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Abstract. We propose a collection of architectural styles for multi-agent 
systems motivated by organizational theory and enterprise organization 
structures. One of the styles is discussed in detail and part of it is formalized 
using the Formal Tropos specification language. In addition, we conduct a 
comparative study of organizational and conventional software architectures 
using a mobile robot control example from the Software Engineering literature. 

1   Introduction 

We are interested in developing a suitable set of architectural styles for multi-
agent systems. Since the fundamental concepts of multi-agent systems are intentional 
and organizational, rather than implementation-oriented, we turn to organizational 
theories which study structures as societies that emerge from a design process. 

The purpose of this paper is to present further work on the development of a set of 
architectural styles for multi-agent systems motivated by and strategic alliances. This 
paper builds on earlier work reported in [5] by offering some formalization of one of 
the proposed styles, also a case study comparing organizational with conventional 
software architectural styles for mobile robot control software. 

This research is conducted within the context of Tropos [1,8], an agent-oriented 
software development methodology which is founded on the concepts of actor and 
goal, adopted from the i* [12] modeling framework. Tropos describes in terms of 
these concepts the organizational environment within which a system will eventually 
operate, as well as the system itself.  

The rest of the paper is organized as follows. Section 2 presents samples of 
organizational styles that have been identified from organizational theory literature. 
Section 3 focuses on one of these styles, the structure-in-5, and offers a formalization 
using the Formal Tropos language. Section 4 presents the mobile robot control case 
study, identifies relevant software qualities for mobile robots and reports on earlier 
work that uses conventional architectures. It then applies the organizational styles 
proposed here and compares these with some conventional architectures with respect 
to identified qualities. Finally Section 5 summarizes the results of the paper. 



2   Organizational Styles  

Organizational theory and strategic alliances (e.g., [9]) study alternative styles for 
(business) organizations. These styles are used to model the coordination of business 
stakeholders -- individuals, physical or social systems -- to achieve common goals. 
Each organizational style represents a possible way to structure an organization in 
order to meet its strategic objectives.  

The structure of an organization defines the roles of various intentional 
components (actors), their responsibilities defined in terms of tasks and goals, and 
their resources. Moreover, an organizational structure defines how to coordinate the 
activities of various actors and how they depend on each other. 

We propose a macro level catalogue of styles adopting (some of) the abstractions 
offered by organizational theory for designing multi-agent architectures. In the 
following we present briefly two of them using i*. For other styles, see [5].  

An i* strategic dependency model [12] is a graph, where each node represents an 
actor (an agent, position, or role) and each link between two actors represents a social 
dependency. Such a dependency can represent the fact that one actor depends on 
another for a goal to be fulfilled, a task to be performed, or a resource to be made 
available. The depending actor is called the depender and the actor who is depended 
upon the dependee. The object around which the dependency centers (goal, task or 
resource) is called the dependum. The model distinguishes between goals, which are 
well defined, and softgoals, which do not have a formal definition and are amenable 
to a different (more qualitative) kind of analysis [2]. 
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Figures 1 and 2. Structure-in-5 and Joint Venture 

For instance, in Figure 1, the Technostructure, Middle Agency and Support actors 
depend on the Apex for strategic management. Since the goal Strategic Management 
does not have a precise description, it is represented as a softgoal (cloudy shape). The 
Middle Agency depends on the Technostructure and Support respectively through 
goal dependencies Control and Logistics represented as oval-shaped icons. The 
Operational Core is related to the Technostructure and Support actors through the 



Standardize task dependency and the Non-operational Service resource dependency, 
respectively. 

The structure-in-5  (Figure 1) is  a typical organizational style. At the base level, 
the Operational Core takes care of basic tasks — the input, processing, output and 
direct support procedures — associated with running the organization. At the top lies 
the Apex, composed of executive actors. Below it, sit the Technostructure, Middle 
Agency and Support actors, who are in charge of control/standardization, management 
and logistics, respectively. The Technostructure component carries out the tasks of 
standardizing the behavior of other components, in addition to applying analytical 
procedures to help the organization adapt to its environment. Actors joining the apex 
to the operational core make up the Middle Agency. The Support component assists 
the operational core for non-operational services that are outside the basic flow of 
operational tasks and procedures.  

The joint venture style (Figure 2) is a more decentralized style that involves an 
agreement between two or more principal partners to obtain the benefits derived from 
operating at a larger scale and reusing the experience of the collaboration. Each 
principal partner can manage and control itself on a local dimension and interact 
directly with other principal partners to exchange, provide and receive services, data 
and knowledge. However, strategic operation and coordination is delegated to a Joint 
Management actor, who coordinates tasks and manages the sharing of knowledge and 
resources. 

3   Structure-in-5 

In this section we describe in more detail the structure-in-5 style. To specify the 
structure and formal properties of the style, we use Formal Tropos [4] which offers 
the primitive concepts of i* augmented with a rich specification language inspired by 
KAOS [3]. Formal Tropos offers a textual notation for i* models and allows one to 
describe dynamic constraints among the different elements of the specification in a 
first order linear-time temporal logic. Moreover, Formal Tropos has a precise 
semantics which makes Tropos specifications amenable to formal analysis.  

Minztberg proposes a basic structure for organizations (for us, organizational 
styles) based on fives subunits [7], hence its name structure-in-5 (Figure 1). This 
decomposition allows one to apply alternative coordination mechanisms (such as 
mutual adjustment, direct supervision, standardization of skills, outputs and work 
processes) and design parameters (such as job specialization, behavior formalization, 
decentralization, unit size, and unit grouping) in order to analyze the different 
behaviors of the organization. 

Basically, this structure defines a hierarchy of roles inside the organization, the 
responsibilities associated with each subunits, and inter-dependencies among them. 
Figure 3 shows a more detailed i* strategic dependency model for this style. 
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Figure 3. Structure-in-5 in detail 

At the base level one finds the Operational Core where the basic tasks and 
operations are carried out. Basic tasks include securing inputs for production, also 
transforming these into outputs. For example, in a manufacturing firm, the purchasing 
department buys raw materials, while the production department transforms these to 
products. In addition, outputs need to be distributed and support functions need to be 
performed (e.g., production machine maintenance, inventory control and the like.) In 
the following, we focus on the Operational Core specification with respect to the 
performance of basic tasks. The specification below states that each basic task must 
be performed within a precise time period that depends on the type of the task.  For 
instance, providing raw materials is a task that must be performed before the 
production process begins. 

Entity BasicTask  
 Attribute constant taskType: TaskType, resourceNeed: Resource, performed: Boolean,       
timePeriod: Time, output: OutputType 

Entity Resource  
 Attribute constant resourceType:ResourceType 

Actor OperationalCore 
 Attribute optional resource: Resource 
 Goal PerformBasicTasks 
  Mode achieve  
  Fulfillment definition 
   ∀ task:BasicTask (Perform(self,task)^ TimePerforming(task)≤ task.time) 

[each basic task in the organization will be performed by the Operational Core within the 
allotted time period for that type of task] 

At the middle level we have three main actors: the Middle Agency, 
Technostructure, and Support. 

The Middle Agency is composed of a chain of middle-line managers with formal 
authority that join the Strategic Apex to the Operational Core. The managers in the 
chain are responsible for supervision and coordination of the Operational Core 



activities, the allocation of the resources to lower levels, and the formulation of tactics 
consistent with the strategies of the overall organization. For instance, when the 
strategic apex of the Postal Service decides to realize a project for e-Postal Services, 
each regional manager, and in turn, each district manager must elaborate the plan as it 
applies to its geographical area.   

In general, the Middle Agency performs all the managerial tasks of the chief 
executive, but in the context of managing a particular unit. A Middle Agency actor 
must lead the members of its unit, develop a network of liaison contacts, monitor the 
environment and its unit’s activities, allocate tasks and resources within, negotiate 
with outsiders, initiate strategic change, and handle exceptions and conflicts. In the 
following we present a part of the specification for the PerformTask dependency 
between the Middle Agency and Operational Core that concerns the assignment of a 
task to the Operational Core. 

Dependency PerformTask 
 Type task 
 Mode achieve 
 Depender MiddleAgency 
 Depndee OperationalCore 
 Attribute constant task: BasicTask 
 Creation  
   condition  ¬ task.performed  
  trigger      JustCreated(task)  
 Fulfillment 
  condition for  depender task.performed 
[a PerformTask dependency is created when there is a task that has not been performed, and 

the dependency is fulfilled when the task is performed] 
 

The Technostructure comprises analysts outside the operating work flow, who 
affect the work of others. They define certain forms of standardization that reduce 
direct supervision: work process, output, and skills standardization. They are also 
responsible for training managers of the Middle Agency and operators of the 
Operational Core. At middle levels, analysts carry out operations research studies of 
informational tasks, and they design on behalf of the Strategic Apex strategic 
planning systems and financial systems to control and monitor strategic goals. In the 
following, we present the specification of the Technostructure with respect to an 
output standardization goal. In particular, we specify that for each basic task that the 
Operational Core has to perform, the Technostructure provides a specific output 
standard to which the task output must conformed to. The output standard depends on 
the task type and required output properties, such as length, weight, and strength for a 
machined part, or text length, fonts and document structure for a document.  

Actor Technostructure 
 Goal StandardizeBasicTasks 
  Mode achieve  
  Fulfillment definition ∀ task:BasicTask  (Standardize(task.output)) 
[for each basic task in the organization, the Technostructure will standardize the output]  

Entity Standard  
 Attribute constant output:OutputType, parameterers : Parameters  

Dependency Standardize 
 Type task 



 Mode achieve 
 Depender OperationalCore 
 Dependee Technostructure  
 Attribute constant  task :BasicTask 
 Creation  
    condition ¬∃ standard: Standard (standard.output=task.output) 
  trigger      JustCreated(task)  
 Fulfillment 

condition for  depender  
                   ∃  standard: Standard (standard.output=task.output) 
[the Standardize dependency is created when there is no standard for a newly created task, 

and it is fulfilled when the standard has been created] 
 
The Support is composed of units which specialize in supporting the organization 

with different services outside its operating work flow. This improves control within 
the organization and reduces the uncertainty of having to buy services in the open 
market. The units are self-contained mini-organizations and can support various levels 
of the structure-in-5 hierarchy: public relations management and legal counsel for the 
Apex, industrial relations management, logistics, and R&D for the Middle Agency; 
no-operational services (e.g., cafeteria and mail-room) for the Operational Core.        

At the top lies the Apex composed of strategic executive actors responsible for 
ensuring that the organization serves its mission in an effective way. Their major 
goals include direct supervision (e.g., allocate resources to the middle level, resolve 
conflicts within the Middle Agency, and monitor performances), and management of 
the relations with the environment (e.g., inform influential external actors of 
organizational activities, develop high-level contact, and negotiating major 
agreements). They also develop organizational strategies consistent with the 
interpretation of the environment.  
 

Figure 4 details the Technostructure actor in terms of sub-actors. These include 
Financial Analysts who develop financial systems for the Apex, also Management 
and Technology Instructors who train the Middle Agency and Operational Core actors 
respectively. In addition, there are Technology Analysts that standardize the 
technology used by the operators and support them in their activities. Work-Study 
analysts control work process standardization for the Operational Core, while 
Planning/Control analysts design strategic planning systems for the Apex, control the 
outputs standardization, and perform quality control for the Middle Agency. Finally, 
Personnel analysts control skills standardization, and Operations Research analysts 
carry out operations research studies of informational tasks for the Middle Agency.      

  



Agency
Middle

Informat.l 
Tasks

Studies

Training
Managers

Control 
Skills

standard.n
Analysts

Personnel

Operations 

Analysts
Research

Control 

standard.n
Output

Quality
Control

Planning/ 

Controlol

Analysts

Control 

Standard.n
Work ProcessAnalysts

Work-Study

Analysts

Technology

Istructors

Technology

Work Process

Standardize

Schedule
Production

Technology

Support

Standardize

Technology

Training

Technology

Financial
Analysts

Operational
Core

Management

Istructors

Financial
Systems

Developm.t

structure

Techno-

Strategic
Planning
Systems
Design

Apex

 
Figure 4. The Technostructure actor 

4   A Case Study: Architectures for mobile robots 

Mobile robot control systems must deal with external sensors and actuators. They 
must respond in time commensurate with the activities of the system in its 
environment. 

Consider the following activities [10] an office delivery mobile robot typically has 
to accomplish: acquiring the input provided by sensors, controlling the motion of its 
wheels and other moveable part, planning its future path. In addition, a number of 
factors complicate the tasks: obstacles may block the robot’s path, sensor inputs may 
be imperfect, the robot may run out of power, mechanical limitations may restrict the 
accuracy with which the robot moves, the robot may manipulate hazardous materials, 
unpredictable events may leave little time for responding. 

4.1 Agent software qualities  

With respect to the activities and factors enumerated above, the following agent 
software qualities can be stated for an office delivery mobile robot’s architecture [10]. 

SQ1 - Coordinativity. Agents must be able to coordinate with other agents to 
achieve a common purpose or simply their local goals. A mobile robot has to 
coordinate the actions it deliberately undertakes to achieve its designated objective 
(e.g., collect a sample of objects) with the reactions forced on it by the environment 
(e.g., avoid an obstacle). 

SQ2 - Predictability. Agents can have a high degree of autonomy in the way they 
undertake action and communication in their domains. It can be then difficult to 



predict individual characteristics as part of determining the behavior of the system at 
large.  For a mobile robot, never will all the circumstances of the robot's operation be 
fully predictable. The architecture must provide the framework in which the robot can 
act even when faced with incomplete or unreliable information (e.g., contradictory 
sensor readings). 

SQ3 – Failability-Tolerance. A failure of one agent does not necessarily imply a 
failure of the whole system. The system then needs to check the completeness and the 
accuracy of data, information and transactions. To prevent system failure, different 
agents can, for instance, implement replicated capabilities. The architecture must 
prevent the failure of the robot’s operation and its environment. Local problems like 
reduced power supply, dangerous vapors, or unexpectedly opening doors should not 
necessarily imply the failure of the mission. 

SQ4 - Adaptability. Agents must adapt to modifications in their environment. 
They may allow changes to the component’s communication protocol, dynamic 
introduction of a new kind of component previously unknown or manipulations of 
existing agents. Application development for mobile robots frequently requires 
experimentation and reconfiguration. Moreover, changes in robot assignments may 
require regular modification. 

4.2 Classical Styles  

For sample classical solutions, due to lack of space, we only examine three major 
conventional architectures - the layered architecture [10], control loops [11] and task 
trees [6] - that have been implemented on mobile robots. 

Layered Architecture. According to [10], a classical layered architecture can be 
viewed as a structure composed of 7 layers. At the lowest level, reside the robot 
control routines (motors, joints, ...). Levels 2 and 3 deal with the input from the real 
world. They perform sensor interpretation (the analysis of the data from one sensor) 
and sensor integration (the combined analysis of different sensor inputs). Level 4 is 
concerned with maintaining the robot's model of the world.   Level 5 manages the 
navigation of the robot. The next two levels, 6 and 7, schedule and plan the robot's 
actions. Dealing with problems and replanning is also part of level 7 responsibilities. 
The top level provides the user interface and overall supervisory functions. 

Control loop. A controller component initiates the robot actions. Since mobile 
robots have responsibilities with respect to their operational environment, the 
controller also monitors the consequences of the robot actions adjusting the future 
plans based on the return information. 

Task Trees. The architecture is based on hierarchies of tasks. Parent tasks initiate 
child tasks. For instance the task Gather Object initiates the tasks Go to Position, 
Grab Object, Lift Object, the task Go to Position initiates Move Left and Move 
Forward and so on. The software designer can define temporal dependencies between 
pairs of tasks. An example is: "Grab Object must complete before Lift Object starts." 
These features permit the specification of selective concurrency. 



4.3 Organizational styles 

We are developing organizational architectures for a miniature office delivery 
robot using the Lego Mindstorms Robotics Invention Systems. Currently, we are 
testing two architectures working with abstractions reminiscent of those encountered 
in the layered architecture: the structure-in-5 and the joint-venture. 
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Figure 5. A structure-in-5 mobile robot architecture. 

Structure-in-5. Figure 5 depicts a structure-in-5 robot architecture in i*. The 
control routines component is the operational core managing the robot motors, joints, 
etc. Planning/Scheduling is the technostructure component scheduling and planning 
the robot’s actions. The real world interpreter is the support component composed of 
two sub-components: Real world sensor accepts the raw input from multiple sensors 
and integrates it into a coherent interpretation while World Model is concerned with 
maintaining the robot’s model of the world and monitoring the environment for 
landmarks. Navigation is the middle agency component, the central intermediate 
module managing the navigation of the robot. Finally, the user-level control is the 
human-oriented strategic apex providing the user interface and overall supervisory 
functions. 

Joint Venture. The robot architecture is organized around a central joint manager 
assuming the overall supervisor/coordinator role for the other agent components: a 
high level path planner, a module that monitors the environment for landmarks, a low 
level path planner, a motor controller and a perception subsystem that receives 
sensors data and interprets it. As said in Section 2, each of these agent components 
can also interact directly with each other. 

4.4 Evaluation  

In this section, we evaluate each of the five styles – control loop, layered 
architecture, task trees, structure-in-5 and joint-venture described previously.  



Coordinativity. The simplicity of the control loop is a drawback when dealing 
with complex tasks since it gives no leverage for decomposing the software into more 
precise cooperative agent components.  

The layered architecture style suggests that services and requests are passed 
between adjacent agent layers. However, information exchange is actually not always 
straight-forward. Commands and transactions may often need to skip intermediate 
layers to establish direct communication and coordinate behavior.  

A task tree permits a clear-cut separation of action and reaction. It also allows 
incorporation of concurrent agents in its model that can proceed at the same time. 
Unfortunately, components have little interaction with each other. 

Unlike the previous architectures, the structure-in-5 separates the data (sensor 
control, interpreted results, world model) from control (motor control, navigation, 
scheduling, planning and user-level control). The architecture improves coordinativity 
among components by differentiating both hierarchies – data is implemented by the 
support component, while control is implemented by the operational core, 
technostructure, middle agency and strategic apex – as shown in Figure 5. 

In the joint venture, each partner component interacts via the joint manager for 
strategic decisions. Components indicate their interest, and the joint manager returns 
them such strategic information immediately or mediates the request to some other 
partner component.  

Predictability. The control loop reduces the unpredictable only through iteration. 
Actions and reactions eliminate possibilities at each turn. Unfortunately, if more 
subtle steps are needed, the architecture offers no framework for delegating them to 
separate agent components. 

In the layered architecture, the existence of abstraction layers addresses the need 
for managing unpredictability. What is uncertain at the lowest level become clear with 
the added knowledge in the higher layers. 

The existence of different abstraction levels in the structure-in-5 addresses the need 
for managing unpredictability. Contrary to the layered architecture, higher levels are 
more abstract than lower levels: lower levels only involve resources and task 
dependencies while higher ones propose intentional relationships. 

In the joint-venture, the central position and role of the joint manager is a means 
for resolving conflicts and prevent unpredictability in the robot’s world view and 
sensor data interpretation. 

Failability-Tolerance. In the control loop, it is supported in the sense that its 
simplicity makes duplication of components and behavior easy and reduces the 
chance of errors creeping into the system. 

In the layered architecture, failability-tolerance could be served, when the robot 
architect strives not do something, by incorporating many checks and balances at 
different levels into the system. Again the drawback is that control commands and 
transactions may often need to skip intermediate layers to check the system behavior. 

In the task trees, exception, wiretapping and monitoring features can be integrated 
to take into account the needs for integrity, reliability and completeness of data. 

In the structure-in-5, checks and control mechanisms can be integrated at different 
abstractions levels assuming redundancy from different perspectives. Contrary to the 
layered architecture, checks and controls are not restricted to adjacent layers. Besides, 
since the structure-in-5 permits to separate the data and control hierarchies, integrity 
of these two hierarchies can also be verified independently.  



The jointure venture, through its joint manager, proposes a central message 
server/controller. Like in the task trees, exception mechanism, wiretapping 
supervising or monitoring can be supported by the joint manager to guarantee non-
failability, reliability and completeness. 

Adaptability. In the control loop, the robot components are separated from each 
other and can be replaced or added independently. Unfortunately, precise 
manipulation has to take place inside the components, at a detail level the architecture 
does not show. 

In the layered architecture, the interdependencies between layers prevent the 
addition of new components or deletion of existing ones. The fragile relationships 
between the layers can become more difficult to decipher with change. 

Task trees, through the use of implicit invocation, make incremental development 
and replacement of component straightforward: it is often sufficient to register new 
components, no existing one feels the impact. 

The structure-in-5 separates independently each typical component of the robot 
architecture isolating them from each other and allowing dynamic manipulation. The 
structure-in-5 is restricted to no more than 5 major components then, as in the control 
loop, more refined tuning has to take place inside the components. 

In the joint venture, manipulation of partner components can be done easily by 
registering new components to the joint manager. However, since partners can also 
communicate directly with each other, existing dependencies should be updated as 
well. The joint manager cannot be removed due to its central position. 

Table 1 summarizes the strengths and weaknesses of the five reviewed 
architectures. 

The layered architecture gives precise indications as to the components expected in 
a robot. The other two classical architectures (control loop and task trees) define no 
functional components and concentrate on the dynamics. The organizational styles 
(Structure-in-5 and Joint Venture) focus on how to organize components expected in 
a robot but also on the intentional and social dependencies governing these 
components. Exhaustive evaluations are difficult to be established at that point. But, 
considering preliminary results we can deduce in Table 1, from the discussion in the 
present section, we can argue that the Structure-in-5 and the Joint-Venture, since they 
are patterns governed by organizational characteristics, fit better systems and 
applications that need open and cooperative components like the mobile robot 
example. 

 

 Loop Layers Task Tree S-in-5 Joint-Venture 

Coordinativity - - +- ++ ++ 

Predictability +- + +- + ++ 
Failability-

Tolerance + +- + + + 

Adaptability +- +- + + +- 

Table 1: Strengths and Weaknesses of Robot Architectures 
_ 



5 Conclusion 

We are working towards a collection of architectural styles for multi-agent 
systems. In this paper we presented in detail one of the organizational styles, the 
structure-in-5, and conducted a comparative study of some organizational styles and 
conventional software architectures on a standard case study (the mobile robot 
control) selected from the Software Engineering literature.  

Considering preliminary results established in the paper we can argue that 
organizational patterns fit better software and applications that need dynamic 
manipulation and coordination of components since they are driven by organizational 
characteristics. 
We are currently working on formalizing other organizational styles, also applying 
them to more examples from the literature, for software as well as organizational 
structures.  
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