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Abstract

Distributed estimation of global parameters in intermittently connected mobile envi-
ronments is a challenging problem. In this paper, we introduce a set of methods, based
on gossip techniques and population protocols, for performing such task. The applica-
bility of such techniques to various environments, characterized by different mobility
patterns, is evaluated through numerical simulations and discussed extensively. Guide-
lines are provided to help practitioners choosing the rightmethod for their specific
application problem.
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1. Introduction

Distributed estimation of global parameters is a relevant problem in many dis-
tributed computing applications. In general, connectivity of the underlying network
is taken as granted and attention is focused on optimizing the accuracy of estimation
while minimizing the incurred communication costs. Dropping the connectivity as-
sumption, methods need to be adapted (if not re-thought) in order to be able to cope
with possible disconnections. In this paper, we focus on theproblem of estimating
global parameters in the class of intermittently–connected mobile wireless networks
usually referred to as delay–tolerant networks (DTNs) [1].

In order to better understand the problem, let us consider the following two exam-
ples (one more technical, one more application–oriented):

• In a given DTN deployment, we want to optimize the routing algorithm to mini-
mize a given cost function. To do so, we include adaptation strategies in the pro-
tocol itself, so that it changes its behavior in order to enhance its performance.
The cost function may include a term that depends on the totalnumber of copies
of a packet made in order to reach the destination. Estimating such number is
one of the problems addressed by our framework.
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• A company developed a new service (e.g., exchange of MP3 files) running on
smart-phones which exploit phones’ Bluetooth interface. The service can spread
“virally”, so that a user having the software can disseminate it among her friends
(again, through the Bluetooth interface). The company wants to estimate the
number of users running its service: this problem fits our framework.

Problems like these – where alocal summary of someglobalsystem property must
be obtained – are well-known in distributed systems, and areoften generically referred
asaggregation[2]. Aggregation allows local access to global informationin order to
simplify the task of controlling, monitoring and optimizing distributed applications. In
this paper, we discuss algorithms for computingdistributiveandalgebraicaggregate
functions, such as min, max, sum, average, counting, etc. [3]; we do not consider
holistic functions like median, mode, and rank. However, our numerical analysis will
focus on counting, which has proven to be the most sensitive function w.r.t. to failures
and lack of connectivity.

Our work started from a study of the applicability of two classes of algorithms (pair-
wise averaging [4] and population protocols [5]) to a DTN environment. In general,
such algorithms do not perform satisfactorily, especiallywhen considering the typical
features (in terms of mobility patterns) of real–world DTN deployments. Hence the
need for inferring new methods specifically tailored to suchenvironments:

The contributions of our work are as follows:

• To provide algorithms and methods to efficiently estimate global parameters in
intermittently connected networks; the term efficiency relates to fast convergence
and good scalability properties;

• To provide mechanisms for termination of the estimation processes presenting a
good trade-off between accuracy and speed of convergence;

• To provide numerical results, based on the use of both synthetic and real–world
mobility traces, on the performance of the methods introduced;

• To provide guidelines for practitioners on which method to choose depending on
the specific application needs and deployment features.

The remainder of the paper is organized as follow. Sec. 2 presents a quick intro-
duction to distributed techniques for estimation of globalparameters, together with a
description of the system settings and assumptions used throughout the paper. Sec. 3
describes efficient estimation methods and termination algorithms. Sec. 4 evaluates the
performance of the proposed methods and reports outcomes ofnumerical simulations.
Sec. 6 overviews related works. Sec. 7 concludes the paper discussing guidelines for
applications to real–world DTN deployments.

2. System Model and Problem Description

We consider adelay-tolerant networkcomposed of a collection of cooperating,
mobile nodes communicating wirelessly. Communication is based onmeetings, i.e.,
encounters during which nodes come within mutual radio range [6].

Our work is based on the following assumptions:
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• Homogeneity: nodes participate equally in the aggregation computation, follow-
ing the same set of rules/algorithms.

• Cooperation: nodes are trustworthy (i.e., they do not provide wrong/fake infor-
mation to other nodes).

• Sparsity: at any time instant, nodes are isolated with a probability close to 1;
meetings are thus sporadic events and connectivity is neverguaranteed.

• Failures: nodes may fail, either by abruptly leaving the system or by stopping
operations.

• Meeting duration: meetings last enough to ensure the transmission of all data
needed for a message exchange. This corresponds to assumingatomicity of the
transactions performed by the algorithms (§4 provides an analysis of the robust-
ness with respect to message loss).

The goal of this paper is to compute, in intermittently connected network, generic
aggregation functions of the type:

f [X(1), X(2), . . . , X(N)] , (1)

whereX(i) is known at nodei and the function is computed over all values. Playing
with both the function and the values, such definition is general enough to include
several applications of practical interests:
Example 1: Let us takeX(i) = 1 for all nodes running a given software, andX(i) = 0
otherwise. Iff corresponds to the sum function, we can easily measure the number of
nodes having installed and running such software.
Example 2: TakeX(i) = 1 if the battery level of devicei exceeds a given threshold,
and0 otherwise. Further, we take,Y (i) = 1 for all nodes in the system. We can
therefore compute the fraction of nodes whose battery levelexceeds a given threshold
as

∑
X(i) /

∑
Y (i).

Example 2.Consider the use of a routing protocol that makes multiple copies of a
given message (e.g., epidemic routing, spray–and–wait). If we denote byX(i) the
number of copies made by nodei of a given message in the delivery process, we can
estimate the resource usage (in terms of number of copies disseminated) associated to
the message delivery process. This, in turn, can be used to estimate the performance of
the routing protocol used.

The actual performance of the various mechanisms we will study may depend on
the type of function considered in (1). As in this paper we areinterested in comparing
the performance of various mechanisms and understanding their strengths/shortcomings,
we have decided to focus on counting, where the goal is to evaluate the total number
of nodes in the system. Such assumption is usedonly for the performance evaluation
part, and it is motivated by the inherent difficulty of counting. The mechanisms intro-
duced in the following section will be presented with reference to the general class of
problems represented by (1).

3



Algorithm 1 PAIRWISEAVG(v(j)) ⊲ @ nodei

Init: v(i)← X(i), X̂(i)← X(i) ⊲ Default toX(i)

1: v(i)← (v(i) + v(j))/2

2: X̂(i)← v(i)

3: return X̂(i)

3. Algorithms for Distributed Estimation

The algorithms presented here are adaptations of well-known aggregation algo-
rithms for connected networks:pairwise averaging[4] andpopulation protocols[5].

The former belongs to the general class of gossip/epidemic protocols. Since the
seminal work of Demers on the epidemic spreading of databaseupdates [7], the gossip
paradigm has gone far beyond dissemination, solving a largeand diverse collection of
problems – including aggregation [4].

In the population protocols framework, mobile agents interact with each other to
carry out a computation. Interactions between agent pairs cause them to update their
states; they are unpredictable but subject to a fairness constraint. Population protocols
can be profitably used to model algorithms over DTNs, where meetings are caused by
mobility.

3.1. PAIRWISEAVG algorithm

This algorithm is an adaptation to DTNs of the algorithm originally introduced
in [4] to compute distributed averages, i.e.,f(X(1), . . . , X(n)) = 1

N

∑
i X(i). The

PAIRWISEAVG algorithm is well suited to the DTN scenario. In particular,the variant
based on a random node matching described in [4] can be portednaturally to sparse
mobile ad-hoc networks; the required matching, in particular, is here induced by pairs
of nodes coming into radio range.

Alg. 1 reports the pseudocode. It works as follows. Every node i stores variable
v(i), initially set toX(i). At each meeting, nodesi andj exchange their current values
v(i) andv(j), and update the stored variable asv(i) = v(j) = (v(i) + v(j))/2. The
current estimatêX(i) is obtained according tôX(i) = X(i) when v(i) = 0 and
X̂(i) = v(i) otherwise.

Node count.At the beginning, one nodei storesx(i) = 1 and all the remaining nodes
store0. It is easy to see that with this values, the protocol converges to1/N as long
as the resulting contact graph [4] is connected. The number of nodes is obtained as
the inverse of the estimate. To solve the problem of identifying a single node and to
provide a more robust estimate, several concurrent instances of the basic version can
be run, each started by a single node.

3.2. POPULATION Algorithm

In this algorithm, the estimate is calculated based ontokens. At the beginning of
the run, every nodei is assigned a set oft(i) = X(i) tokens (notice thatX(i) may
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Algorithm 2 POPULATION(t(j), a) ⊲ @ nodei

Init: t(i)← X(i) ⊲ Initialize tokens

1: X̂(i)← max{ X̂(i), X̂(j), t(i) + t(j)}
2: if a < 0.5 then
3: t(i)← t(i) + t(j)
4: else
5: t(i)← 0
6: end if
7: return X̂(i)

be real valued though). At each meeting, nodei and nodej toss a fair coin: the node
winning the ballot, say nodei, gathers the overall tokens. The counters are updated
accordingly:t(i) ← t(i) + t(j) andt(j) ← 0. The estimate produced by the meeting
pair is then given by the maximum value between the old estimates and the sum of the
tokens. At the increase of the number of inter-meetings, tokens gather on a single node
j which possess the exact estimateX̂(j).

Alg. 2 contains the pseudocode. For the ease of reading, the coin tossing procedure
is assumed to generate an input variable0 ≤ a ≤ 1 at nodei, whereas at nodej the
input argument is1− a.

Node count.At the beginning,t(i) = X(i) = 1 for all nodesi; i.e., each node owns a
token. This variant applies also to the two protocols described in the following.

3.3. C-POPULATION Algorithm

This variant of POPULATION takes advantage of non-uniform meeting patterns
among nodes. In this protocol, the input variablex is generated according to the rela-
tive fraction of the node meetings experienced by the two nodes. The rationale is that
tokens should be gathered at those nodes which are able to perform and diffuse the
estimate faster.

This variant works as follows. A local meeting counterm(i) is maintained at each
node, initialized at 1 at the beginning of a run. When a meeting occurs, node exchange
their t() andm() variables. Variablea is now computed asa← m(i)/(m(i) + m(j));
note that one node will get a valuea = v, and the other the valuea = (1−v), meaning
that only one of them will get all the tokens, as in POPULATION. Finally, the meeting
count is incremented,m(i)← m(i) + 1.

In the following, we will refer to this variant as C-POPULATION algorithm, where
the C reads “clustered”.

The complete pseudo-code is shown in Algorithm 3.

3.4. Two-Phases Algorithm

This algorithm builds on C-POPULATION adding a further phase in order to speed
up the final stages of the computation - where most of the tokens are concentrated in
few nodes that are unlikely to meet. The idea is that if a nodei cannot improve the
estimate for a given numberMIN -TOKEN of consecutive meetings, and it possesses
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Algorithm 3 POPULATION(t(j), m(j)) ⊲ @ nodei

Init: t(i)← X(i), m(i)← 1 ⊲ Initialize tokens

1: X̂(i)← max{ X̂(i), X̂(j), t(i) + t(j)}
2: a← m(i)/(m(i) + m(j)
3: if a < 0.5 then
4: t(i)← t(i) + t(j)
5: else
6: t(i)← 0
7: end if
8: return X̂(i)
9: m(i)← m(i) + 1

Algorithm 4 2-PHASES(t(j), m(j), Ej ) ⊲ @ nodei

Init: ac← 0, Ei ← ∅ ⊲ Aggregation counter

1: Ei ← Ei ∪ Ej

2: X̂old(i)← X̂(i)

3: X̂(i)← C-POPULATION(t(j), m(j))
4: ac← ac + 1
5: if X̂(i) > X̂old(i) then
6: ac← 0 ⊲ Reset the aggregation counter
7: end if
8: if ac > MAX -AGGR and t(i) > MIN -TOKEN then
9: Ei ← Ei ∪ {(randID(), t(i))}

10: t(i)← 0
11: end if
12: X̂(i)← max{X̂(i), t(i) +

∑
(id,s)∈Ei

s}
13: return X̂(i)

a number of tokens larger than a reference thresholdMAX -AGGR, it start to spread
epidemically the news that nodei possess a given amount of tokens. Nodes collect
news coming from different nodes and compute a more precise estimate of the size.

The pseudocode of this algorithm is reported in Alg. 4. At each meetings, nodes
exchange the information required for C-POPULATION (t(j) andm(j)) plus a cache
of “signed” estimatesEj (stored at each node). The received estimates are merged
to the local cache (line 1) and a new estimate is computed through C-POPULATION

(line 3). Theac counter of meetings is increased by 1, unless the new estimate is larger
than the previous one, in which case it is reset to zero (lines4–7). If ac is now larger
thanMIN -TOKEN and the number of local tokens is larger thanMAX -AGGR, a new pair
(identifier, number of tokens)is inserted inEi, while the token counter is set to zero
(lines 8–11).

Note that for the sake of simplicity we referred to the case ofnonnegativeX(i)s.
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Trace PAIRWISEAVG C-POPULATION

RWP 8.00± 0.00 · 103 2.06± 0.24 · 105

Reality 2.47± 0.16 · 108 2.16± 0.19 · 107

Haggle1 1.23± 0.01 · 107 1.85± 0.14 · 106

Haggle2 1.80± 0.02 · 107 2.11± 0.19 · 106

Haggle3 1.63± 0.06 · 106 9.67± 0.76 · 105

NUS 1.06± 0.01 · 108 5.35± 0.87 · 107

CN 3.25± 0.25 · 104 1.61± 0.82 · 105

Trace POPULATION 2-PHASES

RWP 2.10± 0.23 · 105 2.21± 0.09 · 104

Reality 2.19± 0.40 · 109 2.24± 0.05 · 107

Haggle1 2.20± 0.30 · 107 1.66± 0.18 · 106

Haggle2 4.15± 1.21 · 107 1.66± 0.10 · 106

Haggle3 7.52± 1.21 · 106 7.43± 0.42 · 105

NUS 1.54± 0.30 · 109 3.29± 0.13 · 107

CN 9.02± 6.50 · 104 8.92± 4.75 · 104

Table 1: Convergence time (w/o termination), in seconds;95% confidence intervals computed over30 runs.

4. Performance Evaluation

4.1. Evaluation Methodology

DTNs are characterized by a fully distributed architecture, where the information
is conveyed by exploiting the physical mobility of nodes. Assuch, the mobility pattern
of nodes plays a crucial role in the performance evaluation of these networks. In order
to deal with this issue, two standard approaches exist. The first one leverages synthetic
mobility models which mimic the real behavior of mobile nodes. The second one is
based on empirical studies, in which nodes’ encounters are monitored by tracing their
proximity for a given period of time: collected traces are then used to reproduce the
meeting pattern of nodes. In this work, we have considered both approaches. Each mo-
bility model has been characterized by the corresponding meeting pattern of the nodes.
In real-world traces, meetings are simply the result of an empirical study, whereas in
the case of synthetic mobility models the contact patterns have been measured through
a preliminary experiment.

With respect to synthetic mobility traces, we considered the Random Waypoint
(RWP) model, where nodes select a destination at random (usually according to a uni-
form distribution) and move, on a straight line, till they reach it, and theCommunity
Model[8], which reflects the non-homogeneous nature of meetings among people.

As concerns real world traces, we utilized the Haggle traces[6], which report the
results of three experiments conducted for tracing the meeting pattern of people in-
side Intel Research Cambridge CorporateLab (Haggle 1), people inside the Computer
Lab of the Cambridge University (Haggle 2) and people attending the IEEE Infocom
2005 conference (Haggle 3); the MIT Realitymeasurement campaign (2004-2005), in-
volving approximately100 faculty members and students at MIT; theNUS[9] dataset,
which contains Bluetooth contact traces collected in Singapore (2005-2006), and the
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Figure 1: Convergence time vs value of thefriendly parameter, community model,N = 200, mov = 0.2,
k = 40.

Create-Net (CN trace, obtained by monitoring21 employee for a 4-week period. Ad-
ditional details can be found in Appendix A.

In what follows, results were obtained by a trace-driven simulator based on Peer-
Sim [10]. The simulator reproduces the contact pattern of nodes and, at each meeting,
one of the algorithms described in Sec. 3 is executed.

Each experiment has been repeated several times and resultsare reported together
with their confidence intervals. Different runs are obtained by randomly choosing the
contact from which the simulation starts. Each simulation ends when the termination
condition is satisfied. Due to the limited length of some measurements, traces were
arranged in a cyclic fashion, and their pattern was iterateduntil the end of the experi-
ment.

The performance evaluation of our algorithms is divided in two parts. First, we
consider theasymptoticperformance of the algorithms, in the sense of their behavior
when no termination mechanism is employed. For such a case, we evaluate the con-
vergence time and the ability of the algorithms to scale wellwith the number of nodes.
Second, we consider the performance of the algorithms when the termination mecha-
nisms are applied: for this case, we analyze the tradeoff between convergence time and
estimate accuracy, and the ability of the algorithms to perform well in the presence of
message losses.

4.2. Without Termination: Convergence

In the absence of termination mechanisms, the main metric weconsider is the con-
vergence time, defined in this case as the time needed to converge to the actual value
of the number of nodes in the system.

We started by considering the community model. We took a scenario with 200
nodes and varied the three parameters describing such model, mov , k and friendly .
We found that, PAIRWISEAVG is the one offering the best performance in terms of
convergence time. POPULATION conversely, performs rather poorly, showing large
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convergence time. A more detailed analysis revealed that such a behavior is due to the
slow dynamics at the end of the execution, where meetings of the few nodes having
tokens become less frequent.

We notice that C-POPULATION behaves slightly better than POPULATION, whereas
2-PHASESoffers some advantages over C-POPULATION. Also, performance turns out
to be only loosely dependent on the value of the parametersmov andk. Conversely,
things change drastically when varying the parameterfriendly . The results are de-
picted in Fig. 1 fork = 40, mov = 0.2 and inter-meeting intensityλ = 0.1 s−1. For
low values offriendly , in fact, meetings are driven by the Zipf’s law regulating meet-
ings among non–friends. In such case, clusters appear, enabling C-POPULATION and
2-PHASESalgorithms to significantly enhance their performance, approaching closely
the performance of PAIRWISEAVG. As the value of the parameterfriendly increases,
on the other hand, their performance decreases quite sharply and approaches that of
POPULATION. This is due to the fact that, for high values offriendly , the result-
ing meeting pattern is driven by the Watts–Strogatz small–world model, presenting
a rather regular (i.e., memoryless) pattern. Hence, the enhancements introduced by
C-POPULATION and 2-PHASES are quite ineffective and, in fact, the gain over pure
population protocol is very small.

Next, we evaluated the scalability of the four considered algorithms. We used again
a community model, with parametersmov = 0.2 andfriendly = 0.2. We considered
a number of nodes ranging from103 to 105. The scaling of the inter-meeting intensity
is performed considering nodes moving in an area with constant density of nodes per
square meter [11].

We considered a fixed number of friends,k = 150. This corresponds to the value
known in social sciences as Dunbar’s number [12], which is supposed to represent a
limit to the number of individuals with whom people can maintain stable social rela-
tionships. The results are shown in Fig. 2. It can be seen that, as the number of nodes
increases, the performance of C-POPULATION increases and exceeds that of PAIR-
WISEAVG. This is due to the fact that, under a constant number of friends k, large
values ofN lead to the formation of a number of (small) clusters. In suchconditions,
C-POPULATION offers an advantage over PAIRWISEAVG. Finally, the best scalability
is attained by 2-PHASES(MIN -TOKEN = 150, MAX -AGGR = 50 in the experiment).

These first results tell us that PAIRWISEAVG behaves best in the presence of uni-
form meeting patterns. When clusters are present, C-POPULATION and 2-PHASES

offer competitive advantages in terms of convergence time.
We next evaluated the case of real–world traces. The resultsare presented in Tab. 1.

Neglecting RWP, it can be seen that 2-PHASES and C-POPULATION present the best
performance among the algorithms considered (the former over-performing the latter).
This comes from the fact that real–world traces tend to show ahigh degree of clustering,
typical of real–world mobility patterns. This indicates that such algorithms fit well the
features of deployments in which nodes are personal devicesand the contact pattern is
driven by human mobility.

4.3. With Termination: Convergence and Accuracy
To measure the relative performance of the our algorithms, we adopted aglobal

termination condition that stops the simulation whenever the average estimate of nodes
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Figure 2: Convergence time vs. total number of nodes, community model, mov = 0.2, k = 150,
friendly = 0.2.

approximates the true value by a nominal threshold, e.g. 95%in our experiments.
In practice, this simulation trick cannot be employed, and each node requires alocal
termination condition to validate the estimate and proceedto further computations.

We now study the performance of the aforementioned algorithms when a termina-
tion condition is enforced. We evaluated the algorithms in terms of the tradeoff between
convergence time (time at which the termination rule stops the estimation algorithm)
and accuracy (ability of the algorithm to achieve the exact value ofN without incurring
in premature stops).

4.3.1. Termination condition
The termination condition proposed here works as follows. Every node stores a

meeting counter, which is incremented at each meeting. The counter starts from0,
and is reset to0 whenever the estimate changes. When the counter reaches a given
threshold, the computation is considered terminated at that node and the output value
is validated. Note that the node continues to perform the computation, in order to
support the distributed algorithm and to detect subsequentchanges.

In the case of node count procedures, the termination condition is inherently differ-
ent for POPULATION and C-POPULATION, compared to PAIRWISEAVG. In fact, in the
former case the estimate is increasing, so that changes are simply positive integer in-
crements, whereas in the latter case, the estimate of the number of nodes is the inverse
of a fraction. Hence, in the first case, the counter is reset when the estimate increases,
whereas in the latter, the counter is reset when the estimatechanges of a conventional
percentage (1% in the following experiments).

4.3.2. Convergence vs. Accuracy
We first performed extensive numerical simulations to understand how the val-

ues MAX -AGGR and MIN -TOKEN should be dimensioned in order to let the termi-
nation algorithm behave efficiently. We found that settingMIN -TOKEN = 1 and
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Trace PAIRWISEAVG C-POPULATION 2-PHASES

Reality 1.35± 0.01 · 109 5.86± 0.32 · 108 5.52± 0.32 · 108

RWP 2.55± 0.00 · 104 3.50± 0.33 · 104 3.46± 0.14 · 104

Haggle1 3.02± 0.03 · 107 1.41± 0.09 · 107 1.30± 0.09 · 107

Haggle2 1.05± 0.09 · 108 7.65± 0.68 · 107 7.07± 0.80 · 107

Haggle3 1.34± 0.10 · 108 1.10± 0.13 · 108 1.11± 0.13 · 108

NUS 6.40± 0.22 · 108 5.02± 0.28 · 108 4.33± 0.20 · 108

CN 3.70± 0.01 · 105 3.35± 0.34 · 105 3.47± 0.27 · 105

Table 2: Convergence time (with termination),MAX -AGGR = 10, MIN -TOKEN = 1 for RWP, Haggle1/2/3,
and CN,MIN -TOKEN = 10 for Reality and NUS; confidence intervals computed over30 runs.

MAX -AGGR = 10 leads to a good compromise for a wide range of settings. We used
such parameters for all considered traces, apart from the Reality and the NUS ones, for
which aMIN -TOKEN = 10 was used. We evaluated the performance of PAIRWISEAVG,
C-POPULATION and 2-PHASESalgorithms using both synthetic mobility traces (RWP)
as well as real–world ones. The results are reported in Tab. 2in terms of convergence
time and in Tab. 3 in terms of average estimated value at termination (averages are
computed over30 runs). For all real–world traces C-POPULATION and 2-PHASESof-
fer faster convergence than PAIRWISEAVG. 2-PHASESovercomes C-POPULATION, in
terms of estimate accuracy, when applied to regular scenarios, e.g., RWP trace.

As RWP presented a large gap of performance for the considered algorithms, we
studied the case more in detail by tracking the dynamics of the algorithms (in terms
of value of estimated size vs. time) for30 runs. The results are shown in Fig. 3.
It can be seen that PAIRWISEAVG converges quickly and in a very regular way (i.e.,
logs from all runs get superimposed) after an initial overshooting. The convergence
of 2-PHASESis somehow noisy, but it attains the correct value for all runs. On the
contrary, C-POPULATION algorithm shows a very large variability in both the value at
which the estimate converges as well as in the time at which the estimate stops. We
can conclude that such algorithm is not suitable for application to regular patterns. We
may also conclude that the 2-PHASES algorithm represents an interesting choice for
deployment, as it is able to achieve a good accuracy while converging quickly in all
considered settings.

In order to complete the picture, we also studied the number of signed values
produced by 2-PHASES. Indeed, as one node needs to keep track of the signed val-
ues it received/sent, such parameter describes well the additional resources needed by
2-PHASESover C-POPULATION. The results are presented in Tab. 4. These numbers
give an idea of the additional resources needed to run 2-PHASES.

4.4. With Termination: Robustness

One important aspect when dealing with wireless networks isthe impact of lost
packets. Packet losses may be due, e.g., to interference, noise at the receiver or simply
the fact that the mobility of nodes led them out of mutual communication range before
completion of a message exchange. Each considered algorithm is based on based on
the exchange of a request/reply pair of packets between meeting nodes. If the request
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Figure 3: Dynamic behavior of the various algorithms for a RWP mobility trace,N = 200, constant speed
v = 5 m/s, playground size5000 × 5000 m2, no pause time.

is lost, nothing happens. Here, we provide an analysis of what happens if the reply is
lost.

The situation is depicted in Fig. 4. At the beginning of the exchange, both nodes
maintain a variableYi, a function of the current estimate of the global parameter.Dur-
ing the execution of the algorithm, the values of such variable get exchanged. If the
second message is missing, only one of the nodes updates its value. This may affect
the final estimated value. This lack of atomicity cannot be avoided in a systems subject
to omission failures.
Example: consider PAIRWISEAVG. Yi represents in this case the inverse of the esti-
mated size. Consider the case whenY1 = 0.1 andY2 = 0.5. The average of their
estimated size before the meeting equals6. Upon the reception of the first message,
the second node updates its estimate asY2 = 0.3. As the second message gets lost,Y1

stays at0.1. After the meeting, the new average of the estimated size equals6.67. If
we reverse the initial estimates, we get a new estimated size(after the meeting) equal
to 2.67. So the average estimated size may increase or decrease, depending on which
message gets lost.
Example: consider POPULATION with tokensY1 = 1 andY2 = 3. Upon the reception
of the message, node2 setsY2 = 0 and returns its tokens to node1. As the message
does not get received,Y1 stays at1 and three tokens get lost. In this case, message
losses always lead to a decrease in the average estimated size.

We considered for this case the community model, with parametersN = 1000,
friendly = 0.1, mov = 0.2 andk = 200, and varied the probability that the return
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Trace Real N PAIRWISEAVG C-POPULAT. 2-PHASES

RWP 200 200 76.66 199.73
Reality 2135 2135 2135 2135
Haggle1 110 110 110 109.96
Haggle2 187 187 187 187
Haggle3 214 214 214 214

NUS 841 841 839.42 841
CN 21 21 20.86 20.93

Table 3: Average estimated value at termination.

Trace N MAX -AGGR MIN -TOKEN # signed values
RWP 200 10 1 15.63

Reality 2135 10 10 168.06
Haggle1 105 10 1 29.70
Haggle2 187 10 1 56.03
Haggle3 215 10 1 82.73

NUS 842 10 10 72.50
CN 21 10 1 6.26

Table 4: Details on the performance and resource consumption of 2-PHASES.

packet is lost during an exchange. We used a loss probabilityof 0.1%, 1% and10% in
our experiments. In general, the loss of a packet may lead to two types of problems.
The first one is loss in accuracy, as the algorithm may stop at avalue different from the
real one. The second one is loss in convergence speed, as it may be necessary now to
undergo additional exchanges before reaching convergence. The results are depicted
in Fig. 5. As it can be seen, PAIRWISEAVG is very robust to noise: message losses
impact the convergence time but most of the runs converge to the expected size (or
values very close to it). On the other hand, C-POPULATION suffers quite heavily in the
presence of message losses. These affect both the convergence time (which gets noisy,
while still being lower than that of PAIRWISEAVG) as well as the estimated network
size. 2-PHASES, on the other hand, offers a good compromise. It offers the quickest

Figure 4: Message loss pattern considered.
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Figure 5: Convergence time and final estimated value for Community Model,N = 1000, friendly = 0.1,
mov = 0.2, k = 200, 30 runs.

convergence and in general the estimated value is quite close to the real one. We only
experienced one case in which the estimate was far from the actual one: the cause was
the loss of a key message during the final phase of the algorithm. We may conclude
that 2-PHASES offers again a good compromise between performance and accuracy,
even in case of message losses.

5. Online Protocol Tuning

The distributed estimation of parameters is a very powerfultool, especially in the
case of dynamic scenarios, where network conditions changeover time (e.g., the num-
ber of nodes). In this case, the result of the estimation can be used in order to let nodes
behavior of the system adapt dynamically. In this section, we describe the applica-
tion of node counting to the dynamic tuning of the parametersof a specific message
forwarding algorithm.

In the following, we assume an opportunistic communicationsystem to be deployed
in an urban environment, and the density of nodes to be following the daily patterns of
people. In particular, we assume the density of nodes to be low (20 nodes) until8 AM
in the morning, when people leave their homes for going to school, work, etc.. The city
remains “busy” (200 nodes) between8 AM and19 PM, before slowing in the evening
time (90 nodes) and finally going back to sleep (20 nodes) after midnight.

5.1. Dynamic Node Counting

As a first experiment we measured the ability of the proposed counting schemes
to keep the pace of such daily patterns, and the accuracy of the estimates over time.
Starting from the algorithms described in Sec. 3, we introduce arestarting mechanism
which periodically restarts the counting process. The newly produced estimate of the
number of nodes is then used by the different algorithms suchas the forwarding mech-
anism. Clearly, the more often the counting process is restarted, the faster is able to
detect the change in the environment conditions. At the sametime, as confirmed in
Tab. 2 and in Fig. 3, too small restarting periods correspondto a bad accuracy of the
algorithm, due to the convergence time of the algorithm.

Fig. 6 presents the PAIRWISEAVG estimate of the number of nodes over time, for a
restarting period of10, 20 and30 minutes, respectively. As it can be easily observed,
for a restarting period of10 and20 min. the PAIRWISEAVG algorithm is not able to
adapt to the system dynamics. This is due to the premature stop of the algorithm, which
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is not yet converged to the correct value of nodes. In the caseof 10 min., PAIRWISEAVG

is estimating a lower value of nodes, and this is reflected in either a lower (as in the
case of20 nodes) or in a noisy (as in the case of90 nodes) estimate. Differently, with
a restarting period of20 min, PAIRWISEAVG is probably in its “overshooting” phase,
which leads to a much higher estimate of the number of nodes, as evident in the case
of 20 nodes.

5.2. Dynamic Adaptation of Forwarding Mechanisms

As a second step, we have evaluated how such dynamic estimateof the number of
nodes in the system can be used by other algorithms. In particular, we have focused
on the dynamic tuning of forwarding mechanisms in DTN networks [1], which use op-
portunistic forwarding for achieving network-wide communications. The forwarding
mechanism is highly dependant on the density of the network,as it regulates the num-
ber of copies that each node is allowed to generate for each message. Clearly, the larger
the number of copies of a message in the system, (i) the fasterit reaches its destination
(ii) the more it is robust with respect to the nodes mobility and node/link failures. On
the other hand, in order to have more copies of the same message traveling in the net-
work at the same time, a larger amount of network resources has to be exploited. Given
this tradeoff, the knowledge of the number of nodes in the network can be of great help
in fine tuning the forwarding mechanism.

In the following, we will refer to the Spray-and-Wait [13, 14] protocol, since it rep-
resents a reference case in literature due to its provable high efficiency in trading off
number of messages and end-to-end delay. The Spray-and-Wait protocol has a budget
of L copies that can be released in the network; initially the overall budget is retained
at the source. Depending on the strategy used to release copies, the protocol shows
different performances.

As depicted in Fig 7, the effect on the choice ofL has an impact on both the delay
experienced by messages to reach the intended destination,and the overall number of
copies generated in the network. As it is intuitively clear,the higher the valueL, the
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more copies are generated. This leads to a better diffusion of data in the network and,
consequently, a lower delay. Such difference is evident when increasingL from 1 to 5,
while is less significant for higher values.

We performed a set of experiments that demonstrate how the tuning of the algo-
rithm works in the dynamic case.

6. Related Work

Aggregation is an hot problem in distributed systems; it hasbeen studied in the
most diverse environments, including both wired and wireless settings. In wired net-
works, the possibility of building structured and semi-structured topologies allows for
several different approaches, such as tree-based [2] and gossip-based [4, 15]. PAIR-
WISEAVG is derived from the work of Jelasity et al. [4], where the algorithm is applied
to random topologies maintained through a peer sampling service [16]. At the best of
our knowledge, this is the first time that PAIRWISEAVG is applied to DTNs.
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In wireless networks, the problem of distributed averaging(also known as the dis-
tributed consensus problem, or the agreement algorithm), has been introduced by Tsit-
siklis [17], and it is concerned with letting a distributed set of processors converge to
some common value. This problem has been studied in the context of sensor fusion by
Spanos et al. [18], as well as by Xiao et al. [19], and in the context of vehicle formation
control by Fax and Murray [20].

The other algorithms described in this work are derived fromthe literature on pop-
ulation protocols [5]. The population protocol framework can be used to model mobile,
ad hoc sensor networks consisting of very limited agents with no control over their own
movement. Agents are identically programmed finite state machines that interact with
one another to carry out a computation. Meetings between pairs of agents cause them
to update their state.

Examples of mechanisms for aggregating information over DTNs are included in
the work of Spyropoulos et al. [13, 14] and Walker et al. [21].In particular, as al-
ready described before, the Spray-and-Wait algorithm [13,14] is based on the knowl-
edge of the number of nodes included in the network; the authors propose a complex
mechanism to evaluate this parameter, which assumes approximately exponentially
distributed meeting times. We have shown already that for the online tuning of that
protocol, our algorithms do not require this assumption to be true. The work of Walker
et al. [21] describes a particular application of an aggregation technique; the goal is to
limit the carrier fraction, i.e. the ratio of the number of nodes who carry a message
w.r.t. the total number of nodes.

7. Discussion and Conclusions

In this paper, we have presented methods for estimating global parameters in DTNs.
Starting from techniques developed for distributed computing applications (PAIRWISEAVG,
POPULATION), we have developed variants thereof (C-POPULATION, 2-PHASES), which
achieve better performance by exploiting features commonly present in real–world
DTN mobility patterns (in particular: clustering). Termination algorithms have also
been introduced and described. Validation has been performed through extensive sim-
ulations, carried out using a variety of contact traces, both synthetic and experimental.

Our study can lead to the following recommendations for practitioners dealing with
real–world DTN deployments:

• If the meeting pattern is regular (i.e., memoryless), PAIRWISEAVG offers the best
performance in terms of convergence speed and robustness tomessage losses;

• If the meeting pattern is irregular (i.e., clustered) and nodes have stringent mem-
ory requirements, C-POPULATION offers a good trade–off in terms of perfor-
mance and resource usage;

• If the meeting pattern is irregular and no stringent memory constraints are present,
2-PHASESoffers very good performance in terms of convergence time, accuracy
of estimation and robustness to message losses.
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The counting algorithms presented here can be easily adapted to compute other
functions. E.g., it is possible to compute how many unique nodes have a copy of a given
message by creating tokens only in those nodes; PAIRWISEAVG is clearly suitable for
any kind of average; etc.

Future work includes extending the presented mechanisms tosituations in which
the quantitiesX(i) vary dynamically. In this case, one would like to track the evolution
over time of a given global parameter. This could be achievedby, e.g., by periodically
restarting the counting algorithms introduced. However, more sophisticated techniques
can be envisaged, leading to a better and smoother tracking of the variation in the
network status.
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A. Mobility Models

In the present work, we considered the following synthetic mobility models:

• Random Waypoint (RWP): in the RWP model, nodes select a destination at ran-
dom (usually according to a uniform distribution) and move,on a straight line,
till they reach it. When reaching the destination, nodes pause for a random in-
terval of time, and then repeat the process. In our implementation of RWP, MNs
move at a constant speed and without pausing. We reproduced aperfect simula-
tion [22], sampling the initial location of nodes accordingto the corresponding
stationary distributions (which is not uniform). Subsequent destinations are then
sampled from the uniform distribution. This approach eliminates the time needed
for the simulation to reach the stationary regime. In particular, we considered the
case of 100 nodes moving over a2500 m× 2500 m playground with no pausing
and a speed ofv = 5 m/s. Two nodes are assumed in communication range if
their distance falls belowR = 25 m.

• Community Model: in [8], a mobility model capturing key social and temporal
aspects of mobile environments has been introduced. In particular, authors con-
sidered those application scenarios where the mobile nodesare constituted by
the mobile devices of people. In this case, the mobility pattern of nodes is deter-
mine by the social dynamics of people. In order to capture this aspect, authors
proposed a mobility model where meetings are distinguishedbetween friend and
strangers encounters. In particular, a Watts-Strogatz small-world model is as-
sumed to regulate the contact among friends, while a Barabasi scale-free model
is used to generate encounters between strangers. Clearly,this makes friends
meetings more frequent than those with strangers, as occurring in real social dy-
namics. The parameters of this mobility model are the numberof friends per
nodek, the Zipf parameterα regulating the stranger distribution, the probability
friendly of encountering a friend.

and the following real-world mobility traces:

• Haggle: in [6], the authors report extensive experimentations conducted in order
to trace the meeting pattern of mobile users. A slightly modified version of
iMotes, equipped with a Bluetooth radio interface, was distributed to a number of
people, each device collecting the time epoch of meetings with other Bluetooth
devices. Due to technical problems, some of the traces have not been collected.
Three experiments have been conducted:

– Haggle 1: 12 out of 16 iMotes, staff of Intel Research Cambridge Corpo-
rateLab, 1 week;

– Haggle 2: 12 out of 12 iMotes, students of the Computer Lab of the Cam-
bridge University, 1 week;

– Haggle 3: 42 out of 50 iMotes, people attending the IEEE Infocom 2005
conference, 3 days.
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• Reality: the MIT Reality Mining experiment [23], carried out throughout aca-
demic year2004/05, involved approximately100 people (faculty and students)
at MIT. A software for Nokia Symbian Series 60 Phone, able to record all meet-
ings exploiting a Bluetooth interface, was developed. The result is a single,
extremely large, trace file, covering about350, 000 hours. We used for our nu-
merical analysis the first200, 000 entries of the file.

• NUS: theNUS dataset [9] contains Bluetooth contact traces collected inSinga-
pore from end2005 to early2006. The measurements campaign consisted of12
devices,3 static and9 mobile. The static devices were line powered, and placed
in three of the busiest lecture theaters on National University of Singapore cam-
pus. The9 mobile probes were distributed to various people with a different
social role, including5 students on campus,2 faculty members and2 students
who lived off campus.

• CN: the Create-Net dataset [] has been obtained by monitoring 21 employee —
playing different roles within our organization and working on different floors
of the same building — for a 4-week period. Employee were asked to carry a
mobile running a java application, and relying on Bluetoothconnectivity for ex-
changing data. The application periodically triggers (every 60 seconds) a Blue-
tooth node discovery. Whenever another device is detected,its Bluetooth ad-
dress, together with the current timestamp is saved in the permanent storage of
the device for a later processing.

B. Scalability Measurements

In section 4.2, we addressed the scalability of the proposedalgorithms, character-
izing the convergence time with respect to the number of nodes N . The intensity of
the base contact process,λ, was scaled with reference to a set ofN nodes moving on a
square playground of size

√
N×
√

N , i.e. we considered a scenario with constant node
density. For synthetic mobility models such as Random Waypoint, Random Direction
and Brownian Motion, in particular, it was shown in [24] thatthe inter-meeting inten-
sity, i.e., the number of meetings per second of any pair of nodes, can be approximated
as k · v/L2, whereL is the playground side,v is the node speed andk is a posi-
tive constant. Thus, since distances increase as fast as

√
N with the area, for a given

constant speedv, the inter-meeting intensity decreases as
√

N . Finally, the meeting
process intensity for all pairs of nodes isλ = k

(
N
2

)
v/L2, so that the required scaling

for λ(N) ∼ N3/2 s−1.
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