
Peer-to-Peer Netw Appl
DOI 10.1007/s12083-010-0070-6

REVIEW

Security and privacy issues in P2P streaming systems:
A survey

Gabriela Gheorghe · Renato Lo Cigno ·
Alberto Montresor

Received: 13 August 2009 / Accepted: 18 March 2010
© Springer Science+Business Media, LLC 2010

Abstract Streaming applications over Peer-To-Peer
(P2P) systems have gained an enormous popularity.
Success always implies increased concerns about se-
curity, protection, privacy and all the other ‘side’
properties that transform an experimental application
into a service. Research on security for P2P stream-
ing started to flourish, but no comprehensive security
analysis over the current P2P solutions has yet been
attempted. There are no best practices in system design,
no (widely) accepted attack models, no measurement-
based studies on security threats to P2P streaming,
nor even general surveys investigating specific security
aspects for these systems. This paper addresses this
last aspect. Starting from existing analyses and security
models in the related literature, we give an overview on
security and privacy considerations for P2P streaming
systems. Our analysis emphasizes two major facts: (i)
the Byzantine–Altruistic–Rational (BAR) model offers
stronger security guarantees compared to other ap-
proaches, at the cost of higher complexity and over-
head; and (ii) the general perception (not necessarily
the truth, but a commonplace belief) that it is necessary
to sacrifice accuracy or performance in order to tolerate
faults or misbehaviors, is not always true.

G. Gheorghe · R. Lo Cigno (B) · A. Montresor
Dipartimento di Ingegneria e Scienza dell’Informazione (DISI),
Università degli Studi di Trento, Via Sommarive 14,
Povo, 38100, Trento, Italy
e-mail: renato.locigno@disi.unitn.it

G. Gheorghe
e-mail: gabriela.gheorghe@disi.unitn.it

A. Montresor
e-mail: alberto.montresor@disi.unitn.it

Keywords P2P streaming · IPTV · Security · Privacy

1 Overview

Peer-to-peer systems have gained more and more mo-
mentum over the last years as a means to access
multimedia contents, albeit initially in form of file
downloads. The evolution to streaming and multicast
(e.g., TV) was just a consequence. Their power to ac-
commodate large amounts of users, together with their
resilience to churn, reliability, and low cost are some
of the reasons why they are preferred over dedicated
servers or content distribution networks solutions. In
spite of these advantages, or maybe because of them,
some P2P features make these systems more difficult
to defend against some classes of attacks.

Security-wise, P2P streaming systems are more chal-
lenging than other P2P applications because they are
more vulnerable to QoS fluctuations. Live streaming
protocols, and TV in particular, are most sensitive to
delay and delay jitter: it is enough for a host to be
prevented from receiving some packets in time, and the
user may grow dissatisfied with the quality of the deliv-
ery and leave the system altogether. If some other peers
are connected to that machine, they will be damaged as
well. From the watcher’s viewpoint, even slight quality
fluctuations, or choppiness, cause the viewing experi-
ence to loose appeal and the user to drop the service (or
switch channels if others offer better quality). Worse,
the quality of the user experience is unrecoverable:
if some packets are lost during live broadcast, they
are lost for good because recovering them afterwards
brings no utility to the user.

Peer-to-Peer Netw Appl

Apart from their time-sensitive nature and band-
width dependency, P2P streaming are susceptible to
manipulation and threats at the transport and network
layers. Clever attacks can compromise selectively the
guarantees that a streaming session should provide,
making some channels unusable, or unavailable in par-
ticular locations. Both events can be classified as tar-
geted censorship violating the freedom of speech and
expression. Analyzing the threat models in all these
cases gives relevant indicators over possible risks and
vulnerabilities in the transmission.

In what follows, we provide a brief security analysis
of P2P live streaming, and provide a classification of
both attack points and solutions to common vulnerabil-
ities. We provide general considerations and features
that novel P2P streaming proposals should consider in
order to minimize the chances of attack.

The remaining of this paper is organized as follows.
Section 2 motivates this survey by introducing a few at-
tacks examples, either directly to P2P streaming appli-
cations or strongly related to them. Section 3 discusses
the threats and security models for P2P streaming ap-
plications, with specific attention to P2P-TV systems.
Section 4 describes the easier, and hence readily re-
alized, attacks in P2P streaming systems. The study
continues with discussing security practices (Section 5)
particularly for the tree and mesh overlays (these latter
combined with data-driven dissemination). We con-
clude discussing the trade-offs of this type of mecha-
nisms, open issues and future work.

2 Examples

Finding real-world examples of security attacks to P2P
streaming systems is (unfortunately?) not easy, because
these systems are young, and most of all because the
organizations managing them are not so keen in releas-
ing information about attacks to their systems. In the
following we sketch two examples based on real life
events that are clearly related to P2P streaming and
help us introduce the reason why we consider important
addressing security issues in P2P streaming systems and
do it before large scale attacks make the headlines of
non-technical literature.

2.1 Example 1: the reason for polluting

Albeit rarely admitted or clearly proved, it is commonly
accepted that in file-sharing applications content pollu-
tion, i.e., intentionally change parts of the file to make it
useless or of bad quality, is a day-by-day routine. In [11]

and [36] it is practically given for granted that a P2P
streaming system can undergo pollution attacks.

It is often reported that pollution attacks in file
sharing are due to the fact that the system is devoted
to illegally exchanging copyrighted material, and it is
the copyright owner who pollutes the system as a last
means to defend its rights when any legal action failed.

If this were the situation, then one may think that
in a system distributing legal content like standard
public TV there is no reason to consider pollution. This
position is however rather naïve. Making some specific
content unavailable can be a goal for many actors. For
instance changing the advertisements on very popu-
lar events can lead to very remunerative commercial
frauds. On a larger scale, selectively changing (or sim-
ply removing) parts of some content may lead to public
opinion manipulation that, if done by a government
or similar body can be called censorship, but if done
by private (criminal) organizations raises even more
frightening scenarios.

2.2 Example 2: Skype outage

In recent years, the problem of facilitating signaling in
VoIP (Voice over IP) networks through a P2P network
has been subject of intense activity in both research [33]
and standardization [17]. While clearly the problem do-
main is different from video streaming, they share sim-
ilar security concerns, among which time-sensitiveness
is the most important.

One of the main attacks that can be played against
P2P VoIP systems is denial of service against the avail-
ability of the signaling system: the attacker may try
to block the ability for a caller to identify the current
location for the designated callee. Furthermore, given
that the caller expects to retrieve this information in
reasonable time in order to start the call, it may be
sufficient for the attacker to severely delay the trans-
mission to the location of the callee.

To achieve this goal, one of the easiest forms of
attack is to try to perturb the routing substrate of the
P2P system, normally based on distributed hash tables
like Chord [10] and Pastry [26]. Possible attacks in these
cases include Eclipse, Sybil and neighbor selection at-
tacks. These problems, casted in the video streaming
domain, will be discussed in Section 4.

An example of the kind of problems that users can
expect from VoIP systems, which can be mirrored in the
video streaming domain, is exemplified by the Skype
two-day outage which occurred on August 2007 [1].
While Skype has denied that this specific event has
been caused by malicious activity, blaming instead the
“Microsoft Patch Tuesday” (with a large number of

Peer-to-Peer Netw Appl

machines rebooting at the same time). This is an ex-
ample of what could happen when nodes in a P2P
streaming service (voice is being streamed here) loose
autonomy (see Section 3.2). The loss of autonomy,
which leads to a dependability problem in this case,
is due to the dominance of an operating system in
correlating nodes. In general, nevertheless, the same
problem can be due to any other reason.

3 Security considerations for P2P streaming

Security design for a P2P system builds on the relevant
aspects of that system: first, the actors posing the attack
and the assets to be protected are the starting and end-
ing points of any attack. Studying sources and targets
of attacks is usually done by means of the threat model
(Section 3.1); second, any attack intends to subvert or
damage an existing scheme, often for the benefit of the
attacker; the result is that the system will no longer
function as designed, hence it will not be able to fulfill
its goals. Knowing what these goals are helps identify-
ing the ultimate result of a security breach. Sections 3.2
and 3.3 overview the possible non-functional goals that
a streaming system aim at. Finally, Section 3.4 shows
the possible mechanisms to protect the system assets for
achieving the goals presented before.

3.1 Threat model

In any security analysis, it is important to consider all
possible generators of attacks (active elements) against
possible targets of attacks (passive). In the first cate-
gory we find P2P nodes, supernodes and application
code, while in the second we include the protocol, the
overlay, and the data being transferred. Although the
streaming source can also be a possible target, the usual
assumption is that the source is trusted, since we have
not found any studies on source-level attacks. The ap-
plication code can be seen as both active (when causes
data leakages, or jeopardize data privacy) element, or
passive element of attack (when can be directly ma-
nipulated for protocol subversion). An overview of the
threat sources and targets in P2P streaming applications
is given in Tables 1 and 2 and is detailed hereafter.

There are three major elements likely to turn into
sources of attacks in P2P streaming:

Peer nodes Malicious or malfunctioning nodes can
always alter the protocol behavior. For instance, they
may not reply to requests, or may reply generating
wrong messages. This can result into biasing the neigh-

Table 1 Common sources of vulnerabilities in P2P streaming

Active aspect Influences what Results into

Peer nodes P2P protocol partitioning, censorship
QoS delays, isolation

Supernodes P2P protocol partitioning, censorship
QoS delays, isolation

Application code P2P protocol censorship
data privacy data leaks

The active aspect in the first column indicates the class of entities
that generate attacks; the second column refers to the targeted
system feature, while the third column shows a possible result of
the vulnerability being exploited

bor selection process of another node, thus into net-
work partitioning or even censorship. Censorship has
deep consequences: besides the standard legal aspects,
a smaller number of users in the overlay implies a
poorer quality of the diffusion [22]. From the point
of view of QoS, peers can also do delayed forwarding
and hence jeopardize once more live streaming and TV
systems.

Supernodes Supernodes do not always exist in P2P
applications, but it is envisioned that they can greatly
benefit applications requiring large bandwidth and low,
constant delays. Supernodes bring similar vulnerabili-
ties to streaming systems as common peer nodes; how-
ever, the emphasis is on their higher responsibility in
data diffusion: e.g., if superpeers do not behave fairly
and honestly with all peers, they can bias the service
toward preferred users. As a consequence, partitioning
and censorship are more stringent at the supernode
level. Supernodes become even more critical as some
projects explore the possibility that they are controlled
by ISPs in an effort to make P2P overlays and IP
networks cooperate [20].

Table 2 Common attack targets in P2P streaming

Passive aspect Influenced by Results into

Application code Code provider censorship
data leaks

P2P protocol peers censor, partition, pollution
superpeers partitition, DoS
application code data leaks

Overlay routing data privacy data leaks
QoS delays, DoS
overlay routing partitioning, censorship

Distributed data data integrity partitioning

The aspect in the first column indicates the vulnerability, the
second column refers to possible sources of attacks, while the
third column shows a possible result of the vulnerability being
exploited

Peer-to-Peer Netw Appl

Application code Wallach [34] notices that the P2P
code runs with numerous privileges on peer machines:
it normally uses the network connection and the local
hard drive. When unrestricted, local access and exter-
nal communication may lead to information leaks or
malicious code installed on the local machine that could
alter the overall P2P protocol. The remedy is twofold:
sandboxing the P2P application to use just an isolated
location on the local drive, and denying operations that
are not coherent with the purposes of the P2P applica-
tion. The application code poses a particular threat to
users’ privacy, because embedded malware could leak
sensitive information to non-authorized recipients.

The passive sources of vulnerability that are usually
targets of attacks are:

Overlay routing and maintenance Overlay manage-
ment messages among peers aims at reliability and
quality. Secure routing deals with both maintaining
secure routing tables, and securely transmitting mes-
sages [34]. The data in transit can be sniffed and if the
channel is not secure, it can even be leaked or modified.
The dispatching of tampered data to fair peers depends
on the security of the overlay and neighborhood tables;
not only routing can undergo malicious delaying, but
also partitioning (sending tainted data to the same
peers) and/or censorship (not sending anything to a
group of peers).

The P2P protocol One way or another, the attackers
in a P2P scenario always try to manipulate the pro-
tocol to their own advantage, or to the disadvantage
of other peers. The P2P application protocol is at a
higher level than the overlay routing mechanism, and
manipulates streamed data by correlating a number
of aspects: membership mechanism, data scheduling
and transmission, identity management, overlay mech-
anisms, reputation, etc.

Distributed data Data integrity is essential in stream-
ing and TV systems, because the purpose of the applica-
tion is liveness. If a TV-channel is re-distributed on the
P2P system but part of the news/programs are altered
with some users treated differently from others, this can
lead to partitioning, loss of users, and censorship.

3.2 System-level security goals in P2P streaming

If the threat model identifies the sources of potential
jeopardy to the system, the security model and goals
identify the aspects of the system that are jeopardized
by the threat. In Table 3, we split these aspects into

Table 3 Desirable security and privacy features for P2P stream-
ing systems

Category System feature

System operation Reliability, Availability, Dependability,
Node Autonomy, Access Control

Content management Authenticity, Integrity, Non-repudiation,
Confidentiality, Anonymity

system operation, introduced here, and content man-
agement, discussed in Section 3.3.

For what system operation is concerned, we identify
the properties listed in the first row of Table 3 and dis-
cussed in the sequel as those to be granted to streaming
systems in the face of threats and attacks. The system
security, in the context of streaming system operation,
can be identified with the capability of the system not
to fail. We note that the term fail assumes a different
flavor in streaming systems, specially for live events,
than in other traditional P2P systems. Indeed, consid-
ering a file-sharing application, failure can be identified
with the inability to download a file, or at most with the
inability to do that in a given time: it does not matter
whether the system operates continuously or in bursts,
or if the file is downloaded at a regular pace or all of
a sudden right before the deadline. To make another
example, in telephony applications it is not a security
requirement that all users can talk at the same time (the
probability of such an event is considered negligible).
In a streaming system, instead, the inability to connect
to a stream by any user is a failure, even more so if
this happens for a very popular, and hence important
stream, which might lead to users discrimination.

We use the terminology for systems failures as
defined by ITU-T in the E.800 series1 and by IFIP WG
10.4.2

Reliability The up-time of the system in steady state is
the reliability of the system, and as such it is normally
modeled by the mean time between failures (mtbf).
Reliability can be a property of a single device or sub-
system, a global property of the entire system or, as
more suitable for our purposes, it can refer to the vision
of the system conditioned to one specific peer or a
subset of peers. A single failure, even if recovered, im-
plies loss of reliability. Let us characterize reliability as

1http://www.itu.int/rec/T-REC-E.800/en
2http://www.dependability.org/wg10.4/

http://www.itu.int/rec/T-REC-E.800/en
http://www.dependability.org/wg10.4/

Peer-to-Peer Netw Appl

ρ = 1 − 1

mtbf
, where mtbf is the number of consecutive

requests from a peer before one fails (hence mtbf ≥ 1).
Reliability is a desirable feature for security, but asking
high reliability to a highly volatile system, like a P2P
overlay, which is designed for resilience rather than
resistance is not appropriate, thus the main goal of
reaching a certain level ρ ′ of reliability is ensuring the
system high Availability.

Availability It is the ability of the system to be up and
running. A system can be unreliable, yet highly avail-
able, simply because recovery from failures is faster
than the user/application of the system can detect. In
P2P streaming, for instance, churn can be a source of
unreliability, since peers leaving implies that from the
point of view of some other peers, a portion of the sys-
tem (or a given request) has failed. However, topology
reconfiguration can be fast enough to avoid the loss of
any information at the application, so that the system
remains available even from the perspective of peers
that are affected by churn. In general terms, we can say
that a secure P2P streaming system must be available
with high probability at any time, contrary to other
(not all) P2P applications, most notably file sharing,
where the system can be unavailable for relatively long
periods, but still operate securely in that it yields its
services.

Dependability Even if highly available, a system may
still suffer from correlated failures that make it non-
dependable. Dependability is a subtler property of the
system: it reflects the ability of a system to work and
provide services in critical moments. An example will
clarify the point. Cellular telephone systems are in
general reliable and available, however they are not
dependable with respect to emergencies and civil pro-
tection: during accidents the cells covering the area
of the accident become congested because people call
with higher rate than normal and resources are locally
insufficient; during natural disasters, besides the above
phenomenon, normally the electricity fails, and the
base stations do not have adequate power backup. In
the context of P2P streaming and TV applications, the
system may turn to be non-dependable because simple
attacks can ruin specific event streaming (e.g., pop-
ular broadcasts) which causes a higher-than-average
amount of traffic; in these cases, simple traffic-volume
based attacks can jeopardize the most useful (or prized)
events.3

3A volume-threat is a subtle form of DoS attack: the attacker
does not need attack directly any peer or the source, it just needs
to inject in the network, which is already loaded because of the

Dependability is a security feature more critical for
multicasting and broadcasting systems than for other
systems because of the correlation between the value of
the events and the number of peer/people wanting to
receive them. Moreover, if the streamed event relates
to critical public news, then the failure of the system
represents not only a lack of security, but also a pub-
lic/social safety problem.

Node autonomy This is a system security goal that is
somewhat specific to P2P systems. Each node is peer
with all the others and its autonomous functioning
should be guaranteed at all times: at any point during
service, each node should be empowered to perform
the actions that it is specified to perform at that step,
without the need of external intervention. This does
not mean that the node is isolated, nor that it cannot
interact with other nodes or with external repositories,
like in the ALTO IETF architecture [27], but that the
node is not depending on this information for its op-
eration. Dependencies on external intervention expose
the node to trivial DoS attacks (when the information
is not available, the node cannot work), and many
other security threats. For instance, node autonomy
is a requirement to prevent censorship attacks, and
as discussed in the second example (Section 2.2), the
ability of decorrelating reboots or similar actions is
fundamental to avoid massive failures that lead to in-
formation loss.

Access control Access control is fundamental to avoid
frauds in commercial services, and fraud avoidance is
a security goal. Access control can be a conflicting re-
quirement with Node Autonomy. On the one hand, to
the best of our knowledge, there are no known methods
for distributed authentication, so that, for this function,
the node cannot be autonomous. On the other hand,
it can be argued that a commercial system requires a
form of centralized control (by the service provider)
and is provided in exchange of some form of payment
(direct or not). Thus in this case there is a commercial
agreement between the two entities and any form, for
instance, of denied access can be tracked and is not a
DoS.

Access control is also a powerful means to reduce
the possibility of security attacks coming from inside
the system, because it prevents identity misrepresenta-
tion as well as, to some extent, collusion and multiple
identities. The real challenge is providing access control
while preserving the users privacy, i.e., implementing a

very popular live event streamed, enough dummy traffic to cause
a packet loss rate that the streaming application cannot cope with.

Peer-to-Peer Netw Appl

system that either guarantees against information leak-
age (e.g., what TV channel is downloaded), or enables
pseudonym-based authentication [3, 4].

3.3 Data and content security goals in P2P streaming

Considering now content management, there are some
specific properties of P2P streaming that are of particu-
lar security interest:

Authenticity and integrity The data transmitted must
be guaranteed and not tampered with, and it must be
guaranteed that it was emitted by the intended trans-
mission entity.

Non-repudiation Refers to the situation when the
nodes that received a certain piece of data cannot deny
that they received it. Non-repudiation is of interest only
for video on demand applications, while for TV-like
(broadcasting) it may be a minor feature.

Conf identiality The content that is transmitted during
the streaming process can only be used or retransmitted
to other nodes involved in the protocol. This property
interlaces with access control. In fact an access control
system that prevents unauthorized participation to a
streaming, but is not supported by a content manage-
ment system that can prevent recording and later repli-
cation of the content becomes useless. Recent studies
on commercial TV streaming solutions have shown that
they do not perform encryption [7], which makes the
protocol lose not only confidentiality but also authen-
ticity and integrity.

Anonymity This is one of the most controversial prop-
erties, since in many contexts the capability of a user to
remain anonymous is associated to potentially unlawful
activities. However, specifically in TV systems, the right
of a user to watch a program without disclosing his
identity is key to privacy protection and should be guar-
anteed by broadcasting systems. This property should
be guaranteed also by P2P streaming systems, not only
in face of external observers, but also with respect to
the other users of the same system, and the broadcaster
too.

Haridasan and van Renesse argue that not all ap-
plications need anonymity and confidentiality, but the
features that matter most in frequent cases, are authen-
ticity, integrity and non-repudiation [15]. Still, we have
seen that anonymity becomes a key issue of privacy
protection in TV systems. Non-repudiation, in the same
systems, may be of secondary concern, unless a node
can build claims on the fact that some information has
not been delivered. Similarly to Section 3.1, these are

clear differences of security requirements and other
P2P applications.

3.4 Protection mechanisms

As we have discussed, in P2P streaming there are two
important values to be protected: i) the data exchanged
between peers, and ii) the hardware and software re-
sources that each user somehow ‘lends’ to the P2P
system.

In streaming systems the data being shared has a
limited validity in time: after the target playout time
the data turns stale. This adds a new dimension to the
problem of data protection: delay makes data useless.
As a consequence, bandwidth becomes an asset that
can be attacked to make data useless. As P2P systems
are decentralized, it is usually easy for malicious peers
to flood the system with junk and fake data in such
a way that they would exhaust the bandwidth of the
system [8].

Access control is a prevention mechanism that limits
the reach of unwanted entities (peers) to the data
being exchanged. Mapping and enforcing the connec-
tion between identities and access rights, access control
strongly requires mechanisms for identity and reputa-
tion management. Some applications (e.g., public TV)
require no access control for service provision, but
others may be limited to groups of authorized users:
membership is controlled, and the system should pro-
vide means to protect membership in face of attacks,
both for breaking the control and for denying service
to authorized members.

Auditing Auditing is a detective means by which vi-
olations of predefined courses of actions can be iden-
tified. Unlike access control, auditing is an ‘after the
fact’ measure and the outcome of its analysis influences
future course of actions. Auditing requires the exis-
tence of logs with recordings of certain activity, the
mechanism that is periodically triggered to write these
logs, and an auditor—the entity verifying the logs. As
far as the checking mechanism is involved, auditing
can be continuous—at certain time intervals or on all
records—or probabilistic—at random moments of time
or on random recordings.

In P2P systems, audit can function as a means to
check whether a peer node functions according to a
predefined contract or protocol. The idea of distributed
audit in the sense that nodes trade local storage with
storage on other nodes, is hinted in [34]. Of course, in
order to perform it, the auditing method must be se-
cured; this involves making sure that any nodes cannot
influence what is being written in the logs, nor hide the

Peer-to-Peer Netw Appl

logs themselves. Full access to query these logs must be
entrusted to the requesting entity; moreover, the mech-
anism evaluating the events logged in the file must not
misinterpret or ignore anything that was recorded. A
simple way to ensure that most of these conditions are
satisfied, is to impose a reward/punishment/incentive
mechanism that makes the entities involved in the audit
process cheat as little as possible.

4 Common attacks in P2P streaming systems

The most serious attacks in P2P systems comes from the
inside of the system. This happens because only an in-
ternal node runs the protocols used between hosts, and
can thus exploit them. It is common practice to restrict
the set of actions that unknown nodes can perform.
Once a node is allowed into the system, however, it is
assumed to be honest hence it gets all privileges. With
the problems presented in Section 2, the bad nodes
become bad on the fly. Therefore, the security of P2P
application should look to protect internal nodes from
other (malicious) internal nodes (Table 4).

In what follows we will focus on some possible situa-
tions of vulnerability and describe the favorable condi-
tions in which they take place. Each of the following at-
tacks can exacerbated by collusion: one malicious entity
compromises a (potentially large) collection of nodes to
conduct correlated attacks onto the whole system. This
scenario breaks the node autonomy requirement stated
in Section 3.2. As expected, this is the most dangerous
situation since it may be extremely difficult to track
down the attacker if nodes function correctly at each
step or on short-term, while overall misbehaving or
deviating the protocol on the long run.

Forgery and repudiation attacks Forgery attacks break
the condition of confidentiality and integrity of data

Table 4 Overview of attacks in P2P streaming systems

Attack Target Attribute

Forgery data confidentiality, integrity
Pollution data confidentiality, integrity
Eclipse overlay, protocol autonomy
Neighbor protocol autonomy
Sybil protocol authentication
DoS peers availability
Omission peers, data dependability

Attackers can collude in pollution, membership, neighbor se-
lection, Sybil and DoS attacks. The source of attacks is usually
any peer node. In some cases—pollution, forgery, neighbor,
omission—superpeers can do more damage to the system than
average peers

mentioned in the previous section as a requirement
of P2P streaming systems. Haridasan and van Renesse
call forgery any fabricated or tampered data streamed
into the system [14]. Repudiation attacks are attempts
to deny having received streaming content or to ac-
knowledge but with false information. Most crypto-
graphic techniques as message signatures and public
key infrastructures can easily solve the vulnerability,
but suffers from the disadvantage that the performance
cost of signatures or keys is high.

Pollution attacks in P2P streaming occur when the
attacker mixes or substitutes junk pieces of data into
the P2P distributed stream. In this way, the quality
of the transmission decreases considerably: polluted
chunks which arrive at fair peers degrade the stream
quality and can change its meaning; and these peers will
forward the junk to other peers and the whole effect
will exponentially span over the network. Proof that
the effects of this type of attack can be devastating in
a streaming scenario are given by Dhungel et al., along
with proposing four possible defenses: blacklisting, traf-
fic encryption, hash verification and chunk signing [11].

Membership and Eclipse attacks With this type of at-
tacks, the membership protocol or the way nodes are
admitted into the overlay are compromised. A special
type of membership attack is the Eclipse attack, where,
as noticed in [32], an attacker which controls a portion
of the overlay neighbor scheme, eclipses fair nodes by
dropping or re-routing any messages meant for those
nodes. In other words, in Eclipse attacks, the attacker
can gain some control over the routing mechanisms in
the P2P system.

Unstructured overlays are more susceptible to this
type of attacks than the structured overlays; the latter
do impose some constraints over the neighbors of one
node, while the former do not. For this reason, the
unstructured overlays use floods of random walks to
gain knowledge of the network topology; the more they
use these mechanisms, the higher the probability that
an attacker will control more nodes in the system. One
possible solution described in [32] is to use a mechanism
that bounds the in-degree and out-degree of the nodes
in the P2P overlay. In this way, an attacker is prevented
from communicating with more nodes than those to
which it normally should.

Neighbor selection attacks These attacks refer to the
situations in which an attacker controls the neighbor
selection mechanism of some nodes, and makes them
choose it as information provider. Malicious nodes can
thus infiltrate and dominate sets of neighbors. The at-
tacker will influence the way the overlay communicates

Peer-to-Peer Netw Appl

and the neighbor selection process happens, so that it
can control the traffic and subvert the whole system.
These attacks are referred to as epidemic by [29], as
fair nodes will “unknowingly reference compromised
peers in their neighbor set”. Of course, the problem is
even worse if the membership server is itself attacked
in this way. One idea of solving this problem with
Distributed Hash Tables is to identify the invariants
in the placement of peers in the overlay, and detect
attacks in the form of deviations from these invariants.
A solution adapted to mesh-based systems is shown
in [29].

Sybil attacks These attacks happen when the reputa-
tion mechanism established within the P2P system is
compromised. Specifically, an attacker creates a large
number of entities which bear the same disguised iden-
tity in order to become more powerful. Depending on
how the id-s of nodes and reputation constraints are
generated, the reputation system may be more or less
vulnerable to such attacks. The idea is that once dis-
guised, the attacker profits from the trust that is given
to the real entity it impersonates. Guarding against such
attack may involve a trusted third entity which certifies
that a name or a reputation id is attached to the exact
entity it is supposed to carry it. Therefore, certified
node identifiers is one of the most straightforward
techniques to repel masquerading. In addition to this
method, auditing is another way to prevent the Sybil
attack. An interesting solution employing auditing is
provided in [32], where a node periodically challenges
one of its neighbors to provide it with a list of that
node’s inbound contacts; if that list appears unfair or
tampered with, then the requester node can act upon
this discovery.

DoS attacks Denial of Service can take many forms,
from system partitioning to sending excessive amounts
of requests or duplicate packets intended for their
peers. The ability to bring a contribution to the stream-
ing session is thus compromised, because a fair node
would be flooded with useless messages or too many
requests for it to handle. In this way, the resources of
the system are exhausted with a relatively small effort
on the attacker side. When the resource on which the
attack focuses is bandwidth, the attack has been also
termed as request spreading attack [8]. These prob-
lems were previously studied in the case of distributed
systems as well as P2P streaming scenarios and there
are several approaches in counteracting this type of
attacks [8, 9, 35].

Omission attacks Are at the other extreme than DoS
attacks, implying that all the packet of data or just a

part of it is not sent further according to the protocol
specification. Again, just like for the DoS attacks, this
behavior can compromise the whole P2P system even
if a small number of peers collude. As noted by [15],
the problem with this attack is that the guilt of a node
cannot be proved easily.

5 Security practices

In this section we provide a close-up on the existing
security solutions in P2P streaming. We expose and
discuss the vulnerabilities of each approach and then
derive a few patterns and conclusions that would help
in protecting against attacks in P2P streaming systems.

As shown in Fig. 1, there are two building blocks
of P2P systems to be considered: overlay topology and
data dissemination mechanisms. The topology of the
overlay defines how to connect each node in the net-
work with the right neighbors; in other words, in a situ-
ation in which nodes are constantly joining and leaving
the system, to find a solution in which each node sees as
its neighbors only the nodes it is most interested (and
is fair) to communicate with. The criteria to choose
neighbor range from locality to certain QoS values.

The topology of the overlay is in tight connection
with the application: the application domain deter-
mines the topology of the network, while in its turn the
overlay topology influences runtime application aspects
that can be either functional or non-functional: search-
ing, routing, performance, efficiency, robustness [5,
6, 16]. In complex applications, where the topology
changes dynamically, the mechanisms involved in the
construction of the overlay have increased importance
because they are invoked continuously; consequently,
keeping these mechanisms protected against attacks
becomes essential in order to maintain their compliance
with the protocol schemes.

P2P streaming

OVERLAY

TREE MESH
DATA
PUSH

DATA
PULL

DATA
DISSEMINATION

ALGORITHM

Fig. 1 Important structural aspects in securing P2P streaming

Peer-to-Peer Netw Appl

According to several classification studies [22, 24, 28,
38] that there are two typical overlay topologies in P2P
streaming applications:

1. Tree-overlays: in which the overlay is usually built
in the shape of a tree. This means that the way in
which overlay nodes send and receive messages is
structured and embedded in the overlay topology:
The source is the root of the tree and leaf nodes
receive but not redistribute the data. Other struc-
tured topologies, like multi-trees and hypercube
exist;

2. Mesh-overlays: where the overlay does not have
a specific structure but it is a generic mesh. That
is, every peer has several neighbors, but without
a clear parent-child relationship or any predefined
topology. The media is distributed among different
peers and then each of them transmits the media
further.

Apart from the overlay construction, the other
defining aspect of P2P systems is the data dissemination
mechanism among peers. That is, while the overlay
deals with connecting a node with the right neighbors,
the data dissemination algorithm is concerned with how
to select neighbors to actually exchange information
with. There are two basic ways of disseminating data
in P2P streaming systems [22, 31]:

1. The push, or source-driven approach means that a
peer transmits a chunk to its neighbors, assuming
they do not have it yet; the directions in which
the data is sent are determined by the parent-child
relationship among nodes, be it a tree or mesh
overlays. It is easy to see this way of performing
data dissemination is prone to redundant pushes
and thus to DoS attacks (e.g., flooding neighbors
with data they already have), to neighbor selection
and omission attacks (bias in where to push data);

2. The pull, or receiver-driven approach is an alterna-
tive to the previous scheme, by which a peer uses
buffer maps to create pull schedule with the peers
it decides to communicate with. A peer requests the
information it is missing. This approach is more ro-
bust than the previous, but vulnerable to collusion:
peers that already have data may not advertise it to
others;

The data-driven approach is in practice a pull mech-
anism. Epidemic algorithms (and gossiping ones in par-
ticular) are examples of this approach. Gossip in P2P
is a data dissemination mechanism that does not rely
on the overlay structure but autonomously manage its
own distribution patterns. It is also useful in data aggre-
gation and resource allocation [19]. The reason for its

popularity is that gossiping mechanisms are simple and
more robust than others. Security-wise, we believe they
are interesting to study because they are more general
than the push and pull mechanisms. The biasing vul-
nerabilities suffered by the other approaches are easily
solved with gossip, since it is not easily predictable
in which way data flows. In addition, as previously
noted [31], gossip-based mechanisms are less sensitive
to peer dynamics, thus to churn.

For the reasons above, in what follows we will an-
alyze the two overlay approaches in conjunction with
gossiping protocols from a security standpoint. We
will bring into light what are the vulnerabilities and
strengths induced to the systems that adopt these ap-
proaches.

5.1 Tree-based approaches

Generally, streaming in tree-based overlays imposes
that the source of the media is the root of the tree,
and that the rest of the peers are children of the source
and children/parents among themselves. The path that
the data must follow in this case is fixed: first from the
source to the first-order parents, then from those to
their children, and so on. A visible functional problem
that occurs with this kind of overlay structure is simple:
the efficiency of the hierarchy is overcome by the large
imbalance between parent nodes and leaf nodes (par-
ents forward data while leaves do not, so everybody
wants to be a leaf). Historically, the solution to this
issue took the form of multi-tree overlays, as [28, 29]
notice, in other words: more trees, more leaves. This
approach leads to distributing the data in multiple dis-
tinct trees.

There are other problems related to the topology
of this overlay [22, 38], and they are summarized in
Table 5. Since in tree overlays each node receives data
from only one source node, bandwidth fluctuations can
be highly damaging, and paths that are closer to the

Table 5 Common fairness and security issues in tree-based P2P
streaming systems

Problem/attacks Envisaged solutions

Imbalance root vs. leafs Using multi-trees, gossip
Bandwidth fluctuation, bottleneck
Protocol deviations on parent node

Identifying malicious nodes Monitor, acknowledgment
DoS, omission
Membership attacks

Forgery, repudiation Signatures

Sybil attacks Not yet solved

Peer-to-Peer Netw Appl

root are more likely to turn into bottlenecks. Security-
wise, minor protocol deviations of single nodes can
affect easily entire subtrees. Additionally, when nodes
closer to the root leave the system (e.g., they crash or
are attacked), they leave unserviced a large percentage
of the nodes.

Trying to solve the above problems, Zhou and Liu
have combined the tree overlay with gossip data dis-
semination so that the two approaches would compen-
sate each other’s faults [38]. Because the tree model
is brittle but yet time-efficient, it is used as a second
option: by default all data is transmitted by gossiping,
and if a node does not receive anything for a certain
period of time, the tree overlay will be used to obtain
the data from its parent. Security-wise, because the
protection level for a composite system is the protection
level of its weakest link, this solution is prone to all
vulnerabilities of the tree overlay.

Another solution adopted in tree-based overlays is
presented by Shetty et al. in [30]. In tree-shaped over-
lays, the streaming quality depends on the coopera-
tion of the non-leaf nodes (namely the nodes in the
overlay tree that are neither leaves nor the source).
The possible attacks that are considered are thus DoS,
omission, forgery and repudiation attacks. Shetty et
al. identify that one of the problems with the current
security solutions in P2P streaming is that they cannot
identify the malicious nodes themselves, just the fact
that there are malicious nodes. This is because in over-
lay multicast streaming, if a fair peer receives tampered
data, it cannot determine if its parent is malicious (since
its parent might have taken that data from some other
peer).

A signed acknowledgment together with a random
monitoring scheme were shown to be a solution to
detect the exact attacker peers. The former mechanism
is used by peers to prove their fairness, while the latter
helps trusted peers to monitor in a random fashion
some of their peers suspected to malfunction. The prob-
lem with this solution design is that it relies on one
single session trust manager, which imposes a scalability
issue and a single point of failure. The trust manager
decides whether a peer is malicious or not, by receiving
‘complaints’ from peers and employing a localization
scheme. If it cannot detect the exact location of the
omission or forgery attack, the trust manager will de-
crease the trust value of both peers (the reporter and
the reported). Otherwise, the child and the tree that
inherit from the reported node are moved to another
peer-tree.

On the downside, this solution does not handle col-
lusion attacks in the form of Sybil attacks: if a mali-
cious node assigns itself several identities, then the only

way to prevent it from gaining control is by assigning
strong identities from a central identity manager, or
conversely, to implement a punishment scheme, where
a malicious node can be evicted, provided bad service
or punished in money. Moreover, having the trust man-
ager as one fixed peer throughout all sessions is a single
point of failure, therefore passing this responsibility to
different nodes with high levels of trust for each session,
should be a straightforward improvement.

A common solution in tree-based approaches is
given by SecureStream [15]. SecureStream is able to
repel several types of attacks because of its multi-
ple intrinsic mechanisms that help in eliminating most
vulnerabilities. For example, in order to protect itself
against membership attacks, SecureStream uses the
Firef lies protocol in which members monitor each other
in case of failure, by pinging each other. The pinging
protocol is based on a gossiping protocol, where each
node is assigned certain other nodes to monitor, and
there is a limitation on the number of neighbors that
a certain node can accuse of failures (this comes to
stop malicious nodes from accusing too many fair ones).
Each peer has a predefined set of neighbors.

To guarantee the integrity of the data being
streamed over the network, SecureStream avoids sign-
ing groups of packets with asymmetric keys, but com-
putes content hashes that are signed with the sender’s
private key. In order to minimize the number of mali-
cious neighbors, this solution takes a smart approach:
in each round, the source of the transmission notifies
its neighbors that it has available information. This
information is valid for an “availability window”. Each
neighbor, in its turn, requests from the source the in-
formation that it misses (this is the “interest window”),
but trying not to overload the source. Whenever they
obtain new information, peers send notifications to
their neighbors. Overall, this method of dissemination
is resilient to attacks, especially omission attacks: if a
peer does not reply with the promised information,
then another one is contacted. It should be noted here
that the nodes located close to the source do not neces-
sarily receive packets faster.

Moreover, there is a limit in the number of requests
that arrive at a peer (this repels the possibility of node
flooding). In order to eliminate free riders, an auditing
mechanism ensures that all nodes contribute to the
protocol at least as specified by a minimum amount.
Auditing is distributed: local auditors are periodically
elected to evaluate the contribution of each of their
neighbors. Punishing nodes that behave maliciously,
as well as employing the pull-approach that disables
attackers to gain control deterministically over sets of
nodes, are the salient features that make SecureStream

Peer-to-Peer Netw Appl

tolerant to Byzantine attacks. In comparison to the
BAR-Gossip approach described in Section 5.3, it can
be noted that the source does not need to know all
the members of the protocol: here the membership is
dynamic, so scalability is not bounded.

5.2 Mesh-based approaches

Mesh-shaped overlays are less structured in compari-
son to the tree solutions. A membership server may
keep track of the existing nodes in the system if re-
quired, and there is no fixed flow that data must follow.
Recent works see these meshes as unidirectional, in the
sense that nodes have separated inbound and outbound
links. The number of neighbors that a node can accept
is limited by resources or by the protocol.

Empirically, a comparison between multi-tree and
mesh-based overlays in streaming scenarios is given
in [24, 28] and the conclusion is that mesh approaches
are more robust. The study shows that overlays that are
mesh-shaped bear better performance when the size
of the network is large, the streaming rates are high,
and the nodes have high bandwidth and low round-trip
times. On the downside, they may introduce a large
number of duplicate packets in the network. Multi-
trees, in comparison, are more time-efficient in het-
erogeneous networks, but on large scales they perform
worse than meshes. Some issues of the mesh-based
overlay are shown in Table 6.

Two classical examples in mesh-based overlay so-
lutions are Prime [23] and CoolStreaming [37]. In
CoolStreaming, the approach is data-driven: the data
availability drives further propagation; gossip commu-
nication is used to disseminate network membership
and content availability. Building on CoolStreaming,
which does not form a typical mesh but several trees
onto an initial mesh, Prime is historically one of the
first mesh streaming systems. In Prime, content deliv-
ery (or swarming) has two phases: push reporting is
done by parents (announcing availability of data) and
pull-reporting by children (retrieving data using some
packet scheduling algorithm). For advertising the new

Table 6 Common security issues in mesh-based P2P streaming
systems, and possible solutions

Problem Envisaged solutions

Identifying malicious nodes Monitor and audit schemes
Flooding, omission attacks
Membership attacks

Collusion attacks Not yet solved
Data diffusion problems
Acknowledgment / Repudiation pb.

content dedicated links are in place (diffusion connec-
tions) over diffusion trees.

From a security point of view, neither Prime nor
CoolStreaming protect themselves from effects of sev-
eral types of attacks. For example, Prime assumes that
peers are all fair and connect in a random fashion with
one another, and that the mesh formed by peers is
directed. Since there is no mechanism to check whether
instead of randomness, some nodes can connect only
to certain other nodes on purpose, so coalitions (and
also network partitioning) can form. Apart from the
simple collusion attack, the integrity of the diffusion
connections is not enforced. There is no mechanism in
place to make sure that one node declares its content
availability to all or none or a fraction of its neighbors;
there is no guarantee that the bandwidth, outgoing and
ingoing degree of each node are used properly. Even
more importantly, there is the issue of acknowledge-
ment and repudiation: there is no guarantee that peers
eventually receive streamed data.

5.3 Gossiping and Byzantine faults

Gossip algorithms are mostly used for content dissem-
ination in dynamic distributed systems. They rely on
what is termed as “probabilistic exchange of infor-
mation” [19]: nodes use randomness in determining
to/from which neighbor they would forward/retrieve
data. Gossip protocols in general are robust, scalable
and rapidly spread information, their only fault being
that they might generate more traffic than the nodes
can handle. This traffic quantity, however, is a price that
gossip protocols pay for redundancy. Still, even if dan-
gerous, they can become a very useful tool for rapid and
scalable epidemic dissemination when proper attention
is given to the message propagation mechanism.

Based on an analytic model [19], there are three main
features of common to gossip protocols:

1. Peer selection is about how a peer A selects another
peer B in order to interact with it. This choice
must be done randomly in a typical gossip protocol,
but it can be biased if the scheme is undergoing
an attack: peer A might see that there are three
other available peers B, C and D, but its choice
on communicating with B might not be a random
choice. For this reason, securing the gossiping pro-
tocol involves adding a mechanism to enforce that
peer selection is random and cannot be tampered
with;

2. Data exchanged is an application-dependent choice
belonging to each of the two peers involved in the
exchange. It is not necessary that peers exchange

Peer-to-Peer Netw Appl

data: they might as well exchange references to
other peers in a better ‘position’ to exchange actual
data (e.g., more bandwidth). From this point of
view, it is essential that none of the two parties
cheats. This constraint can be enforced by check-
ing the validity of the data during the content
exchange, before the communication between the
two peers ends. In addition, the security of the
channel established between the two peers must be
enforced;

3. Data processing refers to how each peer handles
the data it has received. It involves both storing
the message for the next round and passing it to
the application. Neither the former nor the latter
problem are treated in this paper.

Generally, gossip protocols are scalable and very
reliable; by randomly selecting peers, gossiping avoids
message losses or node failures. Still, as noticed in [13],
gossip schemes cannot deal with situations in which
attackers falsify the information being disseminated
from one peer to another, because gossip protocols do
not verify the data being exchanged. This subclass of
problems falls into the class of Byzantine faults. For
this reason, there are a number of solutions trying
to address these issues, and hereafter we will briefly
discuss some of them.

Compared to previous structured overlay approa-
ches, a more realistic solution (from the point of view
of Byzantine faults) to P2P streaming is given by Dolev
et al. in S-Fireflies [12]. The purpose of the P2P overlay
network is double: tolerate Byzantine nodes and self-
stabilize (to adapt dynamically to churn). S-Fireflies
builds probabilistic graphs (random graphs) with nodes
of low in- and out-degrees, that is stable in terms of
Byzantine presence. The result of the algorithm is the
enforcement of a ’rigid’ complete graph, so that nodes
get to know all their neighbors (with a high probability).
Onto this robust connection graph, Dolev et al. estab-
lish a monitoring mechanism that uses gossip to report
node failures and propagate transmission rounds. The
protocol is verifiable at the level of each node, so any
peer can verify that another node communicates with
correct neighbors. Moreover, there is an enforcement
mechanism for nodes not to impersonate other nodes.
In terms of the streaming session, there is a system-wide
process with the purpose of updating all nodes in the
network; even if a quarter of the nodes are temporarily
faulty, the system is still able to recover.

The above solution provides some useful mecha-
nisms for a P2P network to timely adapt to Byzantine
faults: the construction of the random graph coupled

with verifiable adaptiveness. However, although it con-
trols the effect of malicious behavior in its general
form, it does not deal with the causes of this behavior:
nodes should be encouraged to participate in the game,
because the more peers cooperate, the better the per-
formance of the streaming session.

BAR-Gossip (Byzantine-Altruistic-Rational) [21] is
the next step in making P2P streaming more secure
and less treacherous. This new model increases the
safety and liveness guarantees offered by Byzantine
fault tolerance because it features an incentive-based
mechanism for non-byzantine peers that may become
malicious. This solution leverages on three different
peer behaviors: purely byzantine, altruistic and rational
nodes. The modification to the original peer selection
scheme in gossip, is that this process is pseudo-random
and verif iable. The strength of the overall protocol is
due to several reasons:

– it is extremely robust when faced with Byzantine
and selfish nodes,

– it can face collusion attacks,
– it provides stable short-term throughput, while the

bulk of the other approaches target maximizing
bandwidth on the long term,

– it is usable for short-window transmissions/strea-
ming,

– it does not use reputations, so Sybil attacks are
already dealt with.

BAR-Gossip functions in rounds, or transmission
sessions; in every round, the source transmits the cor-
rect packets, and then peer nodes propagate these
packets simultaneously in two schemes: a balanced ex-
change, and an optimistic push (of non-expired pack-
ets) protocol. BAR-Gossip also details the explicit
exchange protocol between nodes, and takes all ac-
tions to balance the amount of information that is
swapped between the two sides (very much like tit-for-
tat). Moreover, the protocol seeks to monitor and re-
ward/punish individual node activity so that there is an
overall equilibrium between all nodes involved. Some
solutions that this protocol gives to common problems,
are:

– Neighbor selection attacks, because selection is
verifiable. However, the convergence is not as fast
as traditional gossip, because the mechanism of
selecting neighbors replaces sheer randomness with
pseudo-randomness and verification performed by
the selected node onto the selector.

– Nodes lying about their history, because it is no
longer desirable to lie in the short-term, because it

Peer-to-Peer Netw Appl

is no longer in their interest neither to under-report
nor to over-report their packet history;

– Forgery attacks are repelled because of a clever
mechanism by which data is first traded and
verified, and then exchanged. If the data is forged,
this would be noticed before the actual exchange, so
the potential receiver would realize the attack and
report it. Again, making sure that data is not forged
prior to the exchange involves more overhead in
the transmission;

– Stability on the short term is also grounded on the
notion of Nash equilibria, so that any node would
consider that its peers are following the protocol.
This belief is actually an incentive for nodes, to
abide by the protocol;

– Free-riders elimination is achieved by allowing junk
updates, to compensate for the free-updates of an
altruistic node.

Nevertheless, BAR-Gossip has its limitations. First
if all, it only supports a static membership system, that
is—all participating nodes must subscribe to the broad-
caster before participating in any round—to this end,
the system gains a centralized identity management
scheme with a static list of node id-s. In the case of
large amounts of nodes that come and leave, this could
turn into a scalability problem. In addition, by using
the comments in [2], the question of how would nodes
discover themselves can arise; discovery is arguably the
heart of gossip-based protocols, so a discovery solu-
tion should consider the topology of the network, and
should be as decentralized as possible so that nodes can
use it at all times.

Furthermore, it can be noticed that in the case of
the optimistic push protocol, nodes are likely to waste
bandwidth by sending junk—this again can turn into a
problem if bandwidth is scarce or the quantity of junk
that is being sent is large. From this points of view,
an interesting idea would be that of Martin in [25],
where the efforts are concentrated toward leveraging
on altruistic nodes to carry the burden of rational
nodes. In other words, in the BAR-Gossip solution,
altruistic nodes and rational ones behave in the same
way according to the specification; however, rational
nodes may refuse to participate in some computation if
the cost of their involvement is higher than their utility.
In this case, performance of the overall system can be
improved if altruistic nodes take upon themselves the
work that was refused by the rational nodes. Of course,
burdening altruistic nodes should be done with a re-
ward, as much as ‘selfishness’ (rational nodes refusing
participation) should be punished.

6 Discussion

There are a number of vulnerabilities that P2P stream-
ing systems are prone to. When it comes to live stream-
ing, problems get worse because of the bandwidth de-
mand and timeliness of this type of systems. Seamless
performance and attack-proof design are probably im-
possible to achieve at the same time. Even worse, given
the large variety of attacks, countering all or most of
them is even more challenging.

6.1 Tradeoffs: security vs. performance

BAR-Gossip is able to overcome a very large number
of different attacks from the list in Section 4, but there
are a number of trade-offs it has introduced to achieve
this goal (see Table 7). The essential idea it applies in
order to repel a large range of attacks is to encourage
nodes to behave. If nodes misbehave, then they are
punished; this can be easily implemented by some form
of penalty or by placing the wrong-doers further away
from the source of broadcast, thus ensuring that their
possibility to harm is diminished. However, it is easy to
notice that punishing one node may involve punishing
the nodes that the current node is communicating with;
thus, the effect of the punishment is likely to occur to
innocent nodes as well. This is a trade-off in its own
way: the decision to punish also some nodes that do not
misbehave, in order to ‘set an example’ for other nodes.

Neighbor selection is another trade-off. Instead of
allowing a tree-like structure in which nodes know from
the beginning who to communicate with, it is wiser,
from a security point of view, to sacrifice some per-
formance in order to eliminate vulnerabilities as much
as possible. Using the pseudo-random scheme together
with selection verification is a far safer approach that
using a centralized membership directory, which apart
from bearing scalability problems, is also a single point
of failure, not to mention the privacy issues it arises.
From this point of view, there is another trade-off re-
marked by Jesi in [18]: BAR gossip is able to let neigh-
bors control how random the peer selection process is
for certain nodes, at the cost of ruling out dynamic peer
membership. This is the reason why all peers first have

Table 7 Tradeoffs in BAR-Gossip

Tradeoff between and

punishing innocent nodes fairness incentives
neighbor selection dynamic peer membership
bandwidth utilization allowing fake data delivery
timeliness punishment for misbehaving nodes
performance cryptographic schemes used

Peer-to-Peer Netw Appl

to register themselves to the broadcaster, before par-
ticipating to the streaming system. Trading in the other
direction, a system can admit dynamic membership, at
the cost that nobody can control how randomly a node
selects its neighbors.

Bandwidth utilization is the reason of another com-
promise. Since there can be nodes that offer packets
(data) at a lower cost than any other nodes, this would
imply that all requesters would crowd to use these
free suppliers [7]; balance is brought into this scene by
introducing the possibility that requester nodes receive
junk if they turn into a burden for the altruistic ones.
In this case however, bandwidth is wasted with the
sole purpose of ‘teaching a lesson’ to the misbehaving
nodes.

Timeliness of transmission is very seldom compro-
mised in P2P streaming solutions. This is straightfor-
ward for the simple reason that users hate choppiness
or low quality, and as long as they encounter any of
them, they leave the system. Because this is not in the
system’s best interest—the more users, the higher the
combined bandwidth—then timeliness is not a para-
meter to be touched. However, if nodes misbehave,
punishment can take the form of placing these nodes
farther from the source (if applicable), with the clear
effect of obtaining packets which are closer to expiry.

Furthermore, protection mechanisms on the trans-
mitted data ensure its integrity, confidentiality and fair-
use. Overall, these mechanisms, ranging from signing,
to briefcase negotiation and eventually briefcase ex-
change, function in the detriment of performance. Each
node consumes bandwidth and processor cycles for the
system’s best interest, even if it is not always in its own
interest. Of course, nodes should not be allowed to act
by themselves, and as long as the risks that they en-
counter are the same for all other nodes, the same mea-
sures should be taken for them all. Needless to mention,
countering all forms of ‘anarchy’ ensures the well-being
of the entire system; thus an incentive/punishment tech-
nique needs to be in place to protect the streaming
process.

6.2 Further work

Currently, collusion-based attacks remain one of the
most problematic types of attacks in P2P streaming
systems. Collusion do not necessarily mean the protocol
is not respected, but it can also refer to a slight deviation
from the protocol, which is hard to locate and cure.
In BAR-Gossip, for instance, collusion may occur to
rational nodes: a group of nodes that are not satisfied
with the previous exchanges, group together in order
to maximize collective utility. Their uncooperative be-

havior toward the rest of the network can manifest in
a slower propagation of messages in the exterior of
their group, compared to the one within the group.
Again, this does not disrupt the overall protocol, it just
decreases its effectiveness and jeopardize nodes equity.

More work is needed as to analyze the utility of
nodes to deviate from the protocol; finding a bound
for this utility, correlated with the application, would
be useful in finding quantitative incentives for not devi-
ating from the protocol. Moreover, churn in streaming
systems remains another open problem, for which one
possible solution can be that of self-adaptive networks,
as described in Section 5.3.

7 Conclusions

There are two approaches to securing a peer-to-peer
system: on the one hand, access control and identity
management mechanisms can help to ensure that no
malicious peers are allowed to join the system. This ap-
proach relies on the assumption that malicious behavior
can be detected beforehand: peers refusing to comply
with the rules of the protocol must not be accepted to
join the system. On the other hand, peers can make
promises they do not maintain afterwards. They can
agree to be fair but eventually collude and unbalance
the streaming process to their own advantage. In this
second case, an audit-like mechanism can compensate
the scheme. Observing what happens as the protocol is
running can help an administrator determine if there
are any system weak points that are being exploited.
From this point of view, we think that a methodology is
needed to detect that a P2P streaming system is under
attack, and a study on what are the possible ways to
compensate the damage.

In streaming (as in any other) systems, attacks occur
because there is a vulnerability to be exploited. Once
an attack happens, it needs to be confined to an area of
the P2P network as small as possible. Once the attacker
cannot easily gain control over a bigger portion of the
system, some mechanisms are needed to detect the
target and source of the attack. It is not always easy
to detect who the malicious nodes are (they are always
from within the network, assuming that no other hosts
can interfere with the protocol). There are some tech-
niques that can be used for this purpose: one of them re-
quires a trust manager [30], with the limitation that the
machine needs to be replaced periodically, and should
not be central to the whole network (since we want to
eliminate single points of failures). A complementary
approach is to use the mechanism of incentives and
punishments, where nodes are stimulated to stick to

Peer-to-Peer Netw Appl

the protocol; if they do not comply, then a distributed
monitoring mechanism (performed via the malicious
neighbors of a node) should help enforcing a pun-
ishment onto the bad performers. This incentive and
punishment approach is so far the only distributed
mechanism able to offer guarantees that on the long
run, peer nodes will comply with the rules of the system.

As discussed in the paper, tree-based streaming in
P2P networks are not only vulnerable to protocol fail-
ure, but are also far faster contaminated by an attacker
if the hierarchy of nodes is fixed. In the eventuality
no other constraints are put onto the degree of each
node (either inbound or outbound), then the structure
is vulnerable and cannot contain most attacks. This
happens because in a tree, if a node is contaminated,
then its children will be too. In a mesh, on the other
hand, the infection spreads in a one-by-one fashion
rather than in a one-to-many fashion.

Compared to tree-based streaming, mesh and gossip
approaches are more robust, scalable and Byzantine-
tolerant. The largest amount of recent works concen-
trate on either of these two approaches, and attach
a wide variety of additional mechanisms in order to
counteract as many attack types as possible. The over-
all trend is to delegate many monitoring and security
functions to each peer instead of keeping separate
entities exclusively for these tasks. Membership and
neighbor selection mechanisms are driving the flow of
any different protocol, while tune-ups mostly try to
leverage churn and node coalitions.

Acknowledgement This work is supported by the European
Commission through the NAPA-WINE Project (Network-
Aware P2P-TV Application over Wise Network—www.napa-
wine.eu), ICT Call 1 FP7-ICT-2007-1, 1.5 Networked Media,
grant no. 214412, and by the Italian MIUR PRIN Project
‘Autonomous Security’.

References

1. Slashdot (2007) Skype blames Microsoft patch Tuesday for
outage. http://slashdot.org/articles/07/08/20/150258.shtml

2. Alvisi L, Doumen J, Guerraoui R, Koldehofe B, Li H, van
Renesse R, Tredan G (2007) How robust are gossip-based
communication protocols? SIGOPS Oper Syst Rev 41(5):
14–18

3. Bianchi G, Bonola M, Falletta V, Proto FS, Teofili S (2008)
The sparta pseudonym and authorization system. Sci Comput
Program 74(1–2):23–33

4. Camenisch J, Lysyanskaya A (2001) An efficient system
for non-transferable anonymous credentials with optional
anonymity revocation. In: Proc of the int conference on the
theory and application of cryptographic techniques (EURO-
CRYPT ’01). London, UK, Springer-Verlag, pp 93–118

5. Carra D, Lo Cigno R, Biersack EW (2007) Graph based
analysis of mesh overlay streaming systems. IEEE J Sel Areas
Commun 25:1667–1677

6. Carra D, Lo Cigno R, Biersack EW (2008) Stochastic graph
processes for performance evaluation of content delivery ap-
plications in overlay networks. IEEE Trans Parallel Distrib
Syst 19:247–261

7. Ciullo D, Mellia M, Meo M, Leonardi E (2008) Understand-
ing P2P-TV systems through real measurements. In: Proc of
the IEEE global telecommunications conference (GLOBE-
COM’08)

8. Conner W, Nahrstedt K (2007) Securing peer-to-peer media
streaming systems from selfish and malicious behavior. In:
MDS ’07: Proc of the 4th on Middleware doctoral symposium.
ACM, New York, pp 1–6

9. Conner W, Nahrstedt K, Gupta I (2006) Preventing DoS
attacks in peer-to-peer media streaming systems. In: Proc of
the 13th annual conference on multimedia computing and
networking (MMCN’06), San Jose

10. Dabek F et al (2001) Building Peer-to-Peer Systems with
Chord, a Distributed Lookup Service. In: Proc of the 8th
workshop on hot topics in operating systems (HotOS),
Schloss Elmau

11. Dhungel P, Hei X, Ross KW, Saxena N (2007) The pollu-
tion attack in P2P live video streaming: measurement results
and defenses. In: Proc of the 2007 workshop on peer-to-
peer streaming and IP-TV (P2P-TV’07). ACM, New York,
pp 323–328

12. Dolev D, Hoch EN, van Renesse R (2007) Self-stabilizing
and byzantine-tolerant overlay network. In: Tovar E, Tsigas
P, Fouchal H (eds) Proc of the 11th int conference on princi-
ples of distributed systems (OPODIS’07), LNCS, vol 4878.
Guadeloupe, French West Indies. Springer, New York, pp
343–357

13. Han K, Pei G, Ravindran B, Jensen E (2008) Real-time,
byzantine-tolerant information dissemination in unreliable
and untrustworthy distributed systems. In: Proc of the IEEE
int conference on communications (ICC’08). pp 1727–1731

14. Haridasan M, van Renesse R (2006) Defense against intru-
sion in a live streaming multicast system. In: Proc of the 6th
IEEE int conference on peer-to-peer computing (P2P’06).
IEEE Computer Society, Cambridge, pp 185–192

15. Haridasan M, van Renesse R (2008) SecureStream: an
intrusion-tolerant protocol for live-streaming dissemination.
Comput Commun 31(3):563–575

16. Jelasity M, Montresor A, Babaoglu O (2009) T-Man: gossip-
based fast overlay topology construction. Elsevier Comput
Networks 53:2321–2339

17. Jennings C, Lowekamp B, Rescorla E, Baset S, Schulzrinne
H (2009) REsource LOcation And Discovery (RELOAD)
v. 6, P2PSIP Internet-Draft, IETF. http://tools.ietf.org/html/
draft-ietf-p2psip-base-06. Accessed 9 Nov 2009

18. Jesi G (2006) Secure Gossiping Techniques and Components.
PhD thesis, University of Bologna, Dept of Computer Science

19. Kermarrec A-M, van Steen M (2007) Gossiping in distributed
systems. SIGOPS Oper Syst Rev 41(5):2–7

20. Leonardi E, Mellia M, Horvath A, Muscariello L, Niccolini
S, Rossi D (2008) Building a cooperative P2P-TV applica-
tion over a wise network: the approach of the European
FP-7 strep NAPA-WINE. IEEE Commun Mag 46(4):20–22

21. Li HC, Clement A, Wong EL, Napper J, Roy I, Alvisi L,
Dahlin M (2006) BAR gossip. In: Proc of the 7th SIGOPS
symposium on operating systems design and implementation
(OSDI’06). USENIX Association, Seattle, WA

22. Liu Y, Guo Y, Liang C (2008) A survey on peer-to-peer
video streaming systems. Peer-to-Peer Networking and Ap-
plications 1(1):18–28. http://www.springerlink.com/content/
c62114g6g4863t32

http://www.napa-wine.eu
http://www.napa-wine.eu
http://slashdot.org/articles/07/08/20/150258.shtml
http://tools.ietf.org/html/draft-ietf-p2psip-base-06
http://tools.ietf.org/html/draft-ietf-p2psip-base-06
http://www.springerlink.com/content/c62114g6g4863t32
http://www.springerlink.com/content/c62114g6g4863t32

Peer-to-Peer Netw Appl

23. Magharei N, Rejaie R (2007) PRIME: peer-to-peer receiver-
driven mesh-based streaming. In: Proc of the 26th IEEE int
conference on computer communications (INFOCOM’07).
IEEE, pp 1415–1423

24. Magharei N, Rejaie R, Guo Y (2007) Mesh or multiple-tree: a
comparative study of live P2P streaming approaches. In: Proc
of the 26th IEEE int conference on computer communica-
tions (INFOCOM’07), pp 1424–1432

25. Martin J-P (2007) Leveraging altruism in cooperative ser-
vices. Technical Report TR-2007-76, Microsoft Research,
Cambridge

26. Rowstron A, Druschel P (2001) Pastry: scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems. In: Proc of the 18th int conf on distributed Systems
Platforms, Heidelberg

27. Seedorf J, Burger E (2009) Application-layer traffic opti-
mization (ALTO) problem statement. RFC 5693, IETF

28. Seibert J, Zage D, Fahmy S, Nita-Rotaru C (2007) Exper-
imental comparison of peer-to-peer streaming overlays: an
application perspective. Technical Report CSD TR 07-020,
Purdue University

29. Seibert J, Zage D, Nita-Rotaru C (2008) Won’t you be my
neighbor? Neighbor selection attacks in mesh-based peer-to-
peer streaming. Technical Report, Purdue University

30. Shetty S, Galdames P, Tavanapong W, Cai Y (2006) Detect-
ing malicious peers in overlay multicast streaming. In: Proc
of the 31st IEEE conference on local computer networks
(LCN’06), Florida

31. Silverston T, Fourmaux O (2006) Source vs data-driven ap-
proach for live P2P streaming. In: Proc of the int conference
on networking, int conference on systems and int conference
on mobile communications and learning technologies (ICNI-
CONSMCL ’06), IEEE Computer Society, Washington, DC,
p 99

32. Singh A, Castro M, Druschel P, Rowstron A (2004) Defend-
ing against eclipse attacks on overlay networks. In: Proc of
the 11th workshop on ACM SIGOPS European workshop,
p 21

33. Singh K, Schulzrinne H (2005) Peer-to-peer internet tele-
phony using SIP. In: Proc of the int workshop on network
and operating systems support for digital audio and video
(NOSSDAV’05). ACM, Stevenson, pp 63–68

34. Wallach DS (2003) A survey of peer-to-peer security issues.
In: Okada M, Pierce BC, Scedrov A, Tokuda H, Yonezawa A
(eds) Proc of the Mext-NSF-JSPS int symposium on software
security—theories and systems (ISSS’02), LNCS, vol 2609.
Springer, Tokyo, pp 42–57

35. Yang J, Li Y, Huang B, Ming J (2008) Preventing DDoS
attacks based on credit model for P2P streaming sys-
tem. In: ATC ’08: Proc of the 5th international confer-
ence on autonomic and trusted computing. Springer, Berlin,
pp 13–20

36. Yang S, Jin H, Li B, Liao X (2009) A modeling framework
of content pollution in Peer-to-Peer video streaming systems.
Comput Networks 53(15):2703–2715

37. Zhang X, Liu J, Li B, Yum Y-S (2005) CoolStream-
ing/DONet: a data-driven overlay network for peer-to-peer
live media streaming. In: Proc of the 24th IEEE int confer-
ence on computer communications (INFOCOM’05), vol 3, pp
2102–2111

38. Zhou M, Liu J (2005) A hybrid overlay network for video-on-
demand. In: Proc of the IEEE int conference on communica-
tions (ICC’08), pp 1309–1311

Gabriela Gheorge is a second year PhD student at ICT Doc-
torate School Trento. The focus of her research lies with the en-
forcement of security policies in distributed environments. Other
interests include access and usage control within the same envi-
ronments, in Web services and Service-Oriented Architectures.
She graduated at “Politehnica” University of Bucharest with
a thesis dealing with security functionality in Service-Oriented
Architectures; the thesis was carried out the Universitaet der
Bundeswehr Muenchen, Germany.

Renato Lo Cigno is Associate Professor at the DISI Department
of the University of Trento, Italy, where he is one of the founding
members of the Networking research group. He received a Dr.
Ing. degree in Electronic Engeneering from Politecnico di Torino
in 1988. From 1989 to 2002 was been with the Telecommunication
Research Group of the Electronics Department of Politecnico
di Torino. From June 1998 to February 1999, he was at the
CS Department at UCLA as Visiting Scholar under grant CNR
203.15.8. He is coauthor of more than 120 journal and conference
papers in the area of communication networks and systems. His
curent research interests are in design and performance evalua-
tion of wired and wireless networks, including optical switching
networks and overlay, peer-to-peer systems; simulation tech-
niques and modeling; and resource management and congestion
control. Renato Lo Cigno is member of the IEEE and ACM; he is
Area Editor of Computer Networks (Elsevier), and has served as
Chair or TPC member of several leading conferences, including
IEEE INFOCOM, Globecom, ICC, IEEE/ACM MSWiM, IEEE
MASS.

Peer-to-Peer Netw Appl

Alberto Montresor is Associate Professor of Computer Science
at the University of Trento, Italy. He received his Ph.D. in 2000
from the University of Bologna, Italy, where he designed Jgroup,
a partition-aware group communication system. He served as
Research Associate in Bologna until 2005, when he moved to
Trento. He is author of more than 50 papers in international
conferences and journals, and he has been active in several
European projects in the field of distributed computing and
complex adaptive systems.

	Security and privacy issues in P2P streaming systems: A survey
	Abstract
	Overview
	Examples
	Example 1: the reason for polluting
	Example 2: Skype outage

	Security considerations for P2P streaming
	Threat model
	System-level security goals in P2P streaming
	Data and content security goals in P2P streaming
	Protection mechanisms

	Common attacks in P2P streaming systems
	Security practices
	Tree-based approaches
	Mesh-based approaches
	Gossiping and Byzantine faults

	Discussion
	Tradeoffs: security vs. performance
	Further work

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

