. Such a process
must use the same concepts and notations
throughout the development phases.

Thus, future work involves the assignment of
capabilities to the system to help towards the
satisfaction of the secure entities, and verify the
security of the system by analysing potential
attacks and if necessary introduce extra secure
capabilities. Then, the design of the system will
take place by taking into consideration the security
analysis performed in the previous stages.

In addition, we are constantly refining and
checking the identified concepts, notations, and
process by applying them to different real life
examples in order to justify them.

REFERENCES

Castro, J., Kolp, M. and Mylopoulos, J., 2001. A
Requirements-Driven Development Methodology. In
Proc. of the 13th Int. Conf. On Advanced
Information Systems Engineering (CAiSE’01),
Interlaken, Switzerland.

Dardenne, A., Van Lamsweerde, A., Fickas, S., 1993.
Goal-directed Requirements Acquisition, Science of
Computer Programming, 20, pp 3-50.

Devanbu, P., Stubblebine, S., 2000. Software
Engineering for Security: a Roadmap, Proceedings
of the conference of the future of Software
Engineering.

Fuxman, A., Pistore,, M., Mylopoulos, J., Traverso, P.,
2001. Model Checking Early Requirements
Specification in Tropos, Proceedings of the 5th Int.
Symposium on Requirements Engineering, RE’ 01,
Toronto, Canada.

Jacobson, I., Booch, G. and Rumbaugh, J., 1999. The
Unified Software Development Process, Addison-
Wesley.

Lampson, B., 2000. Computer Security in the real world,
Annual Computer Security Applications Conference.

Meadows, C., 1994. A Model of Computation for the
NRL protocol analyser, Proceedings of the 1994
Computer Security Foundations Workshop.

Mouratidis, H., Giorgini, P., Manson, G., Philp, I., 2002.
Using Tropos Methodology to Model an Integrated
Health Assessment System, Proceedings of the 4th
International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS-2002),
Toronto-Ontario.

Mouratidis, H., Philp, I., Manson, G., 2002b. Analysis
and Design of eSAP: An Integrated Health and
Social Care Information System, in the Proceedings
of the 7th International Symposium on Health
Information Management Research (ISHIMR2002),
Sheffield.

Mouratidis, H., 2002c. Extending Tropos Methodology
to Accommodate Security. Progress Report,
Computer Science Department, University of
Sheffield.

Stallings, W., 1999. Cryptography and Network
Security: Principles and Practice, Prentice-Hall,
Second Edition.

Yu, E., 1995. Modelling Strategic Relationships for
Process Reengineering, PhD thesis, Department of
Computer Science, University of Toronto, Canada.

Yu, E., Cysneiros, L., 2002. Designing for Privacy and
Other Competing Requirements, (to appear) 2nd
Symposium on Requirements Engineering for
Information Security (SREIS’ 02), Raleigh, North
Carolina.

	1	INTRODUCTION
	2	SOFTWARE ENGINEERING AND SECURITY
	3	MODELING SECURITY WITH TROPOS
	3.1	Security Constraints
	3.2 Secure Entities
	3.3 Secure Dependencies
	3.4 Formal Tropos

	4 THE ESAP EXAMPLE
	5 CONCLUSIONS AND FUTURE WORK
	REFERENCES

