
Multi-Agent and Software Architectures:
A Comparative Case Study

Paolo Giorgini1 Manuel Kolp2 John Mylopoulos3

 1 Department of Information and Communication Technology - University of Trento,
Via Sommarie 14, I-38100, Trento, Italy, tel.: 39-0461-882052, pgiorgini@science.unitn.it
2 IAG School of Management- Information Systems Unit - University of Louvain, 1 Place

des Doyens, B-1348 Louvain-La-Neuve, Belgium, tel.: 32-10 47 83 95, kolp@isys.ucl.ac.be
3 Department of Computer Science - University of Toronto, 6 King’s College Road

M5H 3S5, Toronto, Canada, tel.: 1-416-978 5180, jm@cs.toronto.edu

Abstract. We propose a collection of architectural styles for multi-agent
systems motivated by organizational theory and enterprise organization
structures. One of the styles is discussed in detail and part of it is formalized
using the Formal Tropos specification language. In addition, we conduct a
comparative study of organizational and conventional software architectures
using a mobile robot control example from the Software Engineering literature.

1 Introduction

We are interested in developing a suitable set of architectural styles for multi-
agent systems. Since the fundamental concepts of multi-agent systems are intentional
and organizational, rather than implementation-oriented, we turn to organizational
theories which study structures as societies that emerge from a design process.

The purpose of this paper is to present further work on the development of a set of
architectural styles for multi-agent systems motivated by and strategic alliances. This
paper builds on earlier work reported in [5] by offering some formalization of one of
the proposed styles, also a case study comparing organizational with conventional
software architectural styles for mobile robot control software.

This research is conducted within the context of Tropos [1,8], an agent-oriented
software development methodology which is founded on the concepts of actor and
goal, adopted from the i* [12] modeling framework. Tropos describes in terms of
these concepts the organizational environment within which a system will eventually
operate, as well as the system itself.

The rest of the paper is organized as follows. Section 2 presents samples of
organizational styles that have been identified from organizational theory literature.
Section 3 focuses on one of these styles, the structure-in-5, and offers a formalization
using the Formal Tropos language. Section 4 presents the mobile robot control case
study, identifies relevant software qualities for mobile robots and reports on earlier
work that uses conventional architectures. It then applies the organizational styles
proposed here and compares these with some conventional architectures with respect
to identified qualities. Finally Section 5 summarizes the results of the paper.

2 Organizational Styles

Organizational theory and strategic alliances (e.g., [9]) study alternative styles for
(business) organizations. These styles are used to model the coordination of business
stakeholders -- individuals, physical or social systems -- to achieve common goals.
Each organizational style represents a possible way to structure an organization in
order to meet its strategic objectives.

The structure of an organization defines the roles of various intentional
components (actors), their responsibilities defined in terms of tasks and goals, and
their resources. Moreover, an organizational structure defines how to coordinate the
activities of various actors and how they depend on each other.

We propose a macro level catalogue of styles adopting (some of) the abstractions
offered by organizational theory for designing multi-agent architectures. In the
following we present briefly two of them using i*. For other styles, see [5].

An i* strategic dependency model [12] is a graph, where each node represents an
actor (an agent, position, or role) and each link between two actors represents a social
dependency. Such a dependency can represent the fact that one actor depends on
another for a goal to be fulfilled, a task to be performed, or a resource to be made
available. The depending actor is called the depender and the actor who is depended
upon the dependee. The object around which the dependency centers (goal, task or
resource) is called the dependum. The model distinguishes between goals, which are
well defined, and softgoals, which do not have a formal definition and are amenable
to a different (more qualitative) kind of analysis [2].

Apex

Standardize

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non−operational

Logistics SupportControl
Structure
Techno−

Resource
Exchange

Contractual
Agreement

Support

Business
Processes

Strategic
Decision
Making

Corporate

Operational

Coordination

Management
Joint

Activities

Knowledge
Sharing

Partner_1 Partner_2

Partner_3 Partner_n

Figures 1 and 2. Structure-in-5 and Joint Venture

For instance, in Figure 1, the Technostructure, Middle Agency and Support actors
depend on the Apex for strategic management. Since the goal Strategic Management
does not have a precise description, it is represented as a softgoal (cloudy shape). The
Middle Agency depends on the Technostructure and Support respectively through
goal dependencies Control and Logistics represented as oval-shaped icons. The
Operational Core is related to the Technostructure and Support actors through the

Standardize task dependency and the Non-operational Service resource dependency,
respectively.

The structure-in-5 (Figure 1) is a typical organizational style. At the base level,
the Operational Core takes care of basic tasks — the input, processing, output and
direct support procedures — associated with running the organization. At the top lies
the Apex, composed of executive actors. Below it, sit the Technostructure, Middle
Agency and Support actors, who are in charge of control/standardization, management
and logistics, respectively. The Technostructure component carries out the tasks of
standardizing the behavior of other components, in addition to applying analytical
procedures to help the organization adapt to its environment. Actors joining the apex
to the operational core make up the Middle Agency. The Support component assists
the operational core for non-operational services that are outside the basic flow of
operational tasks and procedures.

The joint venture style (Figure 2) is a more decentralized style that involves an
agreement between two or more principal partners to obtain the benefits derived from
operating at a larger scale and reusing the experience of the collaboration. Each
principal partner can manage and control itself on a local dimension and interact
directly with other principal partners to exchange, provide and receive services, data
and knowledge. However, strategic operation and coordination is delegated to a Joint
Management actor, who coordinates tasks and manages the sharing of knowledge and
resources.

3 Structure-in-5

In this section we describe in more detail the structure-in-5 style. To specify the
structure and formal properties of the style, we use Formal Tropos [4] which offers
the primitive concepts of i* augmented with a rich specification language inspired by
KAOS [3]. Formal Tropos offers a textual notation for i* models and allows one to
describe dynamic constraints among the different elements of the specification in a
first order linear-time temporal logic. Moreover, Formal Tropos has a precise
semantics which makes Tropos specifications amenable to formal analysis.

Minztberg proposes a basic structure for organizations (for us, organizational
styles) based on fives subunits [7], hence its name structure-in-5 (Figure 1). This
decomposition allows one to apply alternative coordination mechanisms (such as
mutual adjustment, direct supervision, standardization of skills, outputs and work
processes) and design parameters (such as job specialization, behavior formalization,
decentralization, unit size, and unit grouping) in order to analyze the different
behaviors of the organization.

Basically, this structure defines a hierarchy of roles inside the organization, the
responsibilities associated with each subunits, and inter-dependencies among them.
Figure 3 shows a more detailed i* strategic dependency model for this style.

Operational
Core

Allocation
Resources

structure

Techno−

Allocation
Resources

Strategic
Planning
Systems
Design

Agency
Middle

Control

Training
Managers

Informat.l
Tasks

Studies

Logistic
Services

Support

Industrial
Relations

Management

Standardize

Training

Technology Non−operational
Services

Counsel
Legal

Management
Relations

Public

Allocation
Resources

Financial

Develop.t
Systems

Allocation
Resources

Resolution
Conflics

R&D

Strategic
Management

Apex

Operational
Supervise

Core

Perform

Task

Strategy
Operational

Elaborate

Coordination

Figure 3. Structure-in-5 in detail

At the base level one finds the Operational Core where the basic tasks and
operations are carried out. Basic tasks include securing inputs for production, also
transforming these into outputs. For example, in a manufacturing firm, the purchasing
department buys raw materials, while the production department transforms these to
products. In addition, outputs need to be distributed and support functions need to be
performed (e.g., production machine maintenance, inventory control and the like.) In
the following, we focus on the Operational Core specification with respect to the
performance of basic tasks. The specification below states that each basic task must
be performed within a precise time period that depends on the type of the task. For
instance, providing raw materials is a task that must be performed before the
production process begins.

Entity BasicTask
 Attribute constant taskType: TaskType, resourceNeed: Resource, performed: Boolean,
timePeriod: Time, output: OutputType

Entity Resource
 Attribute constant resourceType:ResourceType

Actor OperationalCore
 Attribute optional resource: Resource
 Goal PerformBasicTasks
 Mode achieve
 Fulfillment definition
 ∀ task:BasicTask (Perform(self,task)^ TimePerforming(task)≤ task.time)

[each basic task in the organization will be performed by the Operational Core within the
allotted time period for that type of task]

At the middle level we have three main actors: the Middle Agency,
Technostructure, and Support.

The Middle Agency is composed of a chain of middle-line managers with formal
authority that join the Strategic Apex to the Operational Core. The managers in the
chain are responsible for supervision and coordination of the Operational Core

activities, the allocation of the resources to lower levels, and the formulation of tactics
consistent with the strategies of the overall organization. For instance, when the
strategic apex of the Postal Service decides to realize a project for e-Postal Services,
each regional manager, and in turn, each district manager must elaborate the plan as it
applies to its geographical area.

In general, the Middle Agency performs all the managerial tasks of the chief
executive, but in the context of managing a particular unit. A Middle Agency actor
must lead the members of its unit, develop a network of liaison contacts, monitor the
environment and its unit’s activities, allocate tasks and resources within, negotiate
with outsiders, initiate strategic change, and handle exceptions and conflicts. In the
following we present a part of the specification for the PerformTask dependency
between the Middle Agency and Operational Core that concerns the assignment of a
task to the Operational Core.

Dependency PerformTask
 Type task
 Mode achieve
 Depender MiddleAgency
 Depndee OperationalCore
 Attribute constant task: BasicTask
 Creation
 condition ¬ task.performed
 trigger JustCreated(task)
 Fulfillment
 condition for depender task.performed
[a PerformTask dependency is created when there is a task that has not been performed, and

the dependency is fulfilled when the task is performed]

The Technostructure comprises analysts outside the operating work flow, who
affect the work of others. They define certain forms of standardization that reduce
direct supervision: work process, output, and skills standardization. They are also
responsible for training managers of the Middle Agency and operators of the
Operational Core. At middle levels, analysts carry out operations research studies of
informational tasks, and they design on behalf of the Strategic Apex strategic
planning systems and financial systems to control and monitor strategic goals. In the
following, we present the specification of the Technostructure with respect to an
output standardization goal. In particular, we specify that for each basic task that the
Operational Core has to perform, the Technostructure provides a specific output
standard to which the task output must conformed to. The output standard depends on
the task type and required output properties, such as length, weight, and strength for a
machined part, or text length, fonts and document structure for a document.

Actor Technostructure
 Goal StandardizeBasicTasks
 Mode achieve
 Fulfillment definition ∀ task:BasicTask (Standardize(task.output))
[for each basic task in the organization, the Technostructure will standardize the output]

Entity Standard
 Attribute constant output:OutputType, parameterers : Parameters

Dependency Standardize
 Type task

 Mode achieve
 Depender OperationalCore
 Dependee Technostructure
 Attribute constant task :BasicTask
 Creation
 condition ¬∃ standard: Standard (standard.output=task.output)
 trigger JustCreated(task)
 Fulfillment

condition for depender
 ∃ standard: Standard (standard.output=task.output)
[the Standardize dependency is created when there is no standard for a newly created task,

and it is fulfilled when the standard has been created]

The Support is composed of units which specialize in supporting the organization

with different services outside its operating work flow. This improves control within
the organization and reduces the uncertainty of having to buy services in the open
market. The units are self-contained mini-organizations and can support various levels
of the structure-in-5 hierarchy: public relations management and legal counsel for the
Apex, industrial relations management, logistics, and R&D for the Middle Agency;
no-operational services (e.g., cafeteria and mail-room) for the Operational Core.

At the top lies the Apex composed of strategic executive actors responsible for
ensuring that the organization serves its mission in an effective way. Their major
goals include direct supervision (e.g., allocate resources to the middle level, resolve
conflicts within the Middle Agency, and monitor performances), and management of
the relations with the environment (e.g., inform influential external actors of
organizational activities, develop high-level contact, and negotiating major
agreements). They also develop organizational strategies consistent with the
interpretation of the environment.

Figure 4 details the Technostructure actor in terms of sub-actors. These include
Financial Analysts who develop financial systems for the Apex, also Management
and Technology Instructors who train the Middle Agency and Operational Core actors
respectively. In addition, there are Technology Analysts that standardize the
technology used by the operators and support them in their activities. Work-Study
analysts control work process standardization for the Operational Core, while
Planning/Control analysts design strategic planning systems for the Apex, control the
outputs standardization, and perform quality control for the Middle Agency. Finally,
Personnel analysts control skills standardization, and Operations Research analysts
carry out operations research studies of informational tasks for the Middle Agency.

Agency
Middle

Informat.l
Tasks

Studies

Training
Managers

Control
Skills

standard.n
Analysts

Personnel

Operations

Analysts
Research

Control

standard.n
Output

Quality
Control

Planning/

Controlol

Analysts

Control

Standard.n
Work ProcessAnalysts

Work-Study

Analysts

Technology

Istructors

Technology

Work Process

Standardize

Schedule
Production

Technology

Support

Standardize

Technology

Training

Technology

Financial
Analysts

Operational
Core

Management

Istructors

Financial
Systems

Developm.t

structure

Techno-

Strategic
Planning
Systems
Design

Apex

Figure 4. The Technostructure actor

4 A Case Study: Architectures for mobile robots

Mobile robot control systems must deal with external sensors and actuators. They
must respond in time commensurate with the activities of the system in its
environment.

Consider the following activities [10] an office delivery mobile robot typically has
to accomplish: acquiring the input provided by sensors, controlling the motion of its
wheels and other moveable part, planning its future path. In addition, a number of
factors complicate the tasks: obstacles may block the robot’s path, sensor inputs may
be imperfect, the robot may run out of power, mechanical limitations may restrict the
accuracy with which the robot moves, the robot may manipulate hazardous materials,
unpredictable events may leave little time for responding.

4.1 Agent software qualities

With respect to the activities and factors enumerated above, the following agent
software qualities can be stated for an office delivery mobile robot’s architecture [10].

SQ1 - Coordinativity. Agents must be able to coordinate with other agents to
achieve a common purpose or simply their local goals. A mobile robot has to
coordinate the actions it deliberately undertakes to achieve its designated objective
(e.g., collect a sample of objects) with the reactions forced on it by the environment
(e.g., avoid an obstacle).

SQ2 - Predictability. Agents can have a high degree of autonomy in the way they
undertake action and communication in their domains. It can be then difficult to

predict individual characteristics as part of determining the behavior of the system at
large. For a mobile robot, never will all the circumstances of the robot's operation be
fully predictable. The architecture must provide the framework in which the robot can
act even when faced with incomplete or unreliable information (e.g., contradictory
sensor readings).

SQ3 – Failability-Tolerance. A failure of one agent does not necessarily imply a
failure of the whole system. The system then needs to check the completeness and the
accuracy of data, information and transactions. To prevent system failure, different
agents can, for instance, implement replicated capabilities. The architecture must
prevent the failure of the robot’s operation and its environment. Local problems like
reduced power supply, dangerous vapors, or unexpectedly opening doors should not
necessarily imply the failure of the mission.

SQ4 - Adaptability. Agents must adapt to modifications in their environment.
They may allow changes to the component’s communication protocol, dynamic
introduction of a new kind of component previously unknown or manipulations of
existing agents. Application development for mobile robots frequently requires
experimentation and reconfiguration. Moreover, changes in robot assignments may
require regular modification.

4.2 Classical Styles

For sample classical solutions, due to lack of space, we only examine three major
conventional architectures - the layered architecture [10], control loops [11] and task
trees [6] - that have been implemented on mobile robots.

Layered Architecture. According to [10], a classical layered architecture can be
viewed as a structure composed of 7 layers. At the lowest level, reside the robot
control routines (motors, joints, ...). Levels 2 and 3 deal with the input from the real
world. They perform sensor interpretation (the analysis of the data from one sensor)
and sensor integration (the combined analysis of different sensor inputs). Level 4 is
concerned with maintaining the robot's model of the world. Level 5 manages the
navigation of the robot. The next two levels, 6 and 7, schedule and plan the robot's
actions. Dealing with problems and replanning is also part of level 7 responsibilities.
The top level provides the user interface and overall supervisory functions.

Control loop. A controller component initiates the robot actions. Since mobile
robots have responsibilities with respect to their operational environment, the
controller also monitors the consequences of the robot actions adjusting the future
plans based on the return information.

Task Trees. The architecture is based on hierarchies of tasks. Parent tasks initiate
child tasks. For instance the task Gather Object initiates the tasks Go to Position,
Grab Object, Lift Object, the task Go to Position initiates Move Left and Move
Forward and so on. The software designer can define temporal dependencies between
pairs of tasks. An example is: "Grab Object must complete before Lift Object starts."
These features permit the specification of selective concurrency.

4.3 Organizational styles

We are developing organizational architectures for a miniature office delivery
robot using the Lego Mindstorms Robotics Invention Systems. Currently, we are
testing two architectures working with abstractions reminiscent of those encountered
in the layered architecture: the structure-in-5 and the joint-venture.

Planning/
Scheduling

Coordination

Control
Routines

User-level
Control

Navigation

Feedback

Real world
Sensor

World

World Inputs
Handle Real

Real World
Interpretor

DirectPilot

Real-time
Navigation

Adjustments

Human
Control

Model

Synchronize

Assignation
Mission

Mission
Configuration

Parameters

Figure 5. A structure-in-5 mobile robot architecture.

Structure-in-5. Figure 5 depicts a structure-in-5 robot architecture in i*. The
control routines component is the operational core managing the robot motors, joints,
etc. Planning/Scheduling is the technostructure component scheduling and planning
the robot’s actions. The real world interpreter is the support component composed of
two sub-components: Real world sensor accepts the raw input from multiple sensors
and integrates it into a coherent interpretation while World Model is concerned with
maintaining the robot’s model of the world and monitoring the environment for
landmarks. Navigation is the middle agency component, the central intermediate
module managing the navigation of the robot. Finally, the user-level control is the
human-oriented strategic apex providing the user interface and overall supervisory
functions.

Joint Venture. The robot architecture is organized around a central joint manager
assuming the overall supervisor/coordinator role for the other agent components: a
high level path planner, a module that monitors the environment for landmarks, a low
level path planner, a motor controller and a perception subsystem that receives
sensors data and interprets it. As said in Section 2, each of these agent components
can also interact directly with each other.

4.4 Evaluation

In this section, we evaluate each of the five styles – control loop, layered
architecture, task trees, structure-in-5 and joint-venture described previously.

Coordinativity. The simplicity of the control loop is a drawback when dealing
with complex tasks since it gives no leverage for decomposing the software into more
precise cooperative agent components.

The layered architecture style suggests that services and requests are passed
between adjacent agent layers. However, information exchange is actually not always
straight-forward. Commands and transactions may often need to skip intermediate
layers to establish direct communication and coordinate behavior.

A task tree permits a clear-cut separation of action and reaction. It also allows
incorporation of concurrent agents in its model that can proceed at the same time.
Unfortunately, components have little interaction with each other.

Unlike the previous architectures, the structure-in-5 separates the data (sensor
control, interpreted results, world model) from control (motor control, navigation,
scheduling, planning and user-level control). The architecture improves coordinativity
among components by differentiating both hierarchies – data is implemented by the
support component, while control is implemented by the operational core,
technostructure, middle agency and strategic apex – as shown in Figure 5.

In the joint venture, each partner component interacts via the joint manager for
strategic decisions. Components indicate their interest, and the joint manager returns
them such strategic information immediately or mediates the request to some other
partner component.

Predictability. The control loop reduces the unpredictable only through iteration.
Actions and reactions eliminate possibilities at each turn. Unfortunately, if more
subtle steps are needed, the architecture offers no framework for delegating them to
separate agent components.

In the layered architecture, the existence of abstraction layers addresses the need
for managing unpredictability. What is uncertain at the lowest level become clear with
the added knowledge in the higher layers.

The existence of different abstraction levels in the structure-in-5 addresses the need
for managing unpredictability. Contrary to the layered architecture, higher levels are
more abstract than lower levels: lower levels only involve resources and task
dependencies while higher ones propose intentional relationships.

In the joint-venture, the central position and role of the joint manager is a means
for resolving conflicts and prevent unpredictability in the robot’s world view and
sensor data interpretation.

Failability-Tolerance. In the control loop, it is supported in the sense that its
simplicity makes duplication of components and behavior easy and reduces the
chance of errors creeping into the system.

In the layered architecture, failability-tolerance could be served, when the robot
architect strives not do something, by incorporating many checks and balances at
different levels into the system. Again the drawback is that control commands and
transactions may often need to skip intermediate layers to check the system behavior.

In the task trees, exception, wiretapping and monitoring features can be integrated
to take into account the needs for integrity, reliability and completeness of data.

In the structure-in-5, checks and control mechanisms can be integrated at different
abstractions levels assuming redundancy from different perspectives. Contrary to the
layered architecture, checks and controls are not restricted to adjacent layers. Besides,
since the structure-in-5 permits to separate the data and control hierarchies, integrity
of these two hierarchies can also be verified independently.

The jointure venture, through its joint manager, proposes a central message
server/controller. Like in the task trees, exception mechanism, wiretapping
supervising or monitoring can be supported by the joint manager to guarantee non-
failability, reliability and completeness.

Adaptability. In the control loop, the robot components are separated from each
other and can be replaced or added independently. Unfortunately, precise
manipulation has to take place inside the components, at a detail level the architecture
does not show.

In the layered architecture, the interdependencies between layers prevent the
addition of new components or deletion of existing ones. The fragile relationships
between the layers can become more difficult to decipher with change.

Task trees, through the use of implicit invocation, make incremental development
and replacement of component straightforward: it is often sufficient to register new
components, no existing one feels the impact.

The structure-in-5 separates independently each typical component of the robot
architecture isolating them from each other and allowing dynamic manipulation. The
structure-in-5 is restricted to no more than 5 major components then, as in the control
loop, more refined tuning has to take place inside the components.

In the joint venture, manipulation of partner components can be done easily by
registering new components to the joint manager. However, since partners can also
communicate directly with each other, existing dependencies should be updated as
well. The joint manager cannot be removed due to its central position.

Table 1 summarizes the strengths and weaknesses of the five reviewed
architectures.

The layered architecture gives precise indications as to the components expected in
a robot. The other two classical architectures (control loop and task trees) define no
functional components and concentrate on the dynamics. The organizational styles
(Structure-in-5 and Joint Venture) focus on how to organize components expected in
a robot but also on the intentional and social dependencies governing these
components. Exhaustive evaluations are difficult to be established at that point. But,
considering preliminary results we can deduce in Table 1, from the discussion in the
present section, we can argue that the Structure-in-5 and the Joint-Venture, since they
are patterns governed by organizational characteristics, fit better systems and
applications that need open and cooperative components like the mobile robot
example.

 Loop Layers Task Tree S-in-5 Joint-Venture

Coordinativity - - +- ++ ++

Predictability +- + +- + ++
Failability-

Tolerance + +- + + +

Adaptability +- +- + + +-

Table 1: Strengths and Weaknesses of Robot Architectures
_

5 Conclusion

We are working towards a collection of architectural styles for multi-agent
systems. In this paper we presented in detail one of the organizational styles, the
structure-in-5, and conducted a comparative study of some organizational styles and
conventional software architectures on a standard case study (the mobile robot
control) selected from the Software Engineering literature.

Considering preliminary results established in the paper we can argue that
organizational patterns fit better software and applications that need dynamic
manipulation and coordination of components since they are driven by organizational
characteristics.
We are currently working on formalizing other organizational styles, also applying
them to more examples from the literature, for software as well as organizational
structures.

6 References

1. Castro, J., Kolp, M., and Mylopoulos, J. “A Requirements-Driven Development
Methodology”. In Proc. of the 13th Int. Conf. on Advanced Information Systems
Engineering, CAiSE’01, Interlaken, Switzerland, June 2001.

2. Chung, L. K., Nixon, B. A., Yu, E. and Mylopoulos, J. Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

3. Dardenne, A., van Lamsweerde, A. and Fickas, S. “Goal–directed Requirements
Acquisition”, Science of Computer Programming, 20, 1993, pp. 3-50.

4. Fuxman, A., Pistore M., Mylopoulos, J., and Traverso, P. “Model Checking Early
Requirements Specification in Tropos”. In Proc. of the 5th Int. Symposium on
Requirements Engineering, RE’01, Toronto, Canada, Aug. 2001.

5. Kolp, M., Giorgini P., and Mylopoulos J. “An Organizational Perspective on Multi-agent
Architectures”. In Proc. of the Eighth International Workshop on Agent Theories,
architectures, and languages, ATAL’01, Seattle, USA, August 1-3, 2001.

6. Lozano-Perez, T., Preface to Autonomous Robot Vehicles. Cox, L.J. and Wilfong G.T., eds,
Springer Verlag, 1990.

7. Mintzberg, H. Structure in Fives: Designing Effective Organizations, Prentice-Hall, 1992.
8. Perini. A, Bresciani, P., Giunchiglia, F., Giorgini, P., Mylopoulos, J., A Knowledge Level

Software Engineering Methodology for Agent Oriented Programming. In Proc. Of the 5th
International Conference on Autonomous Agents, Montreal CA, May 2001, ACM.

9. Scott, W. R. Organizations: Rational, Natural, and Open Systems, Prentice Hall, 1998.
10. Shaw, M., and Garlan, D. Software Architecture: Perspectives on an Emerging Discipline,

Upper Saddle River, N.J., Prentice Hall, 1996.
11. Simmons, R., Goodwin, R., Haigh, K., Koenig, S., and O'Sullivan, J. “A modular

architecture for office delivery robots”. In Proc. of the 1st Int. Conf. on Autonomous Agents,
Agents ’97, Marina del Rey. CA, Feb 1997, pp.245 - 252.

12. Yu E. Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada, 1995.

