
Group Communication in Partitionable Systems:
Specification and Algorithms

Özalp Babaoğlu Renzo Davoli Alberto Montresor

Technical Report UBLCS-98-01

April 1998
(Revised October 1999)

Department of Computer Science
University of Bologna

Mura Anteo Zamboni 7
40127 Bologna (Italy)

The University of Bologna Department of Computer Science Research Technical Reports are available in
gzipped PostScript format via anonymous FTP from the area ftp.cs.unibo.it:/pub/TR/UBLCS or via
WWW at URL http://www.cs.unibo.it/. Plain-text abstracts organized by year are available in the
directory ABSTRACTS. All local authors can be reached via e-mail at the address last-name@cs.unibo.it.
Questions and comments should be addressed to tr-admin@cs.unibo.it.

Recent Titles from the UBLCS Technical Report Series

99-21 Real-Time Traffic Transmission Over the Internet, Furini, M., Towsley, D., November 1999.

99-22 On the Expressiveness of Event Notification in Data-Driven Coordination Languages, Busi, N., Zavattaro,
G., December 1999.

2000-1 Compositional Asymmetric Cooperations for Process Algebras with Probabilities, Priorities, and Time,
Bravetti, M., Bernardo, M., January 2000 (Revised February 2000).

2000-2 Compact Net Semantics for Process Algebras, Bernardo, M., Busi, N., Ribaudo, M., March 2000 (Revised
December 2000).

2000-3 An Asynchronous Calculus for Generative-Reactive Probabilistic Systems, Aldini, A., Bravetti, M., May
2000 (Revised September 2000).

2000-4 On Securing Real-Time Speech Transmission over the Internet, Aldini, Bragadini, Gorrieri, Roccetti, May
2000.

2000-5 On the Expressiveness of Distributed Leasing in Linda-like Coordination Languages, Busi, N., Gorrieri, R.,
Zavattaro, G., May 2000.

2000-6 A Type System for JVM Threads, Bigliardi, G., Laneve, C., June 2000.

2000-7 Client-centered Load Distribution: a Mechanism for Constructing Responsive Web Services, Ghini, V.,
Panzieri, F., Roccetti, M., June 2000.

2000-8 Design and Analysis of RT-Ring: a Protocol for Supporting Real-time Communications, Conti, M., Do-
natiello, L., Furini, M., June 2000.

2000-9 Performance Evaluation of Data Locality Exploitation (PhD Thesis), D’Alberto, P., July 2000.

2000-10 System Support for Programming Object-Oriented Dependable Applications in Partitionable Systems (PhD
Thesis), Montresor, A., July 2000.

2000-11 Coordination: An Enabling Technology for the Internet (PhD Thesis), Rossi, D., July 2000.

2000-12 Coordination Models and Languages: Semantics and Expressiveness (PhD Thesis), Zavattaro, G., July
2000.

2000-13 Jgroup Tutorial and Programmer’s Manual, Montresor, A., October 2000.

2000-14 A Declarative Language for Parallel Programming, Gaspari, M., October 2000.

2000-15 An Adaptive Mechanism for Securing Real-time Speech Transmission over the Internet, Aldini, A., Gorri-
eri, R., Roccetti, M., November 2000.

2000-16 Enhancing Jini with Group Communication, Montresor, A., Babaoglu, O., Davoli, R., December 2000
(Revised January 2001).

2000-17 Online Reconfiguration in Replicated Databases Based on Group Communication, Bartoli, A., Kemme, B.
Babaoglu, O., December 2000.

2001-1 Design and Analysis of Protocols and Resources Allocation Mechanisms for Real-Time Applications (Ph.D.
Thesis), Furini, M., January 2001.

2001-2 Formalization, Analysis and Prototyping of Mobile Code Systems (Ph.D. Thesis), Mascolo, C., Janaury
2001.

2001-3 Nature-Inspired Search Techniques for Combinatorial Optimization Problems (Ph.D. Thesis), Rossi, C.,
Janaury 2001.

2001-4 Desktop 3d Interfaces for Internet Users: Efficiency and Usability Issues (Ph.D. Thesis), Pittarello, F., Jan-
uary 2001.

2001-5 An Expert System for the Evaluation of EDSS in Multiple Sclerosis, Gaspari, M., Roveda, G., Scandellari,
C., Stecchi, S., February 2001.

Group Communication in Partitionable Systems: Spec-
ification and Algorithms

�

Özalp Babaoğlu � Renzo Davoli � Alberto Montresor �

Technical Report UBLCS-98-01

April 1998
(Revised October 1999)

Abstract

We give a formal specification and an implementation for a partitionable group communication service
in asynchronous distributed systems. Our specification is motivated by the requirements for building
“partition-aware” applications that can continue operating without blocking in multiple concurrent par-
titions and reconfigure themselves dynamically when partitions merge. The specified service guarantees
liveness and excludes trivial solutions; it constitutes a useful basis for building realistic partition-aware
applications; and it is implementable in practical asynchronous distributed systems where certain stability
conditions hold.

Keywords: Group communication, view synchrony, partition awareness, asynchronous systems, fault
tolerance.

�
. c

�
2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works must be obtained from IEEE.

� . Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7, I-40127 Bologna (Italy), Tel: +39
051 2094504, Fax: +39 051 2094510, Email: � babaoglu,davoli,montresor � @CS.UniBO.IT

1

1 Introduction

1 Introduction
Functional requirements, which define how output values are related to input values, are usu-
ally sufficient for specifying traditional applications. For modern network applications, how-
ever, non-functional requirements can be just as important as their functional counterparts: the
services that these applications provide must not only be correct with respect to input-output
relations, they must also be delivered with acceptable “quality” levels. Reliability, timeliness
and configurability are examples of non-functional requirements that are of particular interest to
network applications.

A correct application satisfies its functional requirements in all possible operating environ-
ments: it just may take more or less time to do so depending on the characteristics of the en-
vironment. On the other hand, there may be operating environments in which it is impossible
to achieve non-functional properties beyond certain levels. For this reason, non-functional re-
quirements of network applications define acceptable quality intervals rather than exact values.
In order to deliver quality levels that are both feasible and acceptable, network applications need
to be environment aware such that they can dynamically modify their behavior depending on the
properties of their operating environment.

By their nature, network applications for mobile computing, data sharing or collaborative
work involve cooperation among multiple sites. For these applications, which are characterized
by reliability and configurability requirements, possible partitionings of the communication net-
work is an extremely important aspect of the environment. In addition to accidental partitionings
caused by failures, mobile computing systems typically support “disconnected operation” which
is nothing more than a voluntary partitioning caused by deliberately unplugging units from the
network. The nature of a partitioning will determine the quality for the application in terms
of which of its services are available where, and at what performance levels. In other words,
partitionings may result in service reduction or service degradation but need not necessarily ren-
der application services completely unavailable. Informally, we define the class of partition-aware
applications as those that are able to make progress in multiple concurrent partitions without
blocking.

Service reduction and degradation depend heavily on the application semantics; establishing
them for arbitrary applications is beyond the scope of this paper. For certain application classes
with strong consistency requirements, it may be the case that all services have to be suspended
completely in all but one partition. This situation corresponds to the so-called primary-partition
model [31, 21] that has traditionally characterized partitioned operation of network applications.
In this paper we focus on the specification and implementation of system services for supporting
partition awareness such that continued operation of network applications is not restricted to
a single partition but may span multiple concurrent partitions. Our goal is for the system to
provide only the necessary mechanisms without imposing any policies that govern partitioned
operation. In this manner, each application itself can decide which of its services will be available
in each partition and at what quality levels.

Our methodology for partition-aware application development is based on the process group
paradigm [21, 7] suitably extended to partitionable systems. In this methodology, processes that
cooperate in order to implement a given network application join a named group as members. All
events that are relevant for partition awareness (process crashes and recoveries, network parti-
tionings and merges) are unified in a single abstraction: the group’s current membership. At each
process, a partitionable group membership service installs views that correspond to the process’s lo-
cal perception of the group’s current membership. Partition-aware applications are programmed
so as to reconfigure themselves and adjust their behavior based on the composition of installed
views. In a partitionable system, a group membership service has to guarantee that processes
within the same partition install identical views and that their composition corresponds to the
partition itself. Otherwise, inconsistencies may compromise functional correctness or may result
in quality levels that are lower than what is feasible.

Specifying properties for fault-tolerant distributed services in asynchronous systems requires
a delicate balance between two conflicting goals. The specification must be strong enough to

UBLCS-98-01 2

2 System Model

exclude degenerate or trivial solutions, yet it must be weak enough to be implementable [3].
Formal specification of a partitionable group membership service in an asynchronous system has
proven to be elusive and numerous prior attempts have been unsatisfactory [28, 1, 13, 14, 15, 16,
5, 32]. Anceaume et al. discuss at length the shortcomings of previous attempts [3]. In summary,
existing specifications admit solutions that suffer from one or all of the following problems: (i)
they are informal or ambiguous [32, 5, 15], (ii) they cease to install new views even in cases where
the group membership continues to change [16], (iii) they capriciously split the group into several
concurrent views, possibly down to singleton sets [28, 1, 13, 14, 16], (iv) they capriciously install
views without any justification from the operating environment [13, 14]. The lack of a satisfactory
formal specification also makes it impossible to argue the correctness of various partitionable
group membership service implementations that have been proposed.

In this paper, we give a formal specification for partitionable group membership services
that has the following desirable properties: (i) it does not suffer from any of the problems that
have been observed for previous solutions, (ii) it is implementable in asynchronous distributed
systems that exhibit certain stability conditions which we formally characterize, (iii) it is useful
in that it constitutes the basis for system abstractions that can significantly simplify the task of
developing realistic partition-aware applications. To “prove” the usefulness of a collection of
new system abstractions, one would need to program the same set of applications twice: once
using the proposed abstractions and a second time without them, and compare their relative
difficulty and complexity. In another paper, we have pursued this exercise by programming a
set of practical partition-aware applications on top of a group communication service based on our
group membership specification extended with a reliable multicast service with view synchrony
semantics [6]. For this reason, the current paper is limited to the specification of these services
and their implementability.

The rest of the paper is organized as follows. In the next Section, we introduce the system
model and define basic properties of communication in the presence of partitions. In Section 3
we give a formal specification for partitionable group membership services that guarantees live-
ness and excludes useless solutions. In Section 4 we extend the failure detector abstraction of
Chandra and Toueg [10] to partitionable systems and show how it can be implemented in prac-
tical asynchronous systems where certain stability conditions hold. In Section 5 we prove that
our specification is implementable on top of an unreliable datagram communication service in
systems that admit failure detectors. In Section 6 we briefly illustrate how our partitionable
group membership service may be extended to a group communication service based on view
synchrony. Section 7 relates our specification to numerous other proposals for group communi-
cation and Section 8 concludes the work.

2 System Model
We adopt notation and terminology similar to that of Chandra and Toueg [10]. The system com-
prises a set � of processes that can communicate by exchanging messages through a network.
Processes are associated unique names that they maintain throughout their life. The communi-
cation network implements channels connecting pairs of processes and the primitives send ��� and
recv ��� for sending and receiving messages over them. The system is asynchronous in the sense
that neither communication delays nor relative process speeds can be bounded. Practical dis-
tributed systems often have to be considered as being asynchronous since transient failures, un-
known scheduling strategies and variable loads on the computing and communication resources
make it impossible to bound delays.

To simplify the presentation, we make reference to a discrete global clock whose ticks coincide
with the natural numbers in some unbounded range � . This simplification is not in conflict with
the asynchrony assumption since processes are never allowed to access the global clock.

UBLCS-98-01 3

2 System Model

2.1 Global Histories
The execution of a distributed program results in each process performing an event (possibly
null), chosen from a set � , at each clock tick. Set � includes at least the events send � � and recv � �
corresponding to their respective communication primitives. In Section 3 we extend this set with
other events related to group membership. The global history of an execution is a function � from
��� � to �������
	 , where � denotes the null event. If process � executes an event ��
�� at time�
, then � ����� � ����� . Otherwise, � ����� � ����� indicating that process � performs no event at time

�
.

Given some interval � of � , we write ��
�� ������� � if � executes event � sometime during interval �
of global history � (i.e, � �
��! "� ����� � �#�$�).

2.2 Communication Model
In the absence of failures, the network is logically connected and each process can communicate
with every other process. A process � sends a message % to a process & by executing send �'%(�)& � ,
and receives a message % that has been sent to it by executing recv �*% � . Communication is unreli-
able (as described below) and sequencing among multiple messages sent to the same destination
need not be preserved (i.e., channels are not FIFO). Without loss of generality, we assume that (i)
all messages sent are globally unique, and (ii) a message is received only if it has been previously
sent. Note that this communication model is extremely faithful to practical distributed systems
built on top of typical unreliable datagram transport services such as IP and UDP.

2.3 Failure Model
Processes may fail by crashing whereby they halt prematurely. For simplicity, we do not consider
process recovery after a crash. The evolution of process failures during an execution is captured
through the crash pattern function + from � to ,.- where + � � � denotes the set of processes that
have crashed by time

�
. Since crashed processes do not recover, we have + � � ��/0+ � �2143 � . With

Correct ��+ �5�6�)��798 � 9�;:
<+ � � �=	 we denote those processes that never crash, and thus, are correct
in + .

A variety of events, including link crashes, buffer overflows, incorrect or inconsistent routing
tables, may disable communication between processes. We refer to them generically as commu-
nication failures. Unlike process crashes, which are permanent, communication failures may be
temporary due to subsequent repairs. The evolution of communication failures and repairs dur-
ing an execution is captured through the unreachability pattern function > from ��� � to ,"- where
> ����� � � denotes the set of processes with which � cannot communicate at time

�
. If &?
�> ����� � � , we

say that process & is unreachable from � at time
�
, and write ��:@0A & as a shorthand; otherwise we

say that process & is reachable from � at time
�
, and write � @0A & . As noted above, communica-

tion failures are not necessarily permanent but may appear and disappear dynamically. This is
reflected by the fact that the sets > ����� � � and > ����� �B1$3 � may differ arbitrarily.

Note that the unreachability pattern is an abstract characterization of the communication state
of a system, just as the crash pattern is an abstract characterization of its computational state.
Only an omnipotent external observer can construct the unreachability and crash patterns that
occur during an execution and neither can be inferred from within an asynchronous system.
Nevertheless, they are useful in stating desired properties for a group membership service. Any
implementation of the specified service in an asynchronous system will have to be based on
approximations of unreachability and crashes provided by failure detectors [10] as we discuss in
Section 4.

Reachable/unreachable are attributes of individual communication channels (identified as
ordered process pairs), just as correct/crashed are attributes of individual processes. In the rest
of the paper, we also refer to communication failure scenarios called partitionings that involve
multiple sets of processes. A partitioning disables communication among different partitions,
each containing a set of processes. Processes within a given partition can communicate among
themselves, but cannot communicate with processes outside the partition. When communication
between several partitions is reestablished, we say that they merge.

UBLCS-98-01 4

2 System Model

Process and communication failures that occur during an execution are not totally indepen-
dent, but must satisfy certain constraints that are captured through the notion of a failure history:
Definition 2.1 (Failure History)A failure history � is a pair � + �=> � , where + is a crash pattern and >
is an unreachability pattern, such that (i) a process that has crashed by time

�
is unreachable from every

other process at time
�
, and (ii) a process that has not crashed by time

�
is reachable from itself at time

�
.

Formally, �
��� � ��
 + � � ��� & :@ A �
����� � �(:
 + � � ��� � @ A �

By definition, the unreachability pattern subsumes the crash pattern in every failure history.
We nevertheless choose to model crash and unreachability patterns separately so that specifica-
tions can be made in terms of properties that need to hold for correct processes only.

Finally, we need to relate crash and unreachability patterns to the events of the execution itself.
In other words, we need to formalize notions such as “crashed processes halt prematurely” and
“unreachable processes cannot communicate directly”. We do this by requiring that the global
and failure histories of the same execution conform to constraints defining a run.
Definition 2.2 (Run)A run � is a pair � � ��� � , where � is a global history and � � � + �=> � is the cor-
responding failure history, such that (i) a crashed process stops executing events, and (ii) a message that
is sent will be received if and only if its destination is reachable from the sender at the time of sending.
Formally,

��� � �
 + � � �	� 8 ��

�!� "� ����� ��
 �#�$�
����� � � ����� � � � send �*% � & ��� � recv �*% �
�� �*& � � ��� � @ A & �

Note that by Definition 2.1(ii), the reachable relation for correct processes is perpetually reflex-
ive — a correct process is always reachable from itself. Transitivity of reachability, on the other
hand, need not hold in general. We make this choice so as to render our model realistic by ad-
mitting scenarios that are common in wide-area networks, including the Internet, where a site �
may be reachable from site � , and site + reachable from � , at a time when + is unreachable from
� directly. Yet the three sites � , � and + should be considered as belonging to the same partition
since they can communicate with each other (perhaps indirectly) using communication services
more sophisticated than the send/receive primitives offered by the network. As we shall see in
Section 5.1, such services can indeed be built in our system model so that two processes will be
able to communicate with each other whenever it is possible. And our notion of a partition as the
set of processes that can mutually communicate will be based on these services.

We do not assume perpetual symmetry for the reachable relation. In other words, at a given
time, it is possible that some process � be reachable from process & but not vice versa. This is again
motivated by observed behavior in real wide-area networks. Yet, to make the model tractable,
we require a form eventual symmetry as stated below:
Property 2.1 (Eventual Symmetry)If, after some initial period, process & becomes and remains reachable
(unreachable) from � , then eventually � will become and remain reachable (unreachable) from & as well.
Formally,

� ��� � 8 ���!��� � @ A &�� � ��� � 8 ��� ��� "& @ A �
� ��� � 8 ���!��� � :@ A &�� � ��� � 8 ��� ��� "& :@ A �

This is a reasonable behavior to expect of practical asynchronous distributed systems. Typically,
communication channels are bidirectional and rely on the same physical and logical resources

�
. In these formulas and all others that follow, free variables are assumed to be universally quantified over their respec-

tive domains (process events, time, messages, views, etc.), which can be inferred from context.

UBLCS-98-01 5

3 Partitionable Group Membership Service: Specification

in both directions. As a result, the ability or inability to communicate in one direction usually
implies that a similar property will eventually be observed also in the other direction.

To conclude the system model, we impose a fairness condition on the communication net-
work so as to exclude degenerate scenarios where two processes are unable to communicate
despite the fact that they become reachable infinitely often. In other words, the communication
system cannot behave maliciously such that two processes that are normally reachable become
unreachable precisely at those times when they attempt to communicate.
Property 2.2 (Fair Channels)Let � and & be two processes that are not permanently unreachable from
each other. If � sends an unbounded number of messages to & , then & will receive an unbounded number of
these messages. Formally,

� 8 � � � � � � � 9� @ A�� & � � � 8 � � � ��� �!� .� ����� ��� �#� send �*% � & � ���
� 8 � � � � �

�!� .� �*& � � � �#� recv �*%
 � � send �*%
 � & �
 � ����� � � �

3 Partitionable Group Membership Service: Specification
Our methodology for partition-aware application development is based on the process group
paradigm with suitable extensions to partitionable systems. In this methodology, processes co-
operate towards a given network application by joining a group as members. Later on, a process
may decide to terminate its collaboration by explicitly leaving the group. In the absence of fail-
ures, the membership of a group comprises those processes that have joined but have not left the
group. In addition to these voluntary events, membership of a group may also change due to
involuntary events corresponding to process and communication failures or repairs.

At each process, a partitionable group membership service (PGMS) tracks the changes in the
group’s membership and installs them as views through ���	��
 � � events. Installed views corre-
spond to the process’s local perception of the group’s current membership. Partition-aware ap-
plications are programmed so as to reconfigure themselves and adjust their behavior based on
the composition of installed views. In the absence of partitionings, every correct process should
install the same view, and this view should include exactly those members that have not crashed.
This goal is clearly not feasible in a partitionable system, where processes in different partitions
will have different perceptions of the membership for a given group. For these reasons, a par-
titionable group membership service should guarantee that under certain stability conditions,
correct processes within the same partition install identical views and that their composition cor-
respond to the composition of the partition itself.

In the next section, we translate these informal ideas in a formal specification for our par-
titionable group membership service. The specification is given as a set of properties on view
compositions and view installations, stated in terms of the unreachability pattern that occurs
during an execution. The specification we give below has benefited from extensive reflection
based on actual experience with programming realistic applications and has gone through nu-
merous refinements over the last several years. We believe that it represents a minimal set of
properties for a service that is both useful and implementable.

3.1 Formal Specification
For sake of brevity, we assume a single process group and do not consider changes to its mem-
bership due to voluntary join and leave events. Thus, the group’s membership will vary only
due to failures and repairs. We start out by defining some terms and introducing notation. Views
are labeled in order to be globally unique. Given a view � , we write � to denote its composition
as a set of process names. The set of possible events for an execution, � , is augmented to include
vchg �
� � denoting a view change that installs view � . The current view of process � at time

�
is � ,

denoted view ����� � �#��� , if � is the last view to have been installed at � before time
�
. Events are said

to occur in the view that is current. View � is called immediate successor of � at � , denoted ������� ,
if � installs � in view � . View � is called immediate successor of � , denoted ����� , if there exists

UBLCS-98-01 6

3 Partitionable Group Membership Service: Specification

some process � such that � � � � . The successor relation � � denotes the transitive closure of � .
Two views that are not related through � � are called concurrent. Given two immediate successor
views � � � , we say that a process survives the view change if it belongs to both � and � .

The composition of installed views cannot be arbitrary but should reflect reality through the
unreachability pattern that occurs during an execution. In other words, processes should be
aware of other processes with which they can and cannot communicate directly in order to adapt
their behaviors consistently. Informally, each process should install views that include all pro-
cesses reachable from it and exclude those that are unreachable from it. Requiring that the cur-
rent view of a process perpetually reflect the actual unreachability pattern would be impossible
to achieve in an asynchronous system. Thus, we state the requirement as two eventual properties
that must hold in stable conditions where reachability and unreachability relations are persistent.
GM1 (View Accuracy) If there is a time after which process & remains reachable from some correct
process � , then eventually the current view of � will always include & . Formally,

� � � ��8 ��� � � 9�
 Correct � + � � � @4A &�� � � � � 8 ����� � .&
 view ����� � ���

GM2 (View Completeness) If there is a time after which all processes in some partition
�

remain
unreachable from the rest of the group, then eventually the current view of every correct process not in

�
will never include any process in

�
. Formally,

� ��� � 8 ��� ��� � 8 &�
 � � 8 �(:
 � � :@ A &�� � ��� � 8 ���!��� � 8��?
 Correct ��+ ��� � view �	� � � ��
 � �
���

View Accuracy and View Completeness are of fundamental importance for every PGMS.
They state that the composition of installed views cannot be arbitrary but must be a function
of the actual unreachability pattern occurring during a run. Any specification that lacked a prop-
erty similar to View Accuracy could be trivially satisfied by installing at every process either
an empty view or a singleton view consisting of the process itself. The resulting service would
exhibit what has been called capricious view splitting [3] and would not be very useful. View Ac-
curacy prevents capricious view splitting by requiring that eventually, all views installed by two
permanently-reachable processes contain each other. On the other hand, the absence of View
Completeness would admit implementations in which processes always install views containing
the entire group, again rendering the service not very useful.

Note that View Accuracy and View Completeness are stated slightly differently. This is be-
cause the reachable relation between processes is not transitive. While & being reachable directly
from � is justification for requiring � to include & in its view, the converse is not necessarily true.
The fact that a process � cannot communicate directly with another process & does not imply that
� cannot communicate indirectly with & through a sequence of pairwise-reachable intermediate
processes. For this reason, View Completeness has to be stated in terms of complementary sets of
processes rather than process pairs. Doing so assures that a process is excluded from a view only
if communication is impossible because there exists no path, directly or indirectly, for reaching it.

View Accuracy and View Completeness state requirements for views installed by individual
processes. A group membership service that is to be useful must also place constraints on views
installed by different processes. Without such coherency guarantees for views, two processes
could behave differently even though they belong to the same partition but have different per-
ceptions of its composition. For example, consider a system with two processes � and & that are
permanently reachable from each other. By View Accuracy, after some time

�
, both � and & will

install the same view � containing themselves. Now suppose that at some time after
�
, a third

process � becomes and remains reachable from & alone. Again by View Accuracy, & will even-
tually install a new view � that includes � in addition to itself and � . Presence of process � is
unknown to � since they are not directly reachable. Thus, � continues believing that it shares the
same view with & since its current view � continues to include & , when in fact process & has gone
on to install view � different from � . The resulting differences in perception of the environment
could lead processes � and & to behave differently even though they belong to the same partition.
The following property has been formulated to avoid such undesirable scenarios.

UBLCS-98-01 7

3 Partitionable Group Membership Service: Specification

GM3 (View Coherency)
(i) If a correct process � installs view � , then either all processes in � also install � , or � eventually installs
an immediate successor to � . Formally,

�
 +�� � � ��� � � + � � vchg � � �
 � ����� � � � &
 � � � vchg � � �
 � �*& � � � � � ��� � �� � � � � �
(ii) If two processes � and & initially install the same view � and � later on installs an immediate successor
to � , then eventually either & also installs an immediate successor to � , or & crashes. Formally,

vchg � � �
�� ����� � � � vchg � � �
 � � & � � � � � � � � � � &
 Correct � + � � � � � �� ��� � �

(iii) When process � installs a view � as the immediate successor to view � , all processes that survive from
view � to � along with � have previously installed � . Formally,

� ����� ��� �#� vchg �
� � � � � � � � &?
 �
 � � vchg � � �
 � �*& ��� 	 � ��� � � �

Returning to the above example, the current view of process � cannot remain � indefinitely as
GM3(ii) requires � to eventually install a new view. By assumption, & never installs another view
after � . Thus, by GM3(i), the new installed by � must be � as well and include � . As a result,
processes � and & that belong to the same partition return to sharing the same view. In fact, we
can generalize the above example to argue that View Coherency together with View Accuracy
guarantee that every view installed by a correct process is also installed by all other processes
that are permanently reachable from it. Note that the composition of the final view installed by
� and & includes process � as belonging to their partition. This is reasonable since � and � can
communicate (using & as a relay) even though they are not reachable directly.

View Coherency is important even when reachability and unreachability relations are not
persistent. In these situations where View Accuracy and View Completeness are not applicable,
View Coherency serves to inform a process that it no longer shares the same view with another
process. Consider two processes � and & that are initially mutually reachable. Suppose that �
has installed a view � containing the two of them by some time

�
. The current view of process &

could be different from � at time
�

either because it never installs � (e.g., it crashes) or because it
installs another view after having installed � (e.g., there is a network partitioning or merge). In
both cases, GM3(i) and GM3(ii), respectively, ensure that process � will eventually become aware
of this fact because it will install a new view after � .

When a process installs a new view, it cannot be sure which other processes have also in-
stalled the same view. This is an inherent limitation due to asynchrony and possibility of failures.
GM3(iii) allows a process to reason a posteriori about other processes: At the time when process
� installs view � as the immediate successor of view � , it can deduced which other processes
have also installed view � . And if some process & belonging to view � never installs it, we can
be sure that & cannot belong to view � . Note that these conclusions are based entirely on local
information (successive pairs of installed views) yet they allow a process to reason globally about
the actions of other processes.

The next property for group membership places restrictions on the order in which views are
installed. In systems where partitionings are impossible, it is reasonable to require that all correct
processes install views according to some total order. In a partitionable system, this is not feasible
due to the possibility of concurrent partitions. Yet, for a partitionable group membership service
to be useful, the set of views must be consistently ordered by those processes that do install them.
In other words, if two views are installed by a process in a given order, the same two views cannot
be installed in the opposite order by some other process.
GM4 (View Order) The order in which processes install views is such that the successor relation is a
partial order. Formally, � � � � � ��:� � � �

When combined with View Accuracy and View Coherency, View Order allows us to conclude
that there is a time after which permanently reachable processes not only install the same set of
views, they install them in the same order.

UBLCS-98-01 8

3 Partitionable Group Membership Service: Specification

The final property of our specification places a simple integrity restriction on the composition
of the views installed by a process. By Definition 2.1(ii), every correct process is always reachable
from itself. Thus, Property GM1 ensures that eventually, all views installed by a process will
include itself. However, it is desirable that self-inclusion be a perpetual, and not only eventual,
property of installed views.
GM5 (View Integrity) Every view installed by a process includes the process itself. Formally,

vchg � � �
�� ����� � �	� �
 � �

Properties GM1–GM5 taken together define a partitionable group membership service (PGMS).

3.2 Discussion
Note that Properties GM1, GM2 and GM3 place constraints on the composition of the current of
a process in relation to characteristics of the operating environment or actions of other processes.
As such, they can be satisfied only by installing a new view whenever the current view of a
process does not conform to the specification. In an asynchronous system, it is impossible to
put a time bound on this action. Thus, the properties are stated so as to hold eventually. This
is sufficient to guarantee that our specification of PGMS is live since it excludes implementations
where installation of justified views are arbitrarily delayed.

Recall that Properties GM1 and GM2 are stated in terms of runs where reachability and un-
reachability relations are persistent. They are, however, sufficient to exclude trivial solutions to
PGMS also in runs where reachability and unreachability among processes are continually chang-
ing due to transient failures. As an example, consider a system composed of two processes � and
& and a run � � where they are permanently mutually reachable. By View Accuracy and View Co-
herency, we know there is a time

� �
by which both � and & will have installed a view composed of

themselves alone. Now, consider run � � identical to � � up to time
� ��� � �

when � and & become
unreachable. The behavior of processes � and & under runs � � and � � must be identical up to
time

���
since they cannot distinguish between the two runs. Thus, if they install views composed

of � and & by time
���

under run � � , they must install the same views also under run � � where
reachability relations are not persistent but transient. This example can be generalized to con-
clude that any implementation satisfying our specification cannot delay arbitrarily installation
of a new view including processes that remain reachable for sufficiently long periods. Nor can
it delay arbitrarily installation of a new view excluding processes that remain unreachable for
sufficiently long periods.

Asynchronous distributed systems present fundamental limitations for the solvability of cer-
tain problems in the presence of failures. Consensus [18] and primary-partition group mem-
bership [9] are among them. Partitionable group membership service, as we have defined it,
happens to be not solvable in an asynchronous system as well. Here we give a proof sketch of
this impossibility. Consider a system consisting of two processes � and & . Let � be the set of all
runs in which � and & are correct and are permanently reachable from each other. Any implemen-
tation of our specification must guarantee that for all runs in � , there exists a time after which
the current view of � always contains & . For contradiction, we will show that there is at least one
run in � for which such a time does not exist. Let � � be a run in � , and let

���
be a time value.

There are two possibilities: if the current view of � never contains & after
� �

in � � , our claim is
trivially proven. Thus, suppose the current view of � contains & at time

� �
in run � � . Now con-

sider another run �
� , identical to � � up to
� �

at which time process & crashes. By Property GM2,
there must be a time

�
� � � � by which � installs a view � in �
� that excludes & . Now, consider
run � �
�� such that (i) the global and failure histories of � � are identical to those of �
� up to
time

� �
; (ii) the global and failure histories of � � restricted to � are identical to those of �
� up to

time
�
� , and (iii) all messages sent by & after

� �
are received by � after

�
� . At time
�
� , process �

cannot distinguish run � � from �
� . Thus, � installs view � at time
�
� in run � � just as it does in

run �
� . Again, there are two possibilities. If the current view of � never contains & after
�
� in � � ,

our claim is proven. Otherwise, let
� ��� �
� be a time such that the current view of � contains &

UBLCS-98-01 9

4 Failure Detectors for Partitionable Systems

in � � at time
� �

. We repeat this construction now starting from run � � and time
� �

, obtaining a
run � �
 � in which � installs a view excluding & at time

�
 � � ��� . By iterating the construction,
we obtain a run �
 � in which the current view of � never contains & after a certain time, or �
installs an unbounded number of views that exclude & .

This impossibility result for PGMS can be circumvented by requiring certain stability con-
ditions to hold in an asynchronous system. In the next section we formulate these conditions
as abstract properties of an unreliable failure detector [10]. Then in Section 5 we show how the
specified PGMS can be implemented in systems that admit the necessary failure detector.

4 Failure Detectors for Partitionable Systems
In this Section, we formalize the stability conditions that are necessary for solving our specifica-
tion of partitionable group membership in asynchronous systems. We do so indirectly by stating
a set of abstract properties that need to hold for failure detectors that have been suitably extended
to partitionable systems. Similar failure detector definitions extended for partitionable systems
have appeared in other contexts [24, 11]. The failure detector abstraction originally proposed by
Chandra and Toueg [10] is for systems with perfectly-reliable communication. In partitionable
systems, specification of failure detector properties has to be based on reachability between pairs
of processes rather than individual processes being correct or crashed. For example, it will be
acceptable (and desirable) for the failure detector of � to suspect & that happens to be correct but
is unreachable from � .

Informally, a failure detector is a distributed oracle that tries to estimate the unreachability
pattern > that occurs in an execution. Each process has access to a local module of the failure
detector that monitors a subset of the processes and outputs those that it currently suspects as
being unreachable from itself. A failure detector history

�
is a function from � � � to ,"- that

describes the outputs of the local modules at each process. If &
 � ����� � � , we say that � suspects &
at time

�
in
�

. Formally, a failure detector � is a function that associates with each failure history
� � � + � > � a set � � � � denoting failure detector histories that could occur in executions with
failure history � .

In asynchronous systems, failure detectors are inherently unreliable in that the information
they provide may be incorrect. Despite this limitation, failure detectors satisfying certain com-
pleteness and accuracy properties have proven to be useful abstractions for solving practical prob-
lems in such systems [10]. Informally, completeness and accuracy state, respectively, the condi-
tions under which a process should and should not be suspected for

� ����� � � to be a meaningful
estimate of > ����� � � . We consider the following adaptations of completeness and accuracy to par-
titionable systems, maintaining the same names used by Chandra and Toueg for compatibility
reasons [10]:
FD1 (Strong Completeness) If some process & remains unreachable from correct process � , then even-
tually � will always suspect & . Formally, given a failure history �6� ��+ �=> � , a failure detector � satisfies
Strong Completeness if all failure detector histories

�
�� � � � are such that:

� � � � 8 ��� � � 9�
 Correct � + � � �(:@4A & � � � � � 8 ����� � .&
 � ����� � ���

FD2 (Eventual Strong Accuracy) If some process & remains reachable from correct process � , then
eventually � will no longer suspect & . Formally, given a failure history � � ��+ �=> � , a failure detector �
satisfies Eventual Strong Accuracy if all failure detector histories

�
�� � � � are such that:

� � � � 8 ��� � � 9�
 Correct � + � � � @4A & � � � � � 8 ����� � .& :
 � ����� � ���

Borrowing from Chandra and Toueg [10], failure detectors satisfying Strong Completeness
and Eventual Strong Accuracy are called eventually perfect, and their class denoted �

��
. In addi-

tion to the properties stated above, we can also formulate their weak and perpetual counterparts,

UBLCS-98-01 10

4 Failure Detectors for Partitionable Systems

thus generating a hierarchy of failure detector classes similar to those of Chandra and Toueg [10].
Informally, weak completeness and accuracy require the corresponding property to hold only for
some pair of processes (rather than all pairs), while their perpetual versions require the correspond-
ing property to hold from the very beginning (rather than eventually).

While a detailed discussion of failure detector hierarchy for partitionable systems and reduc-
tions between them is beyond the scope of this paper, we make a few brief observations. In
absence of partitionings, failure detector classes with the weak version of Completeness happen
to be equivalent to those with the strong version. � In such systems, it suffices for one correct
process to suspect a crashed process since it can (reliably) communicate this information to all
other correct processes. In partitionable systems, this is not possible and failure detector classes
with weak completeness are strictly weaker than those with strong completeness.

In principle, it is impossible to implement a failure detector �
 � �� in partitionable asyn-
chronous systems, just as it is impossible to implement a failure detector belonging to any of the
classes �

�
, �
�

, �.� and ��� in asynchronous systems with perfectly-reliable communication [10].
In practice, however, asynchronous systems are expected to exhibit reasonable behavior and fail-
ure detectors for �

��
can indeed be implemented. For example, consider the following algorithm,

which is similar to that of Chandra and Toueg [10], but is based on round-trip rather than one-way
message time-outs. Each process � periodically sends a � -ping message to every other process
in � . When a process & receives a � -ping, it sends back to � a & -ack message. If process � does
not receive a & -ack within � � �*& � local time units, � adds & to its list of suspects. If � receives a
& -ack message from some process & that it already suspects, � removes & from the suspect list and
increments its time-out period � � �*& � for the channel ����� & � .

Note that since processes send ack messages only in response to ping messages, a process �
will continually time-out on every other process & that is unreachable from it. Thus, the above al-
gorithm trivially satisfies the Strong Completeness property of �

��
in partitionable asynchronous

systems. On the other hand, in an asynchronous system, it is possible for some process � to
observe an unbounded number of premature time-outs for some other process & even though &
remains reachable from � . In this case, � would repeatedly add and remove & from its list of sus-
pects, thus violating the Eventual Strong Accuracy property of �

��
. In many practical systems,

increasing the time-out period for each communication channel after each mistake will ensure
that eventually there are no premature time-outs on any of the communication channels, thus
ensuring Eventual Strong Accuracy.

The only other scenario in which the algorithm could fail to achieve Eventual Strong Accuracy
occurs when process & is reachable from process � and continues to receive � -ping messages but
its & -ack messages sent to � are systematically lost. In a system satisfying Eventual Symmetry,
this scenario cannot last forever and eventually � will start receiving & -ack messages, causing it
to permanently remove & from its suspect list and thus satisfy Eventual Strong Accuracy.

Given that perfectly reliable failure detectors are impossible to implement in asynchronous
systems, it is reasonable to ask: what are the consequences of mistakenly suspecting a process that
is actually reachable? As we shall see in the next section, our use of failure detectors in solving
PGMS is such that incorrect suspicions may cause installation of views smaller than what are
actually feasible. In other words, they may compromise View Accuracy but cannot invalidate any
of the other properties. As a consequence, processes that are either very slow or have very slow
communication links may be temporarily excluded from the current view of other processes to
be merged back in when their delays become smaller. This type of “view splitting” is reasonable
since including such processes in views would only force the entire computation to slow down
to their pace. Obviously, the notion of “slow” is completely application dependent and can only
be established on a per-group basis.

�
. These are the ���	�
 , �
�	�� , �����	���
 and �����	���� results of Chandra and Toueg [10].

UBLCS-98-01 11

5 Partitionable Group Membership Service: Implementation

vchg join leave

mrecv msuspect msend

MSL FD

Application

VML

Network

recv send

Figure 1. Overall structure of the partitionable group membership service.

5 Partitionable Group Membership Service: Implementation
In this section we present an algorithm that implements the service specified in Section 3 in
partitionable asynchronous systems augmented with a failure detector of class �

��
. Our goal is to

show the implementability of the proposed specification for PGMS; consequently, the algorithm
is designed for simplicity rather than efficiency. The overall structure of our solution is shown in
Figure 1 and consists of two components called the Multi-Send Layer (MSL) and View Management
Layer (VML) at each process. In the Figure, FD denotes any failure detector module satisfying the
abstract properties for class �

��
as defined in Section 4.

All interactions with the communication network and the failure detector are limited to MSL
which uses the unreliable, unsequenced datagram transport service of the network through the
primitives send � � and recv � � . Each MSL can also read the suspect list of the corresponding fail-
ure detector module FD. MSL implements the primitives ������� � � � , �	�
�	� � � � and �����
�����	��� � � as
described below, which in turn are used by VML. Recall that we consider group membership
changes due to failures and repairs only. Thus, the implementation we give includes only the
view change notification event vchg ��� but not the primitives � � ��� ��� and � ��� � � � � for voluntarily
joining and leaving the group.

In order to distinguish between the various layers in our discussion, we say that a process m-
sends and m-receives messages when it communicates through the MSL primitives ������� � ��� and
�	�
�	� � � � , respectively. We reserve send and receive to denote communication directly through the
network services without going through MSL. Similarly, we say that a process m-suspects those
processes that are notified through a �����
����� ��� � � event while suspect is reserved for describing the
failure detector itself.

The following notation is used in the presentation of our algorithms. We use italic font for
variable and procedure names. Tags denoting message types are written in SMALLCAPS. The
wait-for construct is used to block a process until a ���
�	� � � � or a �����
�����	��� � � event is generated
by MSL. The generate construct produces an upcall of the specified type to the next layer in the
architecture.

5.1 The Multi-Send Layer
Implementing a group membership service directly on top of a point-to-point unreliable, unse-
quenced datagram transport service provided by the network would be difficult. The difficulty
is aggravated by the lack of transitivity of the reachability relation as provided by the failure de-
tector. The task of MSL is to hide this complexity by transforming the unreliable, point-to-point
network communication primitives to their best-effort, one-to-many counterparts. Informally,
MSL tries to deliver m-sent messages to all processes in some destination set. MSL also “filters”
the raw failure detector suspect list by eliminating from it those processes that can be reached

UBLCS-98-01 12

5 Partitionable Group Membership Service: Implementation

indirectly. In other words, the notion of reachability above the MSL corresponds to the transitive
closure of reachability at the failure detector layer. What distinguishes MSL from a typical net-
work routing or reliable multicast service is the integration of message delivery semantics with
the reachability information. In that sense, MSL is much closer to the dynamic routing layer of
Phoenix [23] and the MUTS layer of Horus [33].

Informally, properties that MSL must satisfy are:

Property 5.1 (a) if a process & is continuously unreachable from � , then eventually � will continuously m-
suspect & ; (b) if a process & is continuously reachable from � , then eventually every process that m-suspects
& also m-suspects � ; (c) each process m-receives a message at most once and only if some process actually
m-sent it earlier; (d) messages from the same sender are m-received in FIFO order; (e) a message that is
m-sent by a correct process is eventually m-received by all processes in the destination set that are not
m-suspected; (f) a process never m-suspects itself; (g) the reachability relation defined by the ��� �
�����	��� ���
events is eventually symmetric.

Properties (a) and (b) are the non-triviality conditions of our communication service. Proper-
ties (c) and (d) place simple integrity and order requirements on m-receiving messages. Property
(e) defines a liveness condition on the m-sending of messages. Finally, property (f) prevents
processes from m-suspecting themselves, while property (g) requires that if a correct process �
stops m-suspecting another correct process & , then eventually & will stop m-suspecting � . It is
important to note that from the combination of properties (b) and (f) we conclude that if & is con-
tinuously reachable from � , then � eventually stops m-suspecting & . Moreover, from properties
(b) and (e) we conclude that if & is continuously reachable from � , then every message m-sent by
& to � is eventually m-received.

A formal description of these properties, along with an algorithm to achieve them can be
found in Appendix A. The proposed algorithm is based on the integration of a routing algorithm
and a failure detector of class �

��
.

5.2 The View Management Layer
VML uses the services provided by MSL in order to construct and install views as defined by the
PGMS specification. At each process, let the reachable set correspond to those processes that are
not currently m-suspected. These reachable sets form a good basis for constructing views since
part of the PGMS specification follows immediately from the properties of MSL that produce
them. In particular, Property GM2 is satisfied by Property A.1(a) requiring that if a process & is
continuously unreachable from � , then eventually � will continuously m-suspect & . Property GM1
is satisfied by Properties A.1(b) and A.1(f), as discussed above. Finally, Property GM5 is satisfied
by Property A.1(f).

The main difference between reachable sets as constructed by MSL and views as defined by
PGMS is with respect to coherency. While reachable sets are completely individualistic and lack
any coordination, views of different processes need to be coherent among themselves as defined
by Property GM3. VML achieves this property by using reachable sets as initial estimates for
new views but installs them only after having reached agreement on their composition among
mutually-reachable processes. To guarantee liveness of our solution, each execution of the agree-
ment algorithm must terminate by actually installing a new view. Yet the composition of installed
views cannot invalidate any of the properties that are inherited from MSL as described above.

The main algorithm for VML, illustrated in Figure 2, alternates between an idle phase and an
agreement phase. A process remains idle until either it is informed by MSL that there is a change
in its perception of the reachable set (through a �����
�����	��� � � event), or it m-receives a message
from another process that has observed such a change. Both of these events cause the process to
enter agreement phase. The agreement protocol, illustrated in Figure 3, is organized as two sub-
phases called synchronization phase and estimate exchange phase (for short, s-phase and ee-phase,
respectively).

At the beginning of s-phase, each process m-sends a synchronization message containing a

UBLCS-98-01 13

5 Partitionable Group Membership Service: Implementation

1 thread
���������
	��
	������������

2 � ��	�����	������! #"�$�%
% Set of unsuspected processes

3 & � ��' �)(��* ,+)-/.10�0�0�.�-�2
% Vector clock

4 '�3 � ' ���4 ,+5"6$�%�.�0�010�.�"�$7%�2
% Symmetry set

5 & �����8 9+;:��<�>=1?
��@6AB+�2�.C"�$�%D2
% Current view id and composition

6
� & �����8 & ����� % Corresponding complete view

7 generate & �����7+ & �����D2)
8
9 while true do
10 wait-for

� & ����� % Remain idle until some event occurs
11 case

� & ���<� of
12
13

� ' ? ')E ���1��+)FG2 :
14 foreach HJI +>KMLNFG2�L � �6	����/	������ do '�3 � ' ����O HQP � �6	�����	������
15

� ' ���
R�+6S SYMMETRY
. & � ��' �>(��T. � �6	����/	�������U�.�+>KMLVFG2WL � �6	�����	�������2

16 � ��	�����	������X YK8LVF
17 Z � � �����������\[]��	 ' �^+�2
18
19

� � ��� & +6S SYNCHRONIZE
.�_/`�.�_<a�.�FGU�.cb�2

:
20 if

+ & � ��' �)(d�CO b PWe _fO b P 2 then
21 & � ��' �)(��CO b P g_�O b P
22 if

+>b Ih� �6	����/	�������2 then
23 Z � � ���������<�\[4��	 ' ��+�2
24 fi
25
26 esac
27 od

Figure 2. The main algorithm for process
$

.

version number to those processes it perceives as being reachable, and then waits for responses.
This message acts to “wake-up” processes that have not yet entered s-phase. Furthermore, ver-
sion numbers exchanged in the s-phase are used in subsequent ee-phases to distinguish between
messages of different agreement protocol invocations. A process leaves s-phase to enter ee-phase
either when it m-receives a response to its synchronization message from every process that has
not been m-suspected during the s-phase, or when it m-receives a message from a process that
has already entered ee-phase.

Each process enters ee-phase (Figures 4 and 5) with its own estimate for the composition of
the next view. During this phase, a process can modify its estimate to reflect changes in the ap-
proximation for reachability that is being reported to it by MSL. In order to guarantee liveness,
the algorithm constructs estimate sets that are always monotone decreasing so that the agreement
condition is certain to hold eventually. Whenever the estimate changes, the process m-sends a
message containing the new estimate to every process belonging to the estimate itself. When a
process m-receives estimate messages, it removes from its own estimate those processes that are
excluded from the estimate of the sender. At the same time, each change in the estimate causes a
process to m-send an agreement proposal to a process selected among the current estimate to act
as a coordinator. Note that while estimates are evolving, different processes may select different
coordinators. Or, the coordinator may crash or become unreachable before the agreement con-
dition has been verified. In all these situations, the current agreement attempt will fail and new
estimates will evolve causing a new coordinator to be selected.

When the coordinator eventually observes that proposals m-received from some set i of pro-
cesses are all equal to i , agreement is achieved and the coordinator m-sends to the members of
i a message containing a new view identifier and composition equal to i . When a process m-
receives such a message, there are two possibilities: it can either install a complete view, containing
all processes indicated in the message, or it can install a partial view, containing a subset of the

UBLCS-98-01 14

5 Partitionable Group Membership Service: Implementation

1 procedure Z � � �����f���<�\[4��	 ' ��+�2
2 repeat
3

� ' �>� �f	��5�! � �6	�����	������ % Next view estimation
4 & � ��' �)(��CO $ P & � ��' �)(��CO $ P ��� % Generate new version number
5 �<3 � ��� � (��<����	��>�>(��^[4��	 ' ��+�2
6 � ' �>� � 	��5� �	� ���/	��^���6[4��	 ' �<+�2
7 until ' ��	������ % Exit when the view is stable
8
9
10 procedure �<3 � ��� � (��<����	��>�>(��^[4��	 ' ��+�2
11 '�3 � ��� � (��<���Q�6R "6$�%

% Processes with which
$

is syncronized
12 foreach HJI � ' �>� �f	��5�DL "6$�% do
13

� ' ��� R�+6S SYNCHRONIZE
. & � ��' �>(�� O HQP . & � ��' �>(��CO $ P . '�3 � ' ����O HQP U�.�" H %�2

14
15 while

+�� ' �>� �f	��5��
� '�3 � ��� � (��<�
�d�6R 2 do
16 wait-for

� & ����� % Remain idle until some event occurs
17 case

� & ���<� of
18
19

� ' ? ')E ���1��+)FG2 :
20 foreach HJI +>KMLNFG2�L � �6	����/	�������2 do '�3 � ' ����O HQP � �6	�����	������
21

� ' ���
R�+6S SYMMETRY
. & � ��' �>(��T. � �6	����/	�������U�.�+>KMLVFG2WL � �6	�����	�������2

22 � ��	�����	������X YK8LVF
23

� ' �>� � 	��5�X � ' �>� �f	��5��� � �6	�����	������
24
25

� � ��� & +6S SYMMETRY
.�_C.�FGU�.6b�2

:
26 if

+ & � ��' �)(d�CO $ P�� _�O $ P 2 and
+>b I � ' �>� � 	��5��2 then

27
� ' �>� �f	��5� � ' �>� �f	d�5� LVF

28
29

� � ��� & +6S SYNCHRONIZE
.�_ ` .�_ a .�FGU�.cb�2

:
30 if

+ & � ��' �)(d�CO $ P�� _/`�2
then

31 '�3 � ��� � (������Q��R� '�3 �
��� � (������Q�6R�� "Qb�%
32 if

+ & � ��' �)(d�CO b PWe _ a 2 then
33 & � ��' �)(��CO b P g_ a
34

	�� � ���6R O b P #_<a
35

� ' ��� R7+6S SYNCHRONIZE
. & � ��' �>(��CO b P . & � ��' �>(��CO $ P . '�3 � ' ����O b P U�.�"Qb�%�2

36 fi
37
38

� � ��� & +6S ESTIMATE
.�_ .�FGU�. b�2

39 & � ��' �)(��CO b P�� _�O b P
40 if

+>b�
I � ' �>� �f	��5�d2 then
41

� ' ��� R7+6S SYMMETRY
. & � ��' �)(��T.d� ' �>� � 	��5�dU�.�"Qb�%

42 elseif
+ & � ��' �)(��CO $ P�� _ O $ P 2 and

+ $ I FG2 then
43

� ' �>� �f	��5� � ' �>� �f	d�5��� F
44 '�3 � ��� � (������Q��R� YF
45

	�� � ���6R� #_
46 fi
47
48 esac
49 od

Figure 3. Agreement and synchronization phases for process
$

.

UBLCS-98-01 15

5 Partitionable Group Membership Service: Implementation

processes indicated in the message. Partial views are necessary whenever the installation of a
complete view would violate Property GM3(iii). This condition is checked by verifying whether
the current views of processes composing the new view intersect � . If they do, this could mean
that a process in the intersection has never installed one of the intersecting views, thus violating
Property GM3(iii). For this reason, the m-received view is broken in to a set of non-intersecting
partial views, each of them satisfying Property GM3(iii). If, on the other hand, current views do
not intersect, each process can install the new complete view as m-received from the coordinator.
Note that classification of views as being complete or partial is completely internal to the imple-
mentation. An application programmer using the provided service in unaware of the distinction
and deals with a single notion of view. Although each invocation of the agreement protocol ter-
minates with the installation of a new view, it is possible that the new view does not correspond
to the current set of processes perceived as being reachable, or that a new synchronization mes-
sage has been m-received during the previous ee-phase. In both cases a new agreement phase is
started.

In Appendix D, we give a proof that our algorithm satisfies the properties of PGMS. Here, we
discuss in high-level terms the techniques used by the algorithm in order to satisfy the specifi-
cation. Leaving out the more trivial properties such as View Completeness, View Integrity and
View Order, we focus our attention on View Coherency, View Accuracy and liveness of the solu-
tion. Property GM3 consists of three parts. GM3(iii) is satisfied through the installation of partial
views, as explained above. As for GM3(i) and GM3(ii), each process is eventually informed if
another process belonging to its current view has not installed it, or if it has changed views af-
ter having installed it, respectively. The process is kept informed either through a message, or
through an m-suspect event. In both cases, it reenters the agreement phase. As for liveness,
each invocation of the agreement protocol terminates with the installation of a new view, even in
situations where the reachability relation is highly unstable. This is guaranteed by the fact that
successive estimates of each process for the composition of the next view are monotone decreas-
ing sets. This is achieved through two actions. First, new m-suspect lists reported by MSL never
result in a process being added to the initial estimate. Second, processes exchange their estimates
with each other and remove those processes that have been removed by others. In this manner,
each process continues to reduce its estimate until it coincides exactly with those processes that
agree on the composition of the next view. In the limit, the estimate set will eventually reduce to
the process itself and a singleton view will be installed. This approach may seem in conflict with
View Accuracy: if process � m-receives from process � a message inviting it to remove a process
& , it cannot refuse it. But if � and & are permanently reachable, non-triviality properties of MSL
guarantee that after some time, � cannot remove & from its view estimate without removing �
as well. So, after some time, � cannot m-send a message to � inviting it to exclude & , because �
cannot belong to the current estimate of � . Furthermore, s-phase of view agreement constitutes a
“barrier” against the propagation of old “remove & ” messages. In this way, it is possible to show
that there is a time after which all views installed by � contain & .

A more detailed description of the VML algorithm can be found in Appendix B.

5.3 Discussion
The main property of our algorithm is that the agreement protocol is guaranteed to terminate
at correct processes, independent of the failure scenario. In particular, the algorithm has been
designed to tolerate any number of failures and repairs that occur before and during the execution
of the agreement protocol. This capability, however, implies degraded performance in case of
complex failure scenarios. To illustrate the point, recall that processes can be added to a view
estimate only at the beginning of an agreement phase. This implies that when a set of processes
initiate agreement towards a new view, this view may be already obsolete since some processes
may cease to be m-suspected in the meantime. This in turn implies that a new agreement phase
has to be started immediately after the termination of the current agreement one. Furthermore,

�
. This condition can be checked locally since current views of processes composing the new view are included in the

message from the coordinator.

UBLCS-98-01 16

5 Partitionable Group Membership Service: Implementation

1 procedure � ' �>� � 	��5� �	� ���/	��^���6[4��	 ' �<+�2
2

� � ' ��	�� ���6Rf ��������	�
% True when a new view is installed

3
@���� �>�)	�� ���Q� � ' �>� �f	��5�6[4��	 ' ��+�2

4
5 repeat
6 wait-for

� & ����� % Remain idle until some event occurs
7 case

� & ���<� of
8
9

� ' ? ')E ���1��+)FG2 :
10 foreach HJI +>KMLNFG2�L � �6	����/	������ do '�3 � ' ����O HQP � �6	�����	������
11

� ' ���
R�+6S SYMMETRY
. & � ��' �>(��T. � �6	����/	�������U�.�+>KMLVFG2WL � �6	�����	�������2

12
� ' ���
R�+6S ESTIMATE

.Q	�� � ���6R�.�� ' �>� � 	��5�dU�.�+>K8LNFG2TL � �6	����/	�������2
13 � ��	�����	������X YK8LVF
14 if

+�� ' �>� �f	��5� �BF
��
 2 then
15 � ��� R � ' �>� � 	��5�^+�� ' �>� � 	��5��� FG2
16
17

� � ��� & +6S SYMMETRY
.�_C.�FGU�.6b�2

:
18 if

+�	�� � ���6RWO $ P � _�O $ P or
	�� � ���6RWO b P
� _�O b P 2 and

+>b I � ' �>� �f	d�5��2 then
19 � ��� R � ' �>� � 	��5�^+�� ' �>� � 	��5��� FG2
20
21

� � ��� & +6S SYNCHRONIZE
.�_ ` .�_ a .�FGU�.cb�2

:
22 & � ��' �)(��CO b P #_<a
23 if

+�	�� � ���6RWO b PWe _<aQ2 and
+>b I � ' �>� �f	d�5��2 then

24 � ��� R � ' �>� � 	��5�^+�� ' �>� � 	��5��� FG2
25
26

� � ��� & +6S ESTIMATE
.�_ .�FGU�. b�2

:
27 if

+>b I � ' �>� �f	��5�d2 then
28 if

+ $
I FG2 and
+�	�� � ���6RWO $ P � _�O $ P or

	�� � ���6RWO b P
� _fO b P 2 then
29 � ���
R � ' �>� �f	��5��+�� ' �>� �f	��5� � FG2
30 elseif

+ $ I FG2 and
+�� HJI � ' �>� �f	��5� � F��
	�� � ����R O HQP�� _ O HdP 2 then

31 � ���
R � ' �>� �f	��5��+�� ' �>� �f	��5�DLVFG2
32 fi
33
34

� � ��� & +6S PROPOSE
.��CU�.�b�2

:
35

�1�����5O b P ��
36 if

+>b I � ' �>� �f	��5�d2 and � �<�6��� Z � � �����f���<�Q+��1����� 2 then
37

@�� ' ��	�� �c�������!+�:��<�>=1?
��@6AB+�2�.��1�����>2
38

� � ' ��	�� ���6R ��	�����
39 fi
40
41

� � ��� & +6S VIEW
.��G.�� U�.6b�2

:
42 if

+�� O $ P 0 � & �)���!0 �)R � � & �����!0 �)R�2 and
+>b I � ' �>� �f	��5�d262 then

43
@�� ' ��	�� �c�������!+��G.�� 2

44
� � ' ��	�� ���6R ��	�����

45 fi
46
47 esac
48 until

� � ' ��	�� ���6R
Figure 4. Estimate exchange phase for process

$
: Part (a).

UBLCS-98-01 17

6 Reliable Multicast Service: Specification

1 procedure
@��<� �>�)	�� ���Q� � ' �>� � 	��5�6[]�/	 ' �^+�2

2 � ��� R � ' �>� �f	��5�^+
 2
3
4 procedure � ��� R � ' �>� � 	��5�/+)FG2
5

� ' �>� � 	��5�! � ' �>� � 	��5� LNF
6

� ' ���
R +6S ESTIMATE
.�	�� � ���6R�.d� ' �>� � 	��5�dU�. � �6	�����	������ L "6$�%�2

7
� ' ���
R +6S PROPOSE

.�+�� & ����� .Q	�� � ����R7.�� ' �>� �f	��5�d26U�.�� � �T+�� ' �>� �f	d�5��262
8
9 function � ������� Z � � �����������d+�� 2
10 return

+��
b I � O $ P 0 � ' �>� � 	��5� � � O $ P 0 � ' �>� � 	��5� � � O b P 0 � ' �>� �f	��5��2
11 and

+�� b^. H I � O $ P 0 � ' �>� �f	��5� � � O $ P 0\	�� � ���6RWO HdP�� � O b P 0\	�� � ���6R�O HdP 2
12
13 procedure

@�� ' ��	�� �c������� +��G.�� 2
14

� ' ���
R +6S VIEW
.�� . � U�.�� O $ P 0 � ' �>� � 	��5� L "�$�%d2

15 if
+ � b^. HJI � O $ P 0 � ' �>� � 	��5� ��b I � O HQP 0\� & �����!0\��(�� E�� � O b P 0\� & �����!0 �)R
� � O HQP 0\� & �����X0��>R
2 then

16 & �����8 ,+�+��G. & �����!0 �)R/2�.C" H�� HJI � O $ P 0 � ' �>� �f	��5� � � O HdP 0\� & �����!0 �)R � � & �����!0 �)R<%D2
17 else
18 & �����8 ,+6+��G.��G2�. � O $ P 0 � ' �>� �f	��5�d2
19 generate & �����7+ & �����D2
20

� & �����8 9+�� .�� O $ P 0 � ' �>� �f	d�5��2
21 ' ��	������! 9+ & �����!0\��(�� E � � �6	����/	�������2 and

+��
b/. HJI � O $ P 0 � ' �>� � 	��5� � � O $ P 0\	�� � ���6RWO HQP�� 	�� � ���6R�O HQP 2
Figure 5. Estimate exchange phase for process

$
: Part (b).

the designated coordinator may change several times during an agreement due to some process
m-suspecting the coordinator. Every time the coordinator changes, each process has to m-send
its proposal to the new coordinator and wait for a reply. Finally, the installation of partial views,
needed to satisfy Property GM3, may cause further invocations of the agreement protocol.

Although many optimizations are possible (for example, we could add a sub-protocol to han-
dle the installation of a complete view after the installations of partial views without exiting ee-
phase and thus saving the costs of repeated executions of the agreement protocol), we argue that
in common failure scenarios the performance of our algorithm is reasonable. In particular, con-
sider the scenario in which a single process & crashes. Eventually, every process will m-suspect &
and enter s-phase. At the beginning of s-phase, each process m-sends a SYNCHRONIZE message
and waits for a reply. Then, each process m-sends a proposal to the designated coordinator, and
a ESTIMATE messages to every other process. In this scenario, ESTIMATE messages m-received
from others will be ignored since all processes have the same view estimate (current view minus
& , the crashed process). When the coordinator observes agreement on the m-received proposals,
it m-sends a VIEW message to all. Hence, four end-to-end message delays are in general sufficient
to exclude a crashed process from a view. The same delay analysis also characterizes partition
merges or partitionings that result in the formation of disjoint partitions.

6 Reliable Multicast Service: Specification
The class of partition-aware applications that can be programmed using group membership
alone is limited [6]. In general, network applications require closer cooperation that is facili-
tated through communication among group members. In this Section, we briefly illustrate how
the group membership service of Section 3 may constitute the basis of more complex group com-
munication services. The proposed extension is based on a reliable multicast service with view
synchrony semantics that governs the delivery of multicast messages with respect to installation
of views. After having introduced the reliable multicast specification, we illustrate how our so-
lution for PGMS may be easily extended in order to implement view synchrony.

Group members communicate through reliable multicasts by invoking the primitive � �	� � � �*% �
that attempts to deliver message % to each of the processes in the current view through a

��
 � � ���

UBLCS-98-01 18

6 Reliable Multicast Service: Specification

p
q
r

p
q
r

p
q

p
q

v
1

v
1

v
2

v
2

v
3

v
3 v

4

(a) (b)

p p

q

Figure 6. Merging scenarios. Ovals depict view compositions as sets of process names. Directed edges
depict immediate successor relations between views.

upcall. Multicast messages are labeled in order to be globally unique. To simplify the presen-
tation, we use ���� to denote the set of messages that have been delivered by process � in view
� .

Ideally, all correct processes belonging to a given view should deliver the same set of messages
in that view. In partitionable systems, this requirement could result in a multicast to block if at
least one process belonging to the view becomes unreachable before having had a chance to
deliver the message. In that case, the multicast would terminate only upon the repair of the
communication failures. Thus, we relax this condition on the delivery of messages as follows: a
process & may be exempt from delivering the same set of messages as some other correct process
� in a view � if & crashes or if it becomes unreachable from � . In other words, agreement on the
set of delivered messages in a view � is limited to those processes that survive a view change
from view � to the same next view.
RM1 (Message Agreement)Given two views � and � such that � is an immediate successor of � , all
processes belonging to both views deliver the same set of multicast messages in view � . Formally,

� � � � � &
 �
 � � � �� ��� �� �

The importance of Message Agreement can be better understood when considered together
the properties offered by the group membership service specified in Section 3. Given two per-
manently reachable processes, there is a time after which they install the same sequence of views
and deliver the same set of messages between every pair of successive views.

Note that Property RM1 places no restrictions on the set of messages delivered by a process &
that belonged to view � along with � but that subsequently ends up in a different partition and
is excluded from � . In this case, process & may or may not deliver some message % that was
delivered by � in view � . If, however, & indeed delivers message % , it must do it in the same view
� as � . This observation leads to the next property.
RM2 (Uniqueness)Each multicast message, if delivered at all, is delivered in exactly one view. Formally,

�*%
�� �� � � �*%
����� �	� ����� �

Properties RM1 and RM2 together define what has been called view synchrony in group com-
munication systems. In distributed application development, view synchrony is extremely valu-
able since it admits global reasoning using local information only: Process � knows that all other
processes surviving a view change along with it have delivered the same set of messages in the
same view as � itself. And if two processes share some global state in a view and this state de-
pends only on the set of delivered messages regardless of their order, then they will continue to
share the same state in the next view if they both survive the view change � .
�
. For applications where the shared state is sensitive to the order in which messages are delivered, specific order prop-

erties can be enforced by additional system layers.

UBLCS-98-01 19

6 Reliable Multicast Service: Specification

Unfortunately, the group communication service specified so far does not allow global rea-
soning based on local information in partitionable systems. Consider the scenario depicted in
Figure 6(a) where three processes ���)& � � have all installed view � � . At some point process �
crashes and � becomes temporarily unreachable from & . Process � reacts to both events by in-
stalling view � � containing only itself before merging back with & and installing view � � . Process
& , on other hand, reacts only to the crash of � and installs view � � excluding � . Suppose that
� and & share the same state in view � � and that � modifies its state during � � . When � and &
install � � , � knows immediately that their states may have diverged, while & cannot infer this fact
based on local information alone. Therefore, & could behave inconsistently with respect to � . In
an effort to avoid this situation, � could collaborate by sending & a warning message as soon as
it installs view � � , but & could perform inconsistent operations before receiving such a message.
The problem stems from the fact that views � � and � � , that merge to form view � � , have at least
one common member (�). The scenario of the above example can be easily generalized to any
run where two overlapping views merge to form a common view. We rule out these runs with
the following property.
RM3 (Merging Rule)Two views merging into a common view must have disjoint compositions. For-
mally,

� � ��� � � �
� ��� � � � �<:��� ��� �
 � � ���

The sequence of view installations in a run respecting this property is shown in Figure 6(b):
Before installing � � , process & has to first install view � � . Thus the two views that merge to form � �
have empty intersection. As a result, when � and & install view � � , they both knows immediately
that their states could have diverged during the partitioning. Note that Property RM3 may ap-
pear to be part of the group membership specification since it is concerned with view installations
alone. Nevertheless, we choose to include it as part of the reliable multicast service specification
since RM3 becomes relevant only in the context of multicast message deliveries. In other words,
applications that need no guarantees for multicast messages but rely on PGMS alone would not
be interested in RM3.

The next property places simple integrity requirements on delivery of messages to prevent
the same message from being delivered multiple times by the same process or a message from
being delivered “out of thin air” without first being multicast.
RM4 (Message Integrity) Each process delivers a message at most once and only if some process actually
multicast it earlier. Formally,

� ����� � �#� dlvr �'% �	� � dlvr �'% � :
 � ����� � ��� � 	 � � � ��� & � � �
�� � � �*& � �
 �#� mcast �'% � ���

Note that a specification consisting of Properties RM1–RM4 alone can be trivially satisfied by
not delivering any messages at all. We exclude such useless solutions by including the following
property.
RM5 (Liveness)
(i) A correct process always delivers its own multicast messages. Formally,

�
 Correct � + � � � ����� � � � mcast �'% ��� ��� �
 � � .� ����� ��
 �#� dlvr �*% � �
(ii) Let � be a correct process that delivers message % in view � that includes some other process & . If &
never delivers % , then � will eventually install a new view � as the immediate successor to � . Formally,

�
 Correct � + � � � ����� � �#� dlvr �'% � � &?
 � � view ����� � �#��� � dlvr �'% � :
�� � & � � � �
� �
 � � .� ����� �
 � � vchg � � �

The second part of Property RM5 is the liveness counterpart of Property RM1: If a process �
delivers a message % in view � containing some other process & , then either & also delivers % , or
� eventually excludes & from its current view.

UBLCS-98-01 20

7 Related Work and Discussion

Properties RM1–RM5 that define our Reliable Multicast Service can be combined with Proper-
ties GM1–GM5 of group membership to obtain what we call a Partitionable Group Communication
Service with view synchrony semantics. In Appendix C we show how our solution to PGMS can
be extended to satisfy this specification.

7 Related Work and Discussion
The process group paradigm has been the focus of extensive experimental work in recent years
and group communication services are gradually finding their way into systems for supporting
fault-tolerant distributed applications. Examples of experimental group communication services
include Isis [8], Transis [12], Totem [27], Newtop [16], Horus [34], Ensemble [20], Spread [2],
Moshe [4] and Jgroup [26]. There have also been several specifications for group membership
and group communication not related to any specific experimental system [29, 17, 30].

Despite this intense activity, the distributed systems community has yet to agree on a formal
definition of the group membership problem, especially for partitionable systems. The fact that
many attempts have been show to either admit trivial solutions or to exhibit undesirable behavior
is partially responsible for this situation [3]. Since the work of Anceaume et al., several other
group membership specifications have appeared [19, 17, 4].

Friedman and Van Renesse [19] give a specification for the Horus group communication sys-
tem that has many similarities to our proposal, particularly with respect to safety properties such
as View Coherency and Message Agreement. There are, however, important differences with
respect to non-triviality properties: The Horus specification is conditional on the outputs pro-
duced by a failure detector present in the system. This approach is also suggested by Anceaume
et al. [3] and adopted in the work of Neiger [29]. We feel that a specification for group member-
ship should be formulated based on properties of runs characterizing actual executions and not
in terms of suspicions that a failure detector produces. Otherwise, the validity of the specification
itself would be conditional on the properties of the failure detector producing the suspicions. For
example, referring to a failure that never suspects anyone or one that always suspects everyone
would lead to specifications that are useless. Thus, it is reasonable for the correctness of a group
membership service implementation, but not its specification, to rely on the properties of the failure
detector that it is based on.

Congress and Moshe [4] are two membership protocols that have been designed by the Transis
group. Congress provides a simple group membership protocol, while Moshe extends Congress
to provide a full group communication service. The specification of Moshe has many similarities
with our proposal and includes properties such as View Identifier Local Monotony, Self Inclusion and
View Synchrony, that can be compared to GM4, GM5 and RM1 of our proposal. Property RM5 is
implied by Properties Self Delivery and Termination of Delivery of Moshe. On the other hand, the
specification of Moshe does not guarantee Properties RM3 and RM4, thus undesirable scenarios
similar to those described in Section 6 are possible. The main differences between Moshe and
our proposal are with respect to non-triviality requirements. Moshe includes a property called
Agreement on Views that may be compared to our Properties GM1, GM2 and GM3. The Agreement
on Views property forces a set of processes, say i , to install the same sequence of views only
if there is a time after which every process in i (i) is correct, (ii) is mutually reachable from
all other processes in i , (iii) is mutually unreachable from all processes not in i , and (iv) is
not suspected by any process in i . As in our proposal, this requirement may be relaxed by
requiring that the condition hold only for a sufficiently long period of time, and not forever.
Despite these similarities, the non-triviality requirements of Moshe and our proposal have rather
different implications. For example, Moshe does not guarantee that two processes will install a
common sequence of views even if they are mutually and permanently reachable but there are
other processes in the system that become alternately reachable and unreachable from them. In
our proposal, however, processes that are mutually and permanently reachable always install the
same sequence of views, regardless of the state of the rest of the system. And this is desirable
since a common sequence of installed views which is the basis for consistent collaboration in our

UBLCS-98-01 21

8 Conclusions

partition-aware application development methodology.
Fekete et al. present a formal specification for a partitionable group communication ser-

vice [17]. In the same work, the service is used to construct an ordered broadcast application
and, in a subsequent work, to construct replicated data services [22]. The specification sepa-
rates safety requirements from performance and fault-tolerance requirements, which are shown
to hold in executions that stabilize to a situation where the failure status stops changing. The
basic premise of Fekete et al. is that existing specifications for partitionable group communica-
tion services are too complex, thus, unusable by application programmers. And they set out to
devise a much simpler formal specification, crafted to support the specific application they have
in mind. Quoting the authors:

Our specification VS does not describe all the potentially-useful properties of any
particular implementation. Rather, it includes only the properties that are needed for
the ordered-broadcast application.

Simple specifications for partitionable group communication are possible only if services
based on them are to support simple applications. Unfortunately, system services that are in-
deed useful for a wide range of applications are inherently more complex and do not admit
simple specifications. Our experience in developing actual realistic partition-aware applications
supports this claim [6].

The specification and implementation presented in this work form the basis of Jgroup [26], a
group-enhanced extension to the Java RMI distributed object model. Jgroup enables the creation
of object groups that collaborate using the facilities offered by our partitionable group communi-
cation service. Clients access an object group using the standard Java remote method invocation
semantics and remotely invoking its methods as if it were a single, non-replicated remote object.
The Jgroup system includes a dependable registry service, which itself is a partition-aware applica-
tion built using Jgroup services [25]. The dependable registry is a distributed object repository
used by object groups to advertise their services under a symbolic name (register operation), and
by clients to locate object groups by name (lookup operation). Each registry replica maintains
a database of bindings from symbolic group names to group object composition. Replicas are
kept consistent using group communication primitives offered by Jgroup. During a partitioning,
different replicas of the dependable registry may diverge. Register operations from within a par-
tition can be serviced as long as at least one replica is included inside the partition. A lookup, on
the other hand, will not be able to retrieve bindings that have been registered outside the current
partition. Nevertheless, all replicas contained within a given partition are kept consistent in the
sense that they maintain the same set of bindings and behave as a non-replicated object. When
partitions merge, a reconciliation protocol is executed to bring replicas that may have been up-
dated in different partitions back to a consistent state. This behavior of the dependable registry
is perfectly reasonable in a partitionable system where clients asking for remote services would
be interested only in servers running in the same partition as themselves.

8 Conclusions
Partition-aware applications are characterized by their ability to continue operating in multiple
concurrent partitions as long as they can reconfigure themselves consistently [6]. A group mem-
bership service provides the necessary properties so that this reconfiguration is possible and
applications can dynamically establish which services and at what performance levels they can
offer in each of the partitions. The primary partition version of group membership is not suit-
able for supporting partition-aware applications since progress would be limited to at most one
network partition. In this paper we have given a formal specification for a partitionable group
communication service that is suitable for supporting partition-aware applications. Our speci-
fication excludes trivial solutions and is free from undesirable behaviors exhibited by previous
attempts. Moreover, it requires services based on it to be live in the sense that view installations
and message deliveries cannot be delayed arbitrarily when conditions require them.

UBLCS-98-01 22

REFERENCES

We have shown that our specification can be implemented in any asynchronous distributed
system that admits a failure detector satisfying Strong Completeness and Eventual Strong Accuracy
properties. The correctness of the implementation depends solely on these abstract properties of
the failure detector and not on the operating characteristics of the system. Any practical failure
detector implementation presents a trade-off between accuracy and responsiveness to failures.
By increasing acceptable message delays after each false suspicion, accuracy can be improved
but responsiveness will suffer. In practice, to guarantee reasonable responsiveness, finite bounds
will have to be placed on acceptable message delays, perhaps established dynamically on a per
channel or per application basis. Doing so will guarantee that new views will be installed within
bounded delays after failures. This in turn may cause some reachable processes to be excluded
from installed views. Such processes, however, have to be either very slow themselves or have
very slow communication links, and thus, it is reasonable to exclude them from views until their
delays return to acceptable levels.

Each property included in our specification has been carefully studied and its contribution
evaluated. We have argued that excluding any one of the properties makes the resulting service
either trivial, or subject to undesirable behaviors, or less useful as a basis for developing large
classes of partition-aware applications. Specification of new system services is mostly a social
process and “proving” the usefulness of any of the included properties is impossible. The best
one can do is program a wide range of applications twice: once using a service with the proposed
property, and a second time without it, and compare their relative difficulty and complexity.
We have pursued this exercise for our specification by programming a set of practical partition-
aware applications [6]. In fact, the specification was developed by iterating the exercise after
modifying properties based on feedback from the development step. As additional empirical
evidence in support of our specification, we point to the Jgroup system based entirely on the
specification and implementation given in this paper. As discussed in Section 7, the dependable
registry service that is an integral part of Jgroup has been programmed using services offered
by Jgroup itself. Work is currently underway in using Jgroup to develop other partition-aware
financial applications and a partitionable distributed version of the Sun tuple space system called
Javaspaces.

References
[1] Y. Amir et al., “The Totem Single-Ring Ordering and Membership Protocol”, ACM Trans.

Computer Systems, Vol. 13, No. 4, Nov. 1995, pp. 311–342.
[2] Y. Amir and J. Stanton, “The Spread Wide-Aread Group Communication System”, tech.

report, Center of Networking and Distributed Systems, Johns Hopkins Univ., Baltimore,
Apr. 1998.

[3] E. Anceaume et al., “On the Formal Specification of Group Membership Services”, Tech.
Report TR95-1534, Computer Science Dept., Cornell Univ., Ithaca, N.Y., Aug. 1995.

[4] T. Anker et al., “Scalable Group Membership Services for Novel Applications”, Proc. DI-
MACS Workshop on Networks in Distributed Computing, American Math. Soc., 1998, pp. 23–42.

[5] Ö. Babaoğlu et al., “RELACS: A Communications Infrastructure for Constructing Reliable
Applications in Large-Scale Distributed Systems”, Proc. Hawaii Int’l Conf. System Sciences,
Maui, Hawaii, Jan. 1995, pp. 612–621.

[6] Ö. Babaoğlu et al., “System Support for Partition-Aware Network Applications”, Proc. Int’l
Conf. on Distributed Computing Systems, Amsterdam, May 1998, pp. 184–191.

[7] K. Birman, “The Process Group Approach to Reliable Distributed Computing”, Comm.
ACM, Vol. 36, No. 12, Dec. 1993, pp. 36–53.

[8] K. Birman and R. van Renesse, Reliable Distributed Computing with the ISIS Toolkit, IEEE
Computer Soc. Press, Los Alamitos, Calif., 1994.

[9] T. Chandra et al., “On the Impossibility of Group Membership”, Proc. ACM Symp. on Prin-
ciples of Distributed Computing, May 1996, pp. 322–330.

UBLCS-98-01 23

REFERENCES

[10] T.D. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Distributed Systems”,
Journal of the ACM, 43(1):225–267, Mar. 1996.

[11] D. Dolev et al., “Failure Detectors in Omission Failure Environments”, Proc. ACM Symp. on
Principles of Distributed Computing, Santa Barbara, Calif., Aug. 1997.

[12] D. Dolev and D. Malki. “The Transis Approach to High Availability Cluster Communica-
tion”, Comm. ACM, Vol. 39, No. 4, Apr. 1996.

[13] D. Dolev, D. Malki, and R. Strong, “An Asynchronous Membership Protocol that Tolerates
Partitions”, Tech. Report CS94-6, Inst. of Computer Science, The Hebrew Univ. of Jerusalem,
Mar. 1994.

[14] D. Dolev, D. Malki, and R. Strong, “A Framework for Partitionable Membership Service”,
Tech. Report CS95-4, Inst. of Computer Science, The Hebrew Univ. of Jerusalem, 1995.

[15] D. Dolev, D. Malki, and R. Strong, “A Framework for Partitionable Membership Service”,
Proc. ACM Symp. on Principles of Distributed Computing, May 1996.

[16] P.E. Ezhilchelvan, R.A. Macêdo, and S.K. Shrivastava, “Newtop: A Fault-Tolerant Group
Communication Protocol”, Proc. Int’l Conf. on Distributed Computing Systems, Vancouver,
BC, Canada, June 1995.

[17] A. Fekete, N. Lynch, and A. Shvartsman, “Specifying and Using a Partitionable Group
Communication Service”, Proc. ACM Symp. on Principles of Distributed Computing, Santa
Barbara, Calif., Aug. 1997.

[18] M.J. Fischer, N.A. Lynch, and M.S. Patterson, “Impossibility of Distributed Consensus with
one Faulty Process”, Journal of the ACM, Vol. 32, No. 2, Apr. 1985, pp. 374–382.

[19] R. Friedman and R. Van Renesse, “Strong and Weak Virtual Synchrony in Horus”, Tech.
Report TR95-1537, Dept. of Computer Science, Cornell Univ., Ithaca, N.Y., Mar. 1995.

[20] M. Hayden, The Ensenble System, doctoral dissertation, Computer Science Dept., Cornell
Univ., Ithaca, N.Y., Jan. 1998.

[21] F. Kaashoek and A. Tanenbaum, “Group Communication in the Amoeba Distributed Oper-
ating System”, Proc. IEEE Symp. on Reliable Distributed Systems, Arlington, Texas, May 1991,
pp. 222–230.

[22] R. Khazan, A. Fekete, and N. Lynch, “Multicast Group Communication as a Base for a
Load-Balancing Replicated Data Service”, Proc. Int’l Symp. on Distributed Computing, Andros,
Greece, Sep. 1998.

[23] C. Malloth, Conception and Implementation of a Toolkit for Building Fault-Tolerant Distributed
Applications in Large-Scale Networks, doctoral dissertation, Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland, 1996.

[24] C. Malloth and A. Schiper, “View Synchronous Communication in Large Scale Networks”,
Proc. Open Workshop of the ESPRIT Project Broadcast, Grenoble, France, July 1995.

[25] A. Montresor, “A Dependable Registry Service for the Jgroup Distributed Object Model”,
Proc. European Reasearch Seminar on Advances in Distributed Systems (ERSADS ’99), Madeira,
Portugal, Apr. 1999.

[26] A. Montresor, “The Jgroup Reliable Distributed Object Model”, Proc. IFIP Int’l Working Conf.
on Distributed Applications and Systems, Helsinki, Finland, June 1999.

[27] L. Moser et al., “Totem: A Fault-Tolerant Group Communication System”, Communications
of the ACM, Vol. 39, No. 4, Apr. 1996.

[28] L.E. Moser et al., “Extended Virtual Synchrony”, Proc. Int’l Conf. on Distributed Computing
Systems, Poznan, Poland, June 1994.

[29] G. Neiger, “A New Look at Membership Services”, Proc. ACM Symp. on Principles of Dis-
tributed Computing, May 1996.

[30] R. De Prisco et al., “A Dynamic View-Oriented Group Communication Service”, Proc. ACM
Symp. on Principles of Distributed Computing, June 1998.

[31] A. Ricciardi and K. Birman, “Using Process Groups to Implement Failure Detection in Asyn-
chronous Environments”, Proc. ACM Symp. on Principles of Distributed Computing, Aug. 1991,
pp. 341–352.

[32] A. Schiper and A. Ricciardi, “Virtually-synchronous Communication Based on a Weak Fail-
ure Suspector”, Proc. Int’l Symp. on Fault-Tolerant Computing, June 1993, pp. 534–543.

UBLCS-98-01 24

REFERENCES

[33] R. van Renesse et al., “The Horus System”, Reliable Distributed Computing with the Isis Toolkit,
K. Birman and R. van Renesse, ed., IEEE Computer Soc. Press, Los Alamitos, Calif., 1993,
pp. 133–147.

[34] R. van Renesse, K.P. Birman, and S. Maffeis, “Horus: A Flexible Group Communication
System”, Communications of the ACM, Vol. 39, No. 4, Apr. 1996, pp. 76–83.

UBLCS-98-01 25

A Multi-Send Layer: Specification and Implementation

Appendices

A Multi-Send Layer: Specification and Implementation
In this Appendix we give a formal specification for MSL and an algorithm satisfying it. Recall
that VML invokes the primitive ������� � �*% ��� � of MSL for m-sending a message % to a destination
set � . Messages are globally unique such that each message is m-sent at most once. MSL exports
events �	�
�	� � �'%(�)& � and �����
�����	��� ��� � up to VML for m-receiving a message % from process & and
for m-suspecting processes in the set � , respectively. Note that �����
�����	��� events are produced
spontaneously by MSL and are not solicited explicitly by VML.

Let � ����� � � denote the reachable set function defined as those processes that are not m-suspected
by � at

�
. In other words, &
 � ����� � � if and only if the last �����
�����	��� ��� � event generated at process

� by time
�

is such that &4:
�� . Properties of MSL that are needed by the group membership
algorithm are as follows.
Property A.1 (MSL Guarantees)The Multi-Send Layer (MSL) satisfies the following properties: (a) if
a process & is continuously unreachable from � , then eventually � will continuously m-suspect & ; (b) if
process & is continuously reachable from � , then eventually each process will m-suspect both or none of
� and & ; (c) each process m-receives a message at most once and only if some process actually m-sent it
earlier; (d) messages from the same sender are m-received in FIFO order; (e) a message that is m-sent by a
correct process is eventually m-received by all processes in the destination set that are not m-suspected; (f)
function � is perpetually reflexive; (g) function � is eventually symmetric. Formally,

��� � � � � � 8 �
 � � 8B& :
 � � 8 ����� �
�(:@ A &�� � � � � 8 �
 Correct � + ��
 � � 8 ��� � � � � � � � � � � � �
��� � � � � � 8 ����� � � @ A &�� � � � � 8 ��� � � � 8��? �
 � � � � � � � &
 � � � � � �
� � � � ����� � � � �	�
�	� � �*% � & �	� �	�
�	� � �'%(�)& � :
�� ����� � � � � 	 � � ������� � �'%(�����<�)��	 �5
 � �*& ��� 	 � � � �
��	 � � ����� � � �#� �	�
�	� � �'% � � & � � � ����� ��� �5� �	�
�	� � �'% � � & � � � � � ��� �

� �
 � � �
� �
 � � �
� � � �*& � �
 � �#� ������� � �*% �
� � � � � � & � �
� �#� ������� � �'%(��� � �
�*� � � ����� � � � ������� � �*% �
������& 	 � � � �
 � � "� �*& � �
 � � ��� � � � �*% � � � � & :
�� ����� �
 � � �
 + � �
 �
��� � �
 � ����� � �
�
� � ��� &?
 Correct ��+ � �=� ��� � 8 ��� ��� .&
�� ����� � � � � ��� � 8 ������� �
�� � & � � �

In Figure 7 we illustrate an algorithm for implementing MSL. Recall that our goal is simply
to prove the implementability of the specification and not be concerned about efficiency. Thus,
the algorithm uses a simple flooding strategy based on the forwarding of every received message
on each output channel. At each process � , MSL maintains a local state defined by the variables
�
�	� �	� �
�
 � , ����� , � � , � ��� and ���
 . �
�	� � � ���
 � is the set of processes that are believed to be reachable
through direct or indirect paths. This set is constructed from the outputs of the failure detector
modules, including remote ones, as they are learned through incoming messages. ����� is a vector
indexed by � , where ����� � &�� represents the number of messages m-sent by � to & ; it is used to
generate the sequence numbers associated to messages. � � , � ��� and ���
 are three vectors indexed
by � ; for every process &�
 � , � � � &�� is set of processes, � ��� � &�� is a vector (indexed by �) of sequence
numbers, while ���
 � &�� is a vector (indexed by �) of sets of messages. The variables � � , � ��� and
����
 may be seen as partitioned in two sections: the local section refers to process � (� � � ��� , � ��� � ���
and ����
 � ���); the remote section refers to all other processes (� � � &�� , � ��� � &�� and ���
 � &�� , for each
& :� �). Process � modifies its local section in response to local events (for example, a ������� �
request from PGMS, the receipt of a message from the network, or a change in the output of the
local failure detector module). In particular, � � � ��� records � ’s last reading of the failure detector;
� ��� � ��� � &�� is the sequence number of the last message from & m-received by � ; ���
 � ��� � &�� is the set
of messages m-sent by � to & for which � has not yet m-received an acknowledgement. For each
process & :��� , � � � &�� , � ��� � &�� and ���
 � &�� contain � ’s local perception of the corresponding variables
of & .

The algorithm is driven by recv � � events from below (network), ������� � events from above

UBLCS-98-01 26

A Multi-Send Layer: Specification and Implementation

1 thread
�;?/� �>� � ��� R

2 ' �6= ,+)-^.�0�0�0�.6-�2
% Sequence number array

3
	���� ,+6+)-/.�0�010�.�-�2�.�010�0�.�+)-^.�0�0�0�.�-�262

% Acknowledged messages
4

� ' � ,+W+
 .�0�0�0�.
 2�.�0�0�01.�+
 .�0�010�.
 2W2 % Messages to deliver
5 � R ,+
 .�0�0�0�.
 2 % Failure Detector readings
6 � ��	�����	������! #"�$�%

% Reachable processes (directly or indirectly)
7
8 while true do
9 wait-for

� & ����� % Remain idle until some event occurs
10 case

� & ���<� of
11
12 tick:
13 � R O $ P �� ` % Read the local failure detector output
14 foreach

b I K do send
+6Sc� ' �<.Q	����7. � R�U�.6b�2

15
16

� ' ��� R7+��
.�� 2 :
17 foreach

b I +�� � � �6	�����	�������2�L "6$�% do
18 ' �6=^O b P ' ��=^O b P � �
19

� ' �7O $ P O b P 9� ' �7O $ P O b P �*"^+ MSEND
.��
. ' �6=/O b P 2�%

20 od
21 if

+ $ I � 2 then generate
� � �6� & +��h.>$72

22
23 recv

+6S
	 .�� .�
GU62
:

24 foreach
b I KML "�$�% � : E�� (QA 	d�5�^+
	 O b P .��JO b P .�
 O b P 2 do

25
� ' �7O b P �	 O b P ; 	�����O b P �� O b P ; � R7O b P �
 O b P

26 if
+6+

SUSPECT
.��T.�� 2 I 	 O b P O $ P 2 and

+>b Ih� �6	�����	�������2 then
27

	�����O $ P O b P ��
28 generate

� ' ? ')E �6�1��+>KML + � �6	�����	������ L�� 262
29 generate

� ' ? ')E �6�1��+>KML � �6	�����	�������2
30 fi
31 foreach

+ +
MSEND

.��h.�� 2 I 	 O b P O $ P ��� � 	�����O $ P O b P ��� 2 do
32

	�����O $ P O b P ��
33 generate

� � �6� & +��h.6b�2
34 od
35

� ' �7O $ P O b P 9� ' �7O $ P O b P L "�+ MSEND
.�L .�� 2 � � e 	����7O $ P O b P %

36 od
37

F "6$�%
;
F�� �
 % Compute the transitive closure

38 while
+)F
� F�� 2

do % of reachability
39

F � gF
;
F �� a������ +>K8L � R7O b P 2

40 foreach
b�
I F��
+

SUSPECT
.�L .1L 2
I � ' � O $ P O b P do

41 ' �6=^O b P ' ��=^O b P � �
42

� ' �7O $ P O b P "�+
SUSPECT

. ' �6=�O b P .�FG2�%
43 od
44 if

+)F
� � �6	�����	�������2 then
45 generate

� ' ? ')E �6�1��+>KML
FG2
;

46 � ��	�����	������X gF
47
48 esac
49 od

Figure 7. Algorithm for implementing MSL using failure detector
� I �"!# .

UBLCS-98-01 27

A Multi-Send Layer: Specification and Implementation

(PGMS) and local tick events that are produced periodically. It exports ���
�	� � and �����
�����	��� events
to PGMS. At each tick event (lines 12-14), process � reads the output of the local failure detector
module as � � and sends a message containing the value of ���
 , � ��� and � � to all other processes.

When � receives a message with contents � � ���?����� (lines 23-46), it verifies whether, for each
process & , the data regarding & contained in the message are more recent than the ones saved in
the local variables ���
 � &�� , � ��� � &�� and � � � &�� . The check is done through the predefined function� �����	� � � � ��� . If so, � updates its local variables. If the set of messages sent by & to � as con-
tained in � includes tuples of the form � SUSPECT � � ��� � that have not yet been handled, then �
temporary m-suspects & and the processes in � by generating two �����
�����	��� events, the first one
m-suspecting the processes in � and the second one immediately removing the processes in �
from the list of m-suspected processes. Then, � copies the value � in � ��� � ��� � &�� , to indicate that the
messages m-sent by & before m-suspecting � can be discarded. The SUSPECT tuples addressed to
� by & are created to avoid persistent asymmetric scenarios. The set � is chosen so that it guaran-
tees property A.1(a). Then, � m-receives (in FIFO order) those messages that it has not yet done
so. Finally, � modifies ���
 � ��� by removing all messages that have been acknowledged by & . At
this point, � computes the transitive closure of the individual reachability sets. The resulting set
� contains all the processes reachable from � through a direct or an indirect path. Finally, � cre-
ates the SUSPECT tuples needed to guarantee the eventual symmetry of function � . If � differs
from � � � � � ���
 � , � generates the corresponding �����
�����	��� event and updates the set � � � � � ���
 � .

To complete the algorithm explanation, a request to m-send message % to destination set �
is handled in lines 16-21. For each & in the destination set � , the tuple � MSEND �)% �
� � is inserted
into ���
 � ��� � &�� so that it will be sent to all processes at the next tick event. The value � represents
the current sequence number. If � belongs to the destination set, then % is locally m-received.
The MSEND tag is used to distinguish between messages sent on behalf of the upper layer and
those sent internally which have SUSPECT tags.

We now prove that the algorithm of Figure 7 is correct. Since we need to refer to several pro-
cesses, we index variable names with process names they are local to (for example, �
�	� �	� ���
 ���).
Moreover, we denote variables as functions of time so as to refer to their value at a particular
time (for example, �
�	� �	� ���
 � � � � �).
Theorem A.1 (MSL Guarantees) The algorithm of Figure 7 satisfies MSL as specified in Property A.1.

PROOF.
(a) We must show that if a process & is continuously unreachable from � , then eventually � will
continuously m-suspect & . Let

�
and
 � � � �

be two sets of processes such that there is a time� �
after which the processes in
 are permanently unreachable from processes in

�
. We must

show that there is a time after which every event �����
�����	��� ��� � generated by correct process �
 �
are such that
6/ � . By Strong Completeness, there is a time

� �
after which every correct process

��
 �
will permanently suspect the processes in
 . It follows that every message � � � ��� ��� sent

by each �!
 �
after

� �
is such that
 / � � &�� . The proof is by induction on 7 � 7 . If 7 � 7 � 3

, after� �
the set � 	�� � ��� (and so �
�	� �	� �
�
 � �) is permanently equal to �)� 	 ; thus, the claim trivially holds.

If 7 � 7 � � , let
�
 denote the set ��& 7 &
 � � � � � 8 � � � �
 / � � � � &�� � � � 	 . If

� � �
 , then there is a
time after which � � � � � ���
 � �
�
 � � . If, on the other end,

�
�
 �
, none of the messages sent by

processes in
� � �
 after

� �
is received by processes in

�
 ; by Eventual Symmetry, there is a time� �
after which

�
 and

 ��
!� � � � �
 � are definitely unreachable. Since 7 �
 7 � 7 � 7 , the proof is
concluded by induction.

(b) Let & be a process always reachable from � after time
� �

; we must show that there is a time
after which given a process � , for each event �����
�����	��� ��� � generated by � , &
 � if and only if
�!
 � . Let

�
denote the set of processes such that there is a time

� �
after which every message

� � � ��� ��� sent by a process in
�

is such that & :
 � � ��� . By Eventual Strong Accuracy, at least � and
& belong to

�
. We claim that none of the processes not in

�
receives any message from processes

in
�

sent after
� �

. By contradiction, suppose a process � :
 �
receives a message � � ���?����� sent

by a process in
�

after
� �

. Thus, &!:
�� � ��� and � removes & from � ��� � ��� after
� �

. Since & cannot
be inserted again in � ��� � ��� , there is a time after which all messages � � ���?����� sent by � are such
that & :
 � � ��� , and thus ��
 �

, a contradiction. By the Eventual Symmetry and Fair Channels
properties,

�
and � � �

are permanently unreachable after
� �

. If � :
 �
, from (a) it follows that

UBLCS-98-01 28

A Multi-Send Layer: Specification and Implementation

there is a time after which every event �����
�����	��� ��� � generated by � is such that ��� &�
 � . If ��
 � ,
there are two possibilities. If � generates an event �����
����� ��� ��� � for & after

� �
due to a change in

�
�	� �	� �
�
 � � , � must contains also � (by �
�	� �	� �
�
 � � construction). If � generates a �����
�����	��� event
for & after

���
due to the receipt of a � SUSPECT � ����� � tuple, it is easy to see that ��� &
 � and so �

generates a ��� �
�����	��� event for both.
(c) We must show that a process generates a �	�
�	� � event for a message % at most once and

only if some process & actually m-sent it earlier to a set of processes containing � . Before gen-
erating a �	�
�	� � event for a message % m-sent by a process & , � checks that % has not been
delivered yet, by verifying that the sequence number of % immediately follows the value stored
in � ��� � � ��� � &�� ; since after the first ���
�	� � event, � ��� � � ��� � &�� is set equal to the sequence number of % ,
� generates a ���
�	� � event for % at most once. As regards the second part, � generates an event
�	�
�	� � �'%(�)& � at time

� �
only after executing an event ������� � �'%(� � � such that �$
 � , or after the

receipt of a message � � ����� ��� such that � MSEND � %(� � �
 � � &�� � ��� . The first case is trivial; in the
second case, there is a time

� � � � �
at which ����
 � � &�� � ��� contained � MSEND � %(� � � ; this implies that

& has executed an event ������� � �'%(� � � at time
� � � ���

such that ��
 � .
(d) We must show that messages from the same sender are m-received in FIFO order. Let %

be a message m-sent by a process & . When � has m-received % , it has set � ��� � � ��� � &�� equal to the
sequence number associated to it. By construction, all the messages from & m-received by � after
% have a sequence number greater than the number associated to % and thus, have been m-sent
after % .

(e) Let � be a correct process that m-sends at time
� �

a message % to a set of processes con-
taining & ; we must show that either (i) & will eventually generate a �	�
�	� � event for % , or (ii)
� will eventually generate a ��� �
�����	��� event for & . By contradiction, suppose the claim is false.
This implies that % will never be removed from ���
 � � ��� � &�� after

� �
. Let

�
denote the set of pro-

cesses that never receive a message � � � ��� ��� such that � MSEND �)% �
� ��
 � � ��� � &�� . By definition,
all processes not in

�
receive at least one message � � � ������� such that � MSEND � %(� � �
 � � ��� � &�� .

Since & never performs an ��� � � � event for % , & never generates an acknowledgement for % ,
and thus there is a time

� � � ���
after which all messages � � � ��� ��� sent by processes not in

�
,

� MSEND �)% �
� ��
 � � ��� � &�� holds. By the Fair Channels property, processes in
�

are permanently
unreachable from processes not in

�
after

� �
. By definition, � is not in

�
. There are two possibili-

ties: if &�
 � , by (a) it follows that there is a time after which every event �����
�����	��� ��� � generated
by � is such that &�
 � , a contradiction. Thus, suppose & :
 � . By hypothesis, � never m-suspects
& after having m-sent % . Thus, � never inserts a � SUSPECT �
�
 ��� � tuple in ���
 � � ��� � &�� such that
�
 � � . The proof continues by induction on � . If ��� 3

, & must m-receive % (a contradiction),
since & cannot receive a tuple SUSPECT with a value greater than � . Then, suppose � � 3

. This
implies that & cannot m-receive the message since its variable � ��� � � &�� � ��� is blocked on a value
�
 � � � 3 . There are two possibilities: the value �
 1 3 is associated either to a regular message
%
 , or to a tuple SUSPECT. In the first case, by inductive hypothesis & will m-receive %
 or �
will m-suspect & after having m-sent %
 (and thus & will m-receive a SUSPECT tuple with a value
greater than �
 163

); this implies that the value of � ��� � � &�� � ��� will eventually increase, a contra-
diction. In the second case, & will m-receive a SUSPECT tuple containing �
 1 3

, and the proof
terminates as in the previous case.

(f) We must show that no process generates �����
����� ��� events for itself. There are two cases
in which a process � generates a �����
����� ��� event: when a change occurs in the �
�	� �	� �
�
 � � set, in
which case � generates a �����
�����	��� event for the set � � �
�	� �	� ���
 � , which cannot contain � , or after
receiving a message � � ���?����� where � SUSPECT � ��� � ��
 � � &�� � ��� for some process & . Since & has
inserted the SUSPECT tuple in ���
 � &�� � ��� immediately after having excluded � from � � � � � ���
 � � and
� is equal to �
�	� � � ���
 � � , � does not contains � . So, � never generates a �����
�����	��� event for itself.

(g) Let � be a process that never generates a �����
�����	��� event for & after time
� �

; we must show
that there is a time after which & never generates a �����
�����	��� event for � . By contradiction, suppose
this is false. By the algorithm, there is a time

� � � � �
at which ���
 � � &�� � ��� contains a � SUSPECT �
� � � �

tuple not yet received by � . Let
�

be the set of processes � such that there is a time at which
� SUSPECT � � � � �
 ���
 � � ��� � &�� . If �<
 �

, then � eventually generates a �����
�����	��� event for & after
� �

as a result of the receipt of � SUSPECT � � � � � . If, on the other end, � :
 � , since the sets
�

and � � �

UBLCS-98-01 29

B View Management Layer: Detailed Description

are permanently unreachable and &�
 � , from (a) it follows that � generates a �����
�����	��� event for
& after time

���
.

B View Management Layer: Detailed Description
In this Appendix we present a detailed description of VML illustrated in Figures 2–5.

B.1 Variables and Messages
The local state of each process � is defined by the global variables � � ��� , � � � ��� , �
�	� � � ���
 � , � ��� � � � � ,
�
 �
� � � , ��� � � � � � � , ��� ������� , ��� ���
 � and ��� �
 . Variable � � ��� is composed of the fields � � ��� � � � and
� � ��� � � � � � that represent, respectively, the identifier and the composition of the last view passed
up to the application. Variable � � � ��� has the same fields as � � ��� , but contains the complete view
that has been m-received with the last VIEW message. When the current view of � is a complete
view, � � ��� and � � � ��� are equal. �
�	� �	� �
�
 � corresponds to the set of processes perceived to be
reachable (i.e., not m-suspected by MSL). During idle phase, �
�	� � � ���
 � and � � ��� � � � � � coincide.
A new agreement phase is started whenever � � � � � ���
 � changes due to a ��� �
�����	��� event, or when
�
�	� �	� �
�
 � is different from the composition of the last installed view. � ��� � � � � is an array indexed
by � ; for each &?
 � , � ��� � � � � � &�� contains the last version number of & known by � . � ��� � � � � � ��� is the
current version number of � . Version numbers are generated by processes whenever they enter a
new agreement phase. When a process enters ee-phase, it creates a new array of version numbers,
called �
 �
� � � . While � ��� � � � � can continually change during an ee-phase, �
 �
� � � is fixed and is
used to identify the messages related to this particular ee-phase. ����� � � � � � is a set of processes
and represents the proposal for the composition of the next view. ��� ������� is an array indexed
by � ; for each &4
 � , ��� ��������� &�� contains the last value stored in variable �
�	� �	� �
�
 � such that
& :
 �
�	� �	� ���
 � . This information, communicated by � to & through SYNCHRONIZE messages, is
used by the algorithm to satisfy Property GM1. � � ���
 � is a boolean variable indicating whether
the last installed view corresponds to the approximation of reachability supplied by the MSL,
or the process has to enter agreement phase again. ��� �
 is the coordinator table and contains all
information needed by a process when it assumes the role of coordinator. In particular, ��� �
 is an
array of records indexed by � , where each record contains the entries � � � ��� , �
 �
� � � and ����� � � � � � .
For each & , ��� �
 � &�� represent � ’s perception of the value of those variables at process & . Finally,
there are three variables that have only local scope: � ������� is used with the wait-for construct and
contains the last event that occurred at � ; ��� � � � � � � ��� � � is used in the s-phase and contains the
set of processes from which � has m-received an answer to its synchronize request;

� ����� �

 � � is
a boolean variable used in procedure 	 � � � � � � �
	�� �	� � �
 �

 � ����� ��� , whose value become true when
the agreement protocol can terminate.

All messages that are m-sent contain a tag indicating the message type plus other fields rel-
evant for that type. Five message types are used by the algorithm. � SYNCHRONIZE ��� � �
� � �����
messages are used during the s-phase. Fields � � and � � represent the version numbers of the
sender and the destination as known by the sender at the time of m-sending, and � represents
the last ��� ������� associated to the destination process. When a process enters s-phase, it m-sends
a SYNCHRONIZE message to each reachable process, that respond with another SYNCHRONIZE
message. � SYMMETRY �
� � ��� messages are used in both s- and ee-phases to handle situations
where approximations of reachability obtained by the MSL are temporarily asymmetric. Here, �
is a version number array, while � is the approximation of the set of reachable processes known
by � at the time of m-sending. � ESTIMATE ���#����� , � PROPOSE �1i � and � VIEW � ��� + � messages are
used during the ee-phase. A ESTIMATE message is m-sent to processes belonging to the current
estimate whenever this estimate changes. Once again, � is a version number array, while � is the
set of processes in the current estimate of the sender. PROPOSE messages are m-sent by the pro-
cesses to the coordinator each time the next view estimate changes; the field i contains the status
of the sender, that corresponds to a ��� �
 entry. Finally, VIEW messages are m-sent by the coordi-
nator to processes when agreement is reached; field � is the the new complete view identifier,
while + is the value of the coordinator table when agreement has been reached and contains the

UBLCS-98-01 30

B View Management Layer: Detailed Description

composition of the view and other information used to construct partial views (if necessary). We
say that a process accepts an m-received message if it modifies its status according to the contents
of the message.

B.2 Algorithm Description
Instead of giving an exhaustive description of the entire algorithm, we illustrate some of its pe-
culiarities in order to simplify the understanding of the overall structure. Figure 2 contains the
main body of the algorithm. During the first part of procedure � � ����� � � �
 ��� ��� � � � , process �
initializes some variables and installs a view containing only itself. In this way, every process
can independently create its initial view without having to reach agreement with any other pro-
cess. This view will last until the first �����
�����	��� event that occurs. Variables � � ��� and � � � ��� are
updated in order to simulate the m-receipt of a VIEW message generated by � itself.

� � � ������� � ���
is a predefined function used to create new identifiers. After initialization, the process remains
idle until an even occurs causing it to enter agreement phase.

There are two conditions under which a process enters agreement phase: the execution of a
��� �
�����	��� ��� � event, or the m-receipt of a SYNCHRONIZE message. The second case is straightfor-
ward: � enters agreement phase if the message is not obsolete and the sender is believed reachable
(remember that a process may m-receive messages from unreachable processes due to fact that
MSL guarantees only eventual, and not perpetual, symmetry between processes). As for the first
case, the code associated with this event must be described carefully, since it is related both to the
agreement protocol termination and to View Accuracy. Furthermore, similar code is repeated in
other parts of the algorithm. First of all, � updates the ��� ������� array entries of all processes that
have become reachable since the previous �����
�����	��� event and m-sends a SYMMETRY message to
them. The aim of this code is to reestablish symmetry on view estimates whenever the approxi-
mation obtained by the MSL is temporarily asymmetric. To see this point, consider the following
scenario. Let & be a process engaged in agreement phase, waiting for agreement to be reached
with � . Suppose � temporarily m-suspects & before the agreement can be reached. As we noted in
the introduction, � removes & from its view estimate and the exclusion is permanent during this
agreement phase. Note that � may reinsert & into the view estimate in the next view agreement.
Process & , however, cannot participate in the new agreement phase of � until it has terminated
its previous agreement phase in order to prevent propagation of obsolete exclusions. Thus, &
cannot install a new view, since it waits forever for the participation of � in its current agreement
phase. The SYMMETRY message forces & to remove � from its view estimate and allows & to reach
an agreement on a new view. Furthermore, note that each SYMMETRY message carries also a set
of processes corresponding to the value of variable �
�	� �	� �
�
 � of the sender. This set is necessary
to satisfy Property GM1: when a process m-receives a SYMMETRY message, it excludes from its
view estimate all processes believed reachable by the sender. In this manner, if � m-receives a
SYMMETRY message from & , and & and � are permanently reachable, � removes � as well and it
will not m-send a ESTIMATE message to � inviting it to remove & . The value �
�	� � � ���
 � is stored
in array ��� ������� to be used in the same way with SYNCHRONIZE messages. After these steps, �
updates variable �
�	� �	� �
�
 � and calls procedure �
 �
� ��� �����
 � ����� � � .

Procedure �
 �
� ��� �����
 � ����� � � , illustrated in Figure 3, implements the agreement phase. After
having initialized the next view estimate and having generated a new version number, process �
calls procedure � � � �	�
� � � ��� � � � � �
 � � ��� � � and then 	 ��� � � � � ��	�� �	� � �
 ��
 � ����� ��� . These actions are re-
peated until the current view is “stable” meaning that the view composition coincides with the set
of reachable processes and no new agreements have been initiated (see procedure ������� �

 � � ��� � �
for details).

As the first step in procedure � � � � � � � � ��� � � � � �
 � ����� ��� , process � initializes variable ��� � � � � � � ��� � �
(which contains processes that know � ’s new version number) to be equal to the singleton set
�)��	 , and m-sends SYNCHRONIZE messages announcing its new version number. Note that if
� has entered s-phase due to a SYNCHRONIZE message % from a process & , the message m-
sent by � acts also as a reply to % . S-phase lasts until all processes in the view estimate have
replied to the SYNCHRONIZE message of � , or when � m-receives a message from a process in
its view estimate that has already entered ee-phase. In the while loop, this condition is en-

UBLCS-98-01 31

C Reliable Multicast Service: Implementation

coded as ��� � � � � � � ��� � � :/ ����� � � � � � . To guarantee the termination of this phase, every time �
m-suspects a process & , or m-receives a SYMMETRY message from & , � removes & from its view
estimate. This exclusion cannot be revoked during the current view. On the contrary, when �
m-receives a SYNCHRONIZE message containing its last version number from a process & , it adds
& to ��� � � � � � � ��� � � . In this manner, ��� � �	�
� � � ��� � � will eventually contain ����� � � � � � . Another method
for � to enter ee-phase is to m-receive a message � ESTIMATE �
� � ��� from a process & that knows
� ’s current version number and has not be removed from � ’s view estimate. If so, � modifies
��� � �	�
� � � ��� � � and ����� � � � � � in order to guarantee the exit from the s-phase. In any case, during the
s-phase � constructs the version number array �
 �
� � � , that will be used in the ee-phase to discard
obsolete messages.

Figure 5 illustrates the three procedures used during ee-phase. Procedure � ��� � 	 ��� � � � � � ��� � is
used to modify the view estimate and to inform the other processes of the change. At the same
time, during this procedure � m-sends a PROPOSE message carrying its current status to a coor-
dinator selected from its view estimate through function � � � ��� . Function � ���	��� �
 �
� ��� ��� � � + � is
used when a process m-receives PROPOSE messages. It verifies whether the proposals stored in
the coordinator table are in agreement, by checking if all of the view estimates are equal and if
all processes know the same version number arrays (restricted to processes in the view estimate
itself). Finally, procedure ����� � �

 � � ��� is used to install a new view. First of all, � forwards a VIEW
message containing the new complete view identifier � and the coordinator table + to all pro-
cesses with which have reached the agreement. This operation is necessary, since the coordinator
may crash before m-sending the VIEW message to all its recipients. Then, � checks whether a par-
tial view is needed or not. Suppose there exists a process & whose last view � contains a process
� , but the last view installed by � is different from � . If � installed the complete view, this would
violate Property GM3. For this reason, the complete view is split into a set of partial views. Each
partial view is composed of the set of processes that have m-received the same previous complete
view, and is identified through a pair � �?� � � composed of the identifiers of the new complete view
and the previous view. Note that all processes in each partial view compute, starting from + , the
same identifier and composition. Otherwise, if there is no need of partial views, � will install the
complete view, identified by the pair � ����� � , where � means that � is a complete view.

Finally, Figure 4 contains the main body of the ee-phase. During the ee-phase initialization
(procedure ��� � � � �
 ��� ��	 ��� � � � � ��
 � � ��� ���), � calls procedure � ��� � 	 ��� � � � � � ��� in order to guarantee
the m-sending of at least one ESTIMATE and one PROPOSE message. Then, � enters a loop from
which it will exit only when

� ����� �

 � � becomes true. During the ee-phase, processes exchanges
ESTIMATE messages to promote the reaching of an agreement. A message � ESTIMATE ���#����� is
accepted if, for each � in the intersection between the estimate of � and the estimate of & , the
version number �
 � � � � � ��� known by � is equal to � � ��� known by & . This check is needed to
guarantee that � never accepts a ESTIMATE message containing an estimate generated before the
start of the previous s-phase that could cause exclusion of reachable processes. If the message
is accepted, � calls procedure � ��� � 	 ��� � � � � � � � , removing processes not in � . Note that in case
�;:
 � , the ESTIMATE message is interpreted as a SYMMETRY message. Apart from ESTIMATE and
SYMMETRY messages and direct ��� �
�����	��� ��� events, during ee-phase a process � may exclude a
process from its view estimate also through SYNCHRONIZE messages. When a process m-receives
a message � SYNCHRONIZE �
� � �
� � � ��� from a process & such that � � is greater than �
 �
� � � � &�� , � is
informed that & has completed the agreement phase identified by �
 �
� � � � &�� and has installed a
new view. There are two possibilities: � does not belong to the view installed by & , and thus � can
exclude & from its view estimate; or � belongs to the view installed by & , but the VIEW message
m-sent by & to � has been lost (by the FIFO order condition of MSL). This is another good reason
for � to exclude & from its view estimate. In order to not violate View Accuracy, � removes all
processes contained in � .

UBLCS-98-01 32

C Reliable Multicast Service: Implementation

1
�f��	 ' ��+��*2 :

2
R/� &�� +�� 2

3
�1?�� � � ,�1?�� � � � " �;%

4
� ' ���
R�+6S MULTICAST

. & �����!0 �)R .�� U�. & �)���!0\��(d� E L "6$�%�2
5
6

� � ��� & +6S MULTICAST
.�� . � U�.6b�2

:
7 if

+ & �����!0 �)R � �X2
then

8
R�� &�� +�� 2

9
�1?�� � � �1?��X� � �*" � %

10 fi

Figure 8. Reliable multicast service extension to idle phase and s-phases for process
$

.

C Reliable Multicast Service: Implementation
In this Appendix we show how to extend our solution for PGMS to provide the reliable multicast
service specified in Section 6. Both the idle and the agreement phases of the algorithm have to be
modified: The idle phase must handle mcast ��� events, while the agreement function must verify
that Property RM1 is satisfied before declaring agreement has been reached. Figures 8, 9 and 10
contain the changes to the original algorithm of Section 5.1. The code of Figure 8 contains two
new event handling procedures that have to be inserted in the case statement of both the idle
phase (Figure 2) and the s-phase (Figure 3). The code of Figure 9 contains three new event han-
dling procedures that have to be added to the case statement of the ee-phase (Figure 4). Finally,
the code in Figure 10 substitutes the corresponding functions of Figure 5 used during ee-phase.

We introduce two new global variables that are used to implement view synchrony. The first,
called ����� ��� , contains the set of messages delivered by the process during its current view and is
used to allow the coordinator to verify agreement on messages. The second is called � �
������� � � �
and contains a set of pairs � � � % � , where % is a message whose delivery cannot be performed in
the current view, but has to be postponed to view � in order to satisfy Property RM1. If � is equal
to the special value � , then % has to be postponed to the next view. Both sets are initialized to
be empty. Furthermore, two new message types are needed. A � MULTICAST � � �)% � message is
used to inform the other processes that % has to be delivered during view � ; a � DELIVERED � � � � �
is used to inform that during � , the sender has delivered the set of messages contained in � .
MULTICAST messages are accepted only during idle phase or s-phase, while DELIVERED messages
are accepted only during an ee-phase. DELIVERED messages are needed to allow processes to
reach agreement on the set of messages to be delivered during the last installed view.

Some changes are needed also for existing variables and messages. Variable ��� �
 , the coordi-
nator table describing the current status of each process participating in an agreement is extended
to contain a field called ����� ��� to be used for agreement on the set of delivered messages. For the
same reason, PROPOSE messages must contain the ����� ��� field as well.

Whenever a process � wants to multicast a message % , it invokes the primitive � � � ��� �'% � .
The actions of the algorithm are different depending to the current phase. Let � be the current
view of process � . During idle and s-phases (Figure 8), � m-sends a � MULTICAST � � � % � message
to all processes in � (excluding � itself); then, � locally delivers the message and adds it to ����� ��� .
If the multicast request occurs in the ee-phase that was started during view � (Figure 9), the
pair � � �)% � is added to ���
������� � � � , where the place holder � means that % has to be multicast at
the beginning of the next view. We use variable ���
������� � � � to avoid that a process delivers new
messages during ee-phase after having m-sent a PROPOSE message that can lead to an agreement.
Otherwise, let � be the current view of � and suppose � delivers a message % during ee-phase
and then m-receives a VIEW message from a process &
 � that has installed the next view � but
that has not delivered % . If � installs the view, then � and & will not have delivered the same set
of messages during � ; otherwise, by GM3, & must install a new view excluding � . Obviously, this
may violate GM1 if � and & are permanently reachable.

The behavior of the algorithm depends on the current phase even when a process m-receives

UBLCS-98-01 33

D Partitionable Group Membership Algorithm: Correctness Proof

1
�f��	 ' ��+��*2 :

2 ' ? ')E ��� R��6R� ' ? ')E ��� R��6R � "�+ � . � 2�%
3
4

� � ��� & +6S MULTICAST
.�� . � U�.6b�2

:
5 ' ? ')E ��� R��6R� ' ? ')E ��� R��6R � "�+�� .��*2�%
6
7

� � ��� & +6S DELIVERED
. �G.��JU�.6b�2

:
8 if

+ & �����!0 �)R � �X2
and

+>b I � ' �>� �f	��5�d2 then
9 foreach

+�� I � L8�1?��X� � 2 do
10

R�� &�� +��*2
11

� ' ��� R7+6S DELIVERED
. & �)���!0 �)R7.�� LM�1?�� � � U62

12
�1?�� � � �1?��X� � ���

13
� ' ��� R7+6S PROPOSE

.�+�� & �����X.Q	�� � ���6R .d� ' �>� � 	��5��.Q�1?��X� � 26U�.��;� ��+�� ' �>� �f	d�5��262
14 fi

Figure 9. Reliable multicast service extension to ee-phase for process
$

: part (a).

a � MULTICAST � ���)% � message. Let � be the current view of � . If the message is m-received during
the idle phase or the s-phase (Figure 8), � delivers the message and adds it to ����� ��� if and only if
� is equal to � . If the message is m-received during ee-phase (Figure 9), the pair �
��� % � is inserted
in ���
������� � � � , because the MULTICAST message may have been generated by a process & that has
already installed the next view.

Finally, a few changes are necessary in other parts of the ee-phase. During the ee-phase ini-
tialization (procedure ��� � � � �
 ��� �
	 � � � � � � �

 � ����� ���), each process m-sends a � DELIVERED ��� � � � mes-
sage to processes in its view estimate, where � is equal to ����� ��� . When a process m-receives a
DELIVERED message from a process not excluded from its view estimate (Figure 9), it delivers
all undelivered messages contained in � and adds them to ����� ��� . Moreover, it m-sends a new
� DELIVERED � �
 � � � message, where �
 contains the subset of messages not yet delivered before
the receiving of � . This additional message is necessary since � could accept DELIVERED mes-
sages from processes included in its current view estimate, but excluded from the estimate of
other processes participating in the agreement. Finally, process � m-sends a PROPOSE message to
the current coordinator. Function � ���	��� �
 �
� ��� ��� � � � (Figure 10) will return true only if all pro-
cesses that will survive from a view in the next one (partial or complete) have delivered the same
set of messages. Finally, after having installed the new view � , function ������� �

 � � ��� � � (Figure 10)
must deliver all message whose delivery in the previous view had to be postponed.

Property RM1 is guaranteed by the fact that during ee-phase, each process can deliver only
messages previously delivered by processes in the current view estimate. Moreover, agreement
on a new view may be observed only when the proposals m-sent by processes surviving from a
view to the same successor view contain the same set of messages. Property RM2 is guaranteed
by the fact that each message is associated the view in which it must be delivered. Property RM3
is guaranteed by the creation of partial views. Property RM4 is straightforward, while Prop-
erty RM5 follows from the liveness condition of MSL and from GM3.

Once again, the aim of the algorithm we have presented is to show the implementability of
our specifications. Many possible optimizations have been neglected for sake of simplicity. For
example, acknowledgement information can be piggybacked in mcast messages to decrease the
size of ����� ��� .

D Partitionable Group Membership Algorithm: Correctness Proof
In this Appendix we illustrate the correctness of the PGMS algorithm presented in Section 5. As
in Appendix A, variable names are indexed with process names. Furthermore, we refer to the
s-phase (ee-phase) of a view � to denote the s-phase (ee-phase, respectively) started during view
� . Finally, we say that a message � VIEW � ��� + � contains a view � if � is either equal to � or � is a

UBLCS-98-01 34

D Partitionable Group Membership Algorithm: Correctness Proof

1 procedure
@��<� �>�)	�� ���Q� � ' �>� � 	��5�6[]�/	 ' �^+�2

2 � ��� R � ' �>� �f	��5�^+
 2
3

� ' ���
R +6S DELIVERED
. & �����!0 �)R
.d�1?��X� � U62

4
5 procedure � ��� R � ' �>� � 	��5�/+)FG2
6

� ' �>� � 	��5�! � ' �>� � 	��5� LNF
7

� ' ���
R +6S ESTIMATE
.�	�� � ���6R�.d� ' �>� � 	��5�dU�. � �6	�����	������ L "6$�%�2

8
� ' ���
R +6S PROPOSE

.�+�� & ����� .Q	�� � ����R7.�� ' �>� �f	��5��.Q�1?�� � � 26U�.��;� ��+�� ' �>� � 	��5�d262
9
10 function � ������� Z � � �����������d+�� 2
11 return

+��
b I � O $ P 0 � ' �>� � 	��5� � � O $ P 0 � ' �>� � 	��5� � � O b P 0 � ' �>� �f	��5� � � O $ P 0 �1?�� � � � � O b P 0\�1?��X� � 2
12 and

+�� b^. H I � O $ P 0 � ' �>� �f	��5� � � O $ P 0\	�� � ���6RWO HdP�� � O b P 0\	�� � ���6R�O HdP 2
13
14 procedure

@�� ' ��	�� �c������� +��G.�� 2
15

� ' ���
R +6S VIEW
.�� . � U�.�� O $ P 0 � ' �>� � 	��5� L "�$�%d2

16 if
+ � b^. HJI � O $ P 0 � ' �>� � 	��5� ��b I � O HQP 0\� & �����!0\��(�� E�� � O b P 0\� & �����!0 �)R
� � O HQP 0\� & �����X0��>R
2 then

17 & �����8 ,+�+��G. & �����!0 �)R/2�.C" H�� HJI � O $ P 0 � ' �>� �f	��5� � � O HdP 0\� & �����!0 �)R � � & �����!0 �)R<%D2
18 else
19 & �����8 ,+6+��G.��G2�. � O $ P 0 � ' �>� �f	��5�d2
20 generate & �����7+ & �����D2
21

� & �����8 9+�� .�� O $ P 0 � ' �>� �f	d�5��2
22 ' ��	������! 9+ & �����!0\��(�� E � � �6	����/	�������2 and

+��
b/. HJI � O $ P 0 � ' �>� � 	��5� � � O $ P 0\	�� � ���6RWO HQP�� 	�� � ���6R�O HQP 2
23

�1?�� � � " � � + � . �*2 Ih' ? '�E ���
R��6R��;+ & �����!0 �)R .�� 2 I
' ? ')E ���
R��6R7%
24 foreach

� I �1?�� � � do
25

R�� &�� +�� 2
26 foreach

+ � . �*2 Ih' ? '�E ���
R��6R do
27

� ' ��� R�+6S MULTICAST
. & �����!0 �)R .�� U�. & �����!0\��(�� E L "�$�%d2

28 ' ? ')E ��� R��6R �

Figure 10. Reliable multicast service extension to ee-phase for process

$
: part (b).

partial view obtained from � and + .
First of all, we must prove that any correct process that invokes the agreement protocol will

eventually install a new view. This termination property is fundamental, since will be used in
the proofs of Properties GM1, GM2 and GM3. The proof is divided in two parts: (i) if a correct
process enters s-phase of a view � , it will eventually enter ee-phase of � itself; (ii) if a correct
process enters ee-phase of a view � , it will eventually install a view after � . Since the second part
is needed in the proof of the first one, we first prove (ii) and then (i).

Lemma D.1 The number of PROPOSE messages m-sent by a process during a view is bounded.
PROOF. Apart from the PROPOSE message m-sent by � immediately after entering ee-phase

of a view, a process m-sends a PROPOSE message only when it modifies its variable ����� � � � � � . By
construction, no process may be added to ����� � � � � � during a view after its initialization. Since the
starting cardinality is bounded, the number of PROPOSE messages m-sent by a process during a
view is bounded as well.

Lemma D.2 If a correct process � enters ee-phase of a view � , then � will eventually install a new view
after � .

PROOF. By contradiction, suppose � installs a bounded number of views and � is the last view
installed by � . Let � � denote the value of �
� � ��� 	�� when � entered ee-phase of � . By Lemma D.1,
the number of different PROPOSE messages m-sent by � during � is bounded. Let � PROPOSE ��� � � be
the last PROPOSE message m-sent by � (such message exists, since � m-sends at least one PROPOSE
message at the beginning of the ee-phase). Let � � denote the set � ��� ����� � � � � � . By Property A.1(f)
and since only m-suspected processes may be removed from variable ����� � � � � � , � � is not empty.
Since no process in � � can be m-suspected from � during � , by Property A.1(a) every process in

UBLCS-98-01 35

D Partitionable Group Membership Algorithm: Correctness Proof

� � is correct; moreover, every message m-sent by � during � to a process in � � will eventually be
m-received.

For each process �
 � � , the version number � � � ��� is generated at the beginning of the s-phase
of a view � � . First of all, we must prove that:

Claim: Each process ��
 � � will eventually enter ee-phase during � � .
By contradiction, suppose the claim is false. Thus, � is blocked in s-phase of � � . At the beginning
of ee-phase of view � , � has m-sent to � a message � ESTIMATE �
� � � � � . When � m-receives it, there
are two possibilities:

– If � has excluded � from its view estimate, it m-sends a SYMMETRY message to � containing
� � � ��� ; by Property A.1(g) and (e), � will eventually m-receive such a message and exclude �
from its view estimate, a contradiction.

– Otherwise, � accepts the ESTIMATE message and enters ee-phase. This concludes the claim.
The next step consists on showing that all processes in � � are blocked in ee-phase:
Claim: Each process ��
 � � is blocked in the ee-phase of its view � � .

By contradiction, suppose the claim is false. Thus, � installs another view after � � . Note that �
cannot m-receive a SYNCHRONIZE or a SYMMETRY message from � containing a version number
array � such that � � ��� � � � � ��� ; otherwise, � would exclude � from its view estimate, a contra-
diction. By Property A.1(g), there is a time

� �
after which � stops m-suspecting � . There are two

possibilities:
– If � installs an unbounded number of views, � will m-receive an unbounded number of

different SYNCHRONIZE messages containing increasing version numbers for � , a contra-
diction.

– If � installs a bounded number of views, let �
� be the last view installed by � . First of all, we
must show that � will enter agreement phase during �
� . If �
� does not contain � , � enters
agreement phase immediately after having installed �
� , or when it stops m-suspecting � . If
�
� contains � , � forwards the VIEW message containing �
� to � . There are two possibilities:

– If this message is lost, by Property A.1(e) � will m-suspect � during �
� and enter agree-
ment phase;

– if � m-receives the message, by hypothesis � discards it; but this implies that the agree-
ment on �
� has been reached with a PROPOSE message of � m-sent before the installa-
tion of � . Thus, � will eventually enter agreement phase.

At the beginning of the new agreement phase, � generates a new version number �
�

greater
than � � � � � . If this happens before

� �
, � will m-receive from � a SYMMETRY message contain-

ing �
�
; otherwise, if this happens after

� �
, � will m-receive from � a SYNCHRONIZE message

containing �
�
. In both cases, we have obtained a contradiction that concludes the claim.

Given that all processes in � � are blocked in ee-phase, by Lemma D.1 the number of different
PROPOSE messages m-sent by each process �
 � � during � � is bounded. Let � PROPOSE ��� � � be
the last PROPOSE message m-sent by � , and let � � denote the set �

� � ����� � � � � � .
Claim: For each process �
 � � , � belongs to � � .

By contradiction, suppose the claim is false. By Property A.1(g), there is a time after which �
stops m-suspecting � ; thus, � will m-receive a message � ESTIMATE �
� � ��� such that � � � � � � � � ���
and � :
 � ; so, � will remove � from its view estimate, a contradiction.

Note that the claims we have developed so far can be applied to each of the processes in � � .
Given a process � , we can show that:

– each process �
 � � installs a bounded number of views and is blocked in ee-phase of its
last view ���

– � knows the last version number of each process in � � .
Thus, all processes in � � know the same version number for each of the processes in � � . By
Property A.1(g), each process �<
 � � will accept at least one message � ESTIMATE � ����� � � from �
and � will m-receive and accept at least one message � ESTIMATE � ����� � � . Since we have supposed
that for each process �
 � � , � � is the last view estimate, then for each process �
 � � we have
that � � / � � and � � / � � . Thus, all values � � are equal to � � .

This implies that all processes in � � maintain the same view estimate � � and know the same
agreed version number array (restricted to the processes in � �). By construction, they m-send

UBLCS-98-01 36

D Partitionable Group Membership Algorithm: Correctness Proof

their last PROPOSE messages to the same coordinator; since no process in � � can m-suspect an-
other process in � � , the coordinator will m-receive all these messages and observe an agreement.
Thus, the coordinator will m-send a VIEW message to � , that m-receives it and installs a new view,
a contradiction that concludes the proof.

Lemma D.3 If a correct process � enters s-phase of a view � , then � will eventually enter ee-phase of � .
PROOF. By contradiction, suppose � never enters ee-phase of � . Under this assumption, dur-

ing the s-phase no process can be added to ����� � � � � � or removed from ��� � �	�
� � � ��� � � (note that pro-
cesses may be added to ����� � � � � � or removed from ��� � � � � � � ��� � � during a s-phase, but only just
before entering ee-phase of �). Thus, there is a time

� �
after which � never modifies its variables

��� � � � � � � � and ��� � � � � � � ��� � � � . Let � � denote the final value of ����� � � � � � � ��� (recall that a process
generates new version numbers only when enters a new agreement phase), and let & be a process
contained in ����� � � � � � � � � � � , but not in ��� � � � � � � ��� � � � � � � � (such process must exist, otherwise � will
enter ee-phase of �). By hypothesis, � cannot m-suspect & after having entered s-phase of � . By
Property A.1(a), & is correct; by Property A.1(e), & will eventually m-receive the SYNCHRONIZE
message containing � � m-sent by � at the beginning of the s-phase of � and it will store � � in
� ��� � � � � � � ��� at time

� �
. If & m-suspects � after

� �
, by Property A.1(g) and (e) � will eventually m-

receive a message � SYMMETRY �
� � � � such that � � ��� � � � and it will remove & from ����� � � � � � � , a
contradiction. Thus, suppose & never m-suspects � after

� �
. There are two possibilities:

– If & is either in idle phase or in s-phase at time
� �

, by construction and by Property A.1(e)
� will eventually m-receive a message � SYNCHRONIZE �
� � � ��� � � ; thus, � will insert & in
��� � � � � � � ��� � � � , a contradiction.

– Otherwise, suppose & is in ee-phase at time
� �

. By Lemma D.3, & will eventually install a
new view � after

���
, due to the m-receipt of a message � VIEW � ��� + � . There are two possi-

bilities.
– If � does not contains � , the new view does not correspond to the current estimate

of the reachability set of & (� is not m-suspected). Thus, after the installation of � ,
variable ��� ���
 � is set to false.

– If � contains � , + � &�� � ����� � � � � � ��� is different from � ��� � � � � � � ����� � � (since � has never
m-sent a PROPOSE message containing � �). Thus, after the installation of � , variable
��� ���
 � is set to false.

In both cases, & enters again agreement phase and m-sends a SYNCHRONIZE message con-
taining � � to � ; by Property A.1(e), � will m-receive it and add & to ��� � �	�
� � � ��� � � � , a contra-
diction.

Corollary D.1 If a correct process � enters agreement phase during a view � , then it will eventually install
a new view after � .

PROOF. From Lemmas D.2 and D.3.

The next property to prove is View Accuracy. In the following, we say that a process � ex-
cludes a process � from its view estimate indirectly if the exclusion follows the m-receipt of a� ESTIMATE � ��� ��� message such that �
 � and ��:
 � . Otherwise, we say that � excludes a pro-
cess � from its view estimate directly (for example, due to a m-suspect or a SYMMETRY message).

Lemma D.4 Let � be a view installed by a process � , and let
�

be the time at which � entered s-phase of � .
Let & be a process from which � accepts a message � ESTIMATE � ������� such that �
 � , m-sent by & during
a view � � . Then, & has entered ee-phase of � � after

�
.

PROOF. At the beginning of the s-phase of � , � m-sends a SYNCHRONIZE message containing
its current version number � � . By Lemma D.3, � will eventually enter ee-phase of � . There are
two possibilities:

– � enters ee-phase of � after having m-received a SYNCHRONIZE message containing � � from
each process not m-suspected after the beginning of the s-phase of � . By construction, all
processes in ����� � � � � � � were in s-phase when they m-sent the SYNCHRONIZE reply contain-
ing � � . Thus, they enter ee-phase of their view after

�
.

UBLCS-98-01 37

D Partitionable Group Membership Algorithm: Correctness Proof

– � enters ee-phase of � after having m-received a ESTIMATE message containing � � m-sent
by a process & � that has entered ee-phase after storing � � in its array � ��� � � � � � � . In this case,
we have again two possibilities: & � has entered ee-phase either after having m-received a
SYNCHRONIZE message from each process not m-suspected during s-phase, or after having
m-received a ESTIMATE message m-sent by a process & � that has entered ee-phase. By iter-
ating the reasoning, we obtain a finite chain ���)& � � � � �
�)&�� such that each process has entered
ee-phase after having m-received a ESTIMATE message from the following one, apart from
& � that has m-received a SYNCHRONIZE message from each process not m-suspected during
s-phase. Let

���
denote the time at which & � m-sends the ESTIMATE message; by construction,

we have that ����� � � � � � ��� � ��� � is contained in ����� � � � � � ����� � � ����� � � , for each � � 3 � � � � � 3 . Thus,
�
 ����� � � � � � ��� � ��� � , for each � � 3 � � � � . Moreover, we have that � ��� � � � � ��� � ��� � ��� � is equal to
� ��� � � � � ����� � � ��� � ���	� � � , for each � � 3 � � � � � 3 . This implies that � ��� � � � � ��
 � ��� is equal to � � , and
that & � has entered ee-phase of its view after

�
.

Theorem D.1 (View Accuracy) The PGMS algorithm satisfies Property GM1.
PROOF. Let � be a correct process and let & be always reachable from � after time

���
. We

must prove that there is a time after which the current view of � always contains & . Suppose �
installs a bounded number of views; in this case, the last view installed by � must contain & (since
otherwise � would enter again agreement phase and by Corollary D.1 would install a new view,
impossible by hypothesis). Thus, suppose � installs an unbounded sequence of views.

Claim: There is a time
� � after which no process distinct from � can directly exclude & from its view

estimate without excluding � at the same time.
By Property A.1(b), there is a time

� �
after which each process � m-suspects both or none of � and

& . Since each message � SYMMETRY � ������� m-sent by a process � at time
�

is such that � is equal
to � � � � � ���
 � � � � � , it follows that there is a time

� �
after which all messages � SYMMETRY � ��� ��� m-

received by a process � are such that � contains both or none of � and & . Moreover, we must prove
that there is a time

�
� after which if a process � excludes & from its view estimate due the m-receipt

of a SYNCHRONIZE message, it excludes � as well. Recall that � may exclude & due the m-receipt
of a message � SYNCHRONIZE ��� � ��� � � � � from a process � only if �
 �
� � � � � � � � � � ; by Property
A.1(d) and by algorithm construction, this can happen only if � never m-receives an ESTIMATE or
VIEW message m-sent by � before the SYNCHRONIZE message. Suppose there exists a process �
from which � m-receives an unbounded number of messages � SYNCHRONIZE �
� � �
� � � ��� inviting
� to exclude & from ����� � � � � �

�
(otherwise the claim is trivially concluded). By Property A.1(e),

� will m-suspect � an unbounded number of times. Obviously, � will stop m-suspecting � an
unbounded number of times as well. Thus, � will modify its variable ��� ������� � � ��� after time

� �
.

This implies that there is a time
�
� after which all messages � SYNCHRONIZE � ��� ������� m-sent by �

to & are such that � , & belong both or none to � . This concludes the claim.
By Eventual Symmetry, there is a time after which � is always reachable from & . By repeating

the reasoning of the previous claim, we obtain that there is a time
� � after which no process

different from & can directly exclude � from its view estimate without excluding & as well.
The next step consists on showing that � and & eventually stop directly excluding each other:
Claim: There exists a time

�
�
�!� � � � � after which � cannot directly exclude & (and vice versa).

By Property A.1(f) and (b) there is a time after which � cannot m-suspect & and & cannot m-suspect
� . This implies that there is a time after which (i) � cannot m-receive and accept a SYMMETRY or
a SYNCHRONIZE message from a process distinct from & inviting � to exclude & (such messages
cannot be m-sent to �); (ii) � cannot m-receive a SYMMETRY message from & (since they stop
m-suspecting themselves); and (iii) � cannot m-receive a SYNCHRONIZE message from & with
a version number for & greater than �
 �
� � � � � &�� (by Property A.1(e), this is possible only if some
messages from & to � have been lost; but we know that there is a time after which � is permanently
reachable from &). In a symmetric way, we can prove that & cannot directly exclude � after

�
� . This

concludes the claim.
By hypothesis, � will install an unbounded number of views after

�
� . In order to conclude the

proof, we must show that:
Claim: There is a time

����
�

after which all messages � VIEW � ���=+ � m-received and accepted by � are

such that & belongs to + � ��� � ����� � � � � � (and vice versa).

UBLCS-98-01 38

D Partitionable Group Membership Algorithm: Correctness Proof

Let � � be the set of processes that participate with � in the agreement of an unbounded number
of views. This implies that all processes in � � are correct and invoke the agreement protocol an
unbounded number of times. By definition, there is a time

�
� after which � does not participate

to the agreement of a view with a process not included in � � . Consider a time
�
� at which all

processes in � � have installed at least one view after time � � � � � � �
�

� � . Let � be a view installed
by � after

�
� . By Lemma D.4, all processes that participate with � in the agreement of the next

view enter ee-phase of their view after
�
� . By construction, all these processes have entered s-

phase of their views after
�
� . Thus, all messages � ESTIMATE � ��� ��� m-received by � during � are

such that � contains both or none of � and & . This implies that � never removes & (directly or
indirectly) from its view estimate during � . All � PROPOSE ��� � messages m-sent by � during �
are such that &
 � � ��� � � � � � � . Thus, the next message � VIEW � ���=+ � m-received by � is such that
&�
 + � ��� � ����� � � � � � . This concludes the first part of the claim. In a symmetric way, we can prove
that all messages � VIEW � ���=+ � m-received and accepted by & after

� ��
�

are such that & belongs to

+ � &�� � ����� � � � � � .
To conclude the proof, we must show that eventually each partial view installed by � con-

tains & . Consider a message � VIEW � � � + � m-received and accepted by � ; let � � and � � denote the
values + � ��� � � � ��� � � � , and let � � and � � denote the values + � ��� � � � � ��� � � � � � and + � &�� � � � � ��� � � � � � .
Suppose the VIEW messages containing � � and � � have been m-received by � and & after

� ��
�

,

respectively. By contradiction, suppose � � is different from � � ; since ��� & belong to both � � and � � ,
at the m-receipt of � VIEW � � �=+ �B� will install a partial view not containing & . � and & must have
participated in the agreement of both ��� and � � , but the corresponding VIEW messages must have
been generated from two distinct coordinators �	� and � � , respectively. Suppose � has m-sent the
PROPOSE message for the agreement on ��� before the PROPOSE message for � � ; by monotony
of variable ����� � � � � � � and by the use of function � � � to select the coordinator, � � cannot belong
to � � . Thus, � has not m-received the � VIEW � ��� � � � message directly from �	� , but from a process
� �
 � � . Since the � VIEW � � � � � � message has been m-received after the m-sending of the PROPOSE
message for the agreement on � � , by monotony of ��� � � � � � � process � � must belong to � � . Thus, � �
has participated in the construction of both � � and � � by m-sending two PROPOSE messages to � �
and � � in this order, and has m-received a VIEW message containing � � after the m-sending of the
PROPOSE message for the agreement on � � . By iterating the reasoning, we obtain an unbounded
chain � � � � � � �*� � � � � � of processes belonging to � � . This is a contradiction, since the cardinality of
� � is finite and all these processes are different (each process m-sends the same VIEW message at
most once). Now, suppose � has m-sent the PROPOSE message to � � before the PROPOSE message
to � � ; by monotony of ����� � � � � � , & must have m-sent the PROPOSE messages to � � and � � in the
same order. But this leads to a contradiction as in the previous case and concludes the proof of
the theorem.

The next property to prove is View Completeness. As the reader can note, its proof is simpler
than the previous one, since if a process � m-suspects another process & , � will permanently
remove & from its view estimate and no process can force � to insert & again.
Theorem D.2 (View Completeness) The PGMS algorithm satisfies Property GM2.

PROOF. Let
�

be a set of processes such that there is a time after which all processes in
�

are
unreachable from � � �

. Let � be a correct process in
�

and let & be a process in � � �
; we

must prove that there is a time after which the current view of � never contains & . Suppose �
installs a bounded number of views; the last view installed by � cannot contain & , otherwise �
will enter again agreement phase and by Corollary D.1 it will install a new view after the last.
Thus, suppose � installs an unbounded sequence of views. By Property A.1(a), there is a time� �

after which � permanently m-suspects & ; this implies that after
� �

, & is permanently excluded
from �
�	� �	� �
�
 � � . This implies that there is a time

� � �4� �
after which all messages � PROPOSE ��� � �

m-sent by � during a view are such that &�:
 � ��� ����� � � � � � . Thus, all views installed by � after
� �

cannot contain & .
Now, we must prove that our algorithm satisfies View Order and View Integrity.

Theorem D.3 (View Order) The PGMS algorithm satisfies Property GM4.
PROOF. Let � � � be two views. We must prove that if � � � � , then � :� � � . By contradiction,

UBLCS-98-01 39

D Partitionable Group Membership Algorithm: Correctness Proof

suppose there exist two chains of views, � � � � � � � � � � ��� � � � � �
�� � � � � � and � � � � � � � �
�� �
� � � � � �
���� � � � � ��� � � ��� � � . Let

� �
denote the time at which the coordinator � � generated the

VIEW message containing � � , and let
�
� be the time at which � � installed � � ; obviously,

� � � �
� .
When � � m-receives the VIEW message that contains � �	� � , it verifies that the agreement on � ��� �
has been reached with information m-sent by � � in � � and therefore

�
� � � �	� � ; thus,
� � � � ��� �

. By
transitivity, we can state that

� � � �
� and

�
�
� �

�4� ��� , a contradiction that concludes the proof.
Theorem D.4 (View Integrity) The PGMS algorithm satisfies Property GM5.

PROOF. Let � be a process. We must prove that each view installed by � contains � itself. The
first view installed by � is equal to �)� 	 . Before installing any other view � , � must m-receive a mes-
sage � VIEW � ��� + � . By Property A.1(a), � belongs to the destination set of the VIEW message; by
construction, this set coincides with + � ��� � ����� � � � � � . Since � contains all processes in + � ��� � ��� � � � � � �
that have m-received the VIEW message containing the predecessor of � at � , then � belongs to � .

Finally, we must prove that our algorithm satisfies the View Coherency property. First of all,
we prove that a process will eventually enter agreement phase if a process in its current view �
never installs � . Then, we use this lemma to show that our algorithm satisfies the three parts of
View Coherency.

Lemma D.5 If a correct process � installs a view � , then for every process &?
 � either (i) & also install � ,
or (ii) � will eventually enter agreement phase during � .

PROOF. By contradiction, suppose & never installs � and � never enters agreement phase dur-
ing � . Thus, � never m-suspects & after the installation of � . By Property A.1(a), & is correct; by
Property A.1(e), & will eventually m-receive the VIEW message forwarded by � before installing
� . Since & does not install � , there are two possibilities: & discards the VIEW message containing
� either because it has installed a new view, or because � does not belong to ����� � � � � � � . In both
cases, & must have excluded � from ����� � � � � � � after m-sending the PROPOSE message with which
the agreement on � was reached; after the exclusion, & has installed a view � not containing � .
By Property A.1(g), there is a time after which & stops m-suspecting � ; so, & will eventually enter
agreement phase and m-send a SYNCHRONIZE message to � . By Property A.1(e), � will eventu-
ally m-receive the message and enter agreement phase during � , a contradiction that concludes
the proof.
Theorem D.5 (View Coherency) The PGMS algorithm satisfies Property GM3.

PROOF. (i) Let � be a view installed by a correct process � and let & be a process in � that never
installs � . The proof follows from Lemma D.5 and Corollary D.1.

(ii) Let � be a view installed by two processes � and & , and suppose � changes view after
having installed � . If & is correct, we must prove that & will eventually install an immediate
successor to � . By Corollary D.1, it is sufficient to prove that � will eventually enter agreement
phase during � . Suppose & stops m-suspecting � after having installed � (otherwise the proof is
trivial). By Property A.1(a), � is correct; by Property A.1(g), there is a time

� �
after which � stops

m-suspecting & . There are two possibilities:
– If � installs a bounded number of views, let � be the last view installed by � . By hypothesis,
��� � � . Process & must belong to � , since otherwise � would enter again agreement phase
and install a new view. By Lemma D.5 and Theorem D.3, & will install � after � (since by
hypothesis � does not install other views after �) and the lemma is proved.

– If � installs an unbounded number of views, & will m-receive an unbounded number of
SYNCHRONIZE messages m-sent by � after

� �
; this implies that & enters agreement phase

during � .
(iii) Let � be a process that installs a view � as well as its immediate successor � , both contain-

ing & . We must prove that � installs � only after & has installed � . Note that � is obtained from
the last VIEW message by excluding all processes in � whose last view is different from � . Since &
belongs to both � and � , the last view of & must be equal to � .

UBLCS-98-01 40

D Partitionable Group Membership Algorithm: Correctness Proof

Biography
� Özalp Babaoğlu is Professor of Computer Science at the University of Bologna, Italy. He

received a Ph.D. in 1981 from the University of California at Berkeley where he was one
of the principal designers of BSD Unix. Before moving to Bologna in 1988, Babaoğlu was
an Associate Professor in the Department of Computer Science at Cornell University. He is
active in several European research projects exploring issues related to fault tolerance and
scale in distributed systems. Babaoğlu serves on the editorial boards for ACM Transactions
on Computer Systems and ACM Springer-Verlag Distributed Computing.

� Renzo Davoli (M.’91) received his degree in Mathematics from the University of Bologna
(Italy) in 1986. In 1991 he joined the Department of Mathematics of the same University as
a Research Associate. He has been a member of the Computer Science Department since
its founding in 1995 where he currently teaches Operating Systems. His research interests
include large-scale distributed systems, real-time systems, nomadic computing, wireless
systems and neural networks. Dr. Davoli is a member of IEEE Computer Society, ACM,
and AICA.

� Alberto Montresor received the M.S. degree in Computer Science from the University of
Bologna in 1995. He is currently a Ph.D. student at the University of Bologna. His research
interests include distributed computing, fault tolerance and distributed object frameworks.

UBLCS-98-01 41

