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The game of checkers has roughly 500 billion billion 
possible positions (5 × 1020). The task of solving the 
game, determining the final result in a game with no 
mistakes made by either player, is daunting. Since 1989, 
almost continuously, dozens of computers have been 
working on solving checkers, applying state-of-the-art 
artificial intelligence techniques to the proving process. 
This paper announces that checkers is now solved: 
perfect play by both sides leads to a draw. This is the 
most challenging popular game to be solved to date, 
roughly one million times more complex than Connect 
Four. Artificial intelligence technology has been used to 
generate strong heuristic-based game-playing 
programs, such as DEEP BLUE for chess. Solving a game 
takes this to the next level, by replacing the heuristics 
with perfection. 

Since Claude Shannon’s seminal paper on the structure of a 
chess-playing program in 1950 (1), artificial intelligence 
researchers have developed programs capable of 
challenging and defeating the strongest human players in 
the world. Super-human-strength programs exist for 
popular games such as chess [DEEP FRITZ (2)], checkers 
[CHINOOK (3)], Othello [LOGISTELLO (4)] and Scrabble 
[MAVEN (5)]. However strong these programs are, they are 
not perfect. Perfection implies solving a game: determining 
the final result (game-theoretic value) when neither player 
makes a mistake. There are three levels of solving a game 
(6). For the lowest level, ultra-weakly solved, the perfect-
play result is known but not a strategy for achieving that 
value (e.g., Hex is a first-player win, but for large board 
sizes the winning strategy is not known (7)). For weakly 
solved games, both the result and a strategy for achieving it 
from the start of the game are known (e.g., Go Moku is a 
first-player win and a program can demonstrate the win 
(6)). Strongly solved games have the result computed for 
all possible positions that can arise in the game (e.g., Awari 
(8)). 
 Checkers (8 × 8 draughts) is a popular game enjoyed by 
millions of people worldwide, with numerous annual 
tournaments and a series of competitions that determine the 
world champion. There are numerous variants of the game 
played around the world. The game that is popular in North 
American and the (former) British Commonwealth has 
pieces (checkers) moving forward one square diagonally, 
kings moving forward or backward one square diagonally, 
and a forced-capture rule (see online supporting text). 
 The effort to solve checkers began in 1989 and the 
computations needed to achieve that result have been 
running almost continuously since then. At the peak in 

1992, over 200 processors were being used simultaneously. 
The end result is one of the longest running computations 
completed to date. 
 This paper announces that checkers has been weakly 
solved. From the starting position (Fig. 1A), we have a 
computational proof that checkers is a draw. The proof 
consists of an explicit strategy that never loses – the 
program can achieve at least a draw against any opponent, 
playing either the black or white pieces. That checkers is a 
draw is not a surprise; grandmaster players have 
conjectured this for decades. 
 The checkers result pushes the boundary of artificial 
intelligence (AI). In the early days of AI research, the 
easiest path to achieving high performance was seen to be 
emulating the human approach. This was fraught with 
difficulty, especially the problems of capturing and 
encoding human knowledge. Human-like strategies are not 
necessarily the best computational strategies. Perhaps the 
biggest contribution of applying AI technology to 
developing game-playing programs was the realization that 
a search-intensive (“brute-force”) approach could produce 
high-quality performance using minimal application-
dependent knowledge. Over the past two decades, powerful 
search techniques have been developed and successfully 
applied to problems such as optimization, planning, and 
bioinformatics. The checkers proof extends this approach, 
by developing a program that has little need for 
application-dependent knowledge and is almost completely 
reliant on search. With advanced AI algorithms and 
improved hardware (faster processors, larger memories, 
and larger disks), it becomes possible to push the limits on 
the type and size of problems that can be solved. Even so, 
the checkers search space (5 × 1020) represents a daunting 
challenge for today’s technology. 
 Computer proofs in areas other than games have been 
done numerous times. Perhaps the best known is the four 
color theorem (9). This deceptively simple conjecture – 
given an arbitrary map with countries, you need at most 
four different colors to guarantee that no two adjoining 
countries have the same color – has been extremely 
difficult to prove analytically. In 1976, a computational 
proof was demonstrated. Despite the convincing result, 
some mathematicians were skeptical, distrusting proofs that 
had not been verified using human-derived theorems. 
Although important components of the checkers proof have 
been independently verified, there may be skeptics. 
 This article describes the background behind the effort 
to solve checkers, the methods used for achieving the 
result, an argument that the result is correct, and the 
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implications of this research. The computer proof is online 
at www.cs.ualberta.ca/~chinook. 
 Background. The development of a strong checkers 
program began in the 1950s with Arthur Samuel’s 
pioneering work in machine learning. In 1963, his program 
played a match against a capable player, winning a single 
game. This result was heralded as a triumph for the 
fledgling field of AI. Over time, the result was exaggerated, 
resulting in claims that checkers was now “solved” (3). 
 The CHINOOK project began in 1989 with the goal of 
building a program capable of challenging the world 
checkers champion. In 1990, CHINOOK earned the right to 
play for the World Championship. In 1992, World 
Champion Marion Tinsley narrowly defeated CHINOOK in 
the title match. In the 1994 rematch, Tinsley withdrew part 
way due to illness. He passed away eight months later. By 
1996 CHINOOK was much stronger than all human players, 
and with faster processors this gap has only grown (3). 
 Tinsley was the greatest checkers player that ever lived, 
compiling an incredible record that included only three 
losses in the period 1950-1991. The unfinished Tinsley 
match left the question unanswered as to who was the 
better player. If checkers were a proven draw, then a 
“perfect” CHINOOK would never lose. As great as Tinsley 
was, he occasionally made losing oversights – he was 
human after all. Hence, solving checkers would once and 
for all establish computers as better than all fallible 
humans. 
 Numerous non-trivial games have been solved, 
including Connect Four (6, 10), Qubic (6), Go-Moku (6), 
Nine Men’s Morris (11), and Awari (8). The perfect-play 
result and a strategy for achieving that result is known for 
these games. How difficult is it to solve a game? There are 
two dimensions to consider (6): 
 • Decision complexity, the difficulty of making correct 
move decisions, and 
 • Space complexity, the size of the search space. 
 Checkers is considered to have high decision complexity 
(it requires extensive skill to make strong move choices) 
and moderate space complexity (5 × 1020, see Table 1). All 
the games solved thus far have either low decision 
complexity (Qubic; Go-Moku), low space complexity 
(Nine Men's Morris, size 1011; Awari, size 1012) or both 
(Connect Four, size 1014). 
 Solving checkers. Checkers represents the most 
computationally challenging game solved to date. The 
proof procedure has three algorithm/data components (12): 
 1. Endgame databases (backward search). Computations 
from the end of the game back towards the starting position 
have resulted in a database of 3.9 × 1013 positions (all 
positions with ≤ 10 pieces on the board) for which the 
game-theoretic value has been computed (strongly solved). 
 2. Proof-tree manager (forward search). This component 
maintains a tree of the proof in progress (a sequence of 
moves and their best responses), traverses it, and generates 
positions that need to be explored to further the proof's 
progress. 
 3. Proof solver (forward search). Given a position to 
search by the manager, this component uses two programs 
to determine the value of the position. These programs 
approach the task in different ways, thus increasing the 
chances of obtaining a useful result. 

 Figure 2 illustrates this approach. It plots the number of 
pieces on the board (vertically) versus the logarithm of the 
number of positions (Table 1). The endgame database 
phase of the proof is the shaded area; all positions with ≤ 
10 pieces. The inner oval area illustrates that only a portion 
of the search space is relevant to the proof. Positions may 
be irrelevant because they are unreachable or are not 
required for the proof. The little circles illustrate positions 
with more than 10 pieces for which a value has been 
proven by a solver. The figure also shows the boundary 
between the top of the proof tree that the manager sees (and 
stores on disk) and the parts that are computed by the 
solvers (and are not saved to reduce disk storage needs). 
 In the manager, the proof tree can be hand-seeded with 
an initial line of play. From the human literature, a single 
“best” line of play was identified and used to guide the 
initial foray of the manager into the depths of the search 
tree. Although not essential for the proof, this is an 
important performance enhancement. It allows the proof 
process to immediately focus its work on the parts of the 
search space that are likely to be relevant. Without it, the 
manager may spend unnecessary effort looking for an 
important line to explore. The line leads from the start of 
the game into the endgame databases (Fig. 2). 
 Backward search. Positions at the end of the game can 
be searched and their win/loss/draw value determined. The 
technique is called retrograde analysis, and has been 
successfully used for many games. The algorithm works 
backwards by starting at the end of the game and working 
towards the start. It enumerates all 1-piece positions, 
determining their value (in this case, a trivial win for the 
side with the piece). Next all 2-piece positions are 
enumerated and analyzed. The analysis for each position 
eventually leads to a 1-piece position with a known value, 
or a repeated position (draw). Next, all the 3-piece 
positions are tackled, and so forth (see supporting online 
text). Our program has computed all the positions with ≤10 
pieces on the board. The endgame databases are crucial to 
solving checkers. The checkers forced-capture rule quickly 
results in many pieces being removed from the board, 
giving rise to a position with ≤10 pieces – and a known 
value. 
 The databases contain the win/loss/draw result for a 
position, not the number of moves to a win/loss. 
Independent research has discovered a 10-piece database 
position requiring a 279-ply move sequence to demonstrate 
a forced win (a ply is one move by one player) (13). This is 
a conservative bound, as the win length has not been 
computed for the more difficult (and more interesting) 
database positions. 
 The complete 10-piece databases contain 39 trillion 
positions (Table 1). They are compressed into 237 
gigabytes, an average of 154 positions per byte! A custom 
compression algorithm was used which allows for rapid 
localized real-time decompression (14). This means that the 
backward and forward search programs can quickly extract 
information from the databases with a relatively small 
overhead. 
 The first databases, constructed in 1989, were for ≤4 
pieces. In 1994, CHINOOK used a subset of the 8-piece 
database for the Tinsley match (3). By 1996, the 8-piece 
database was completed, giving rise to hope that checkers 
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could be solved. However, the problem was still too hard, 
and the effort came to a halt. In 2001, realizing that 
computer capabilities had increased dramatically, the effort 
was restarted. It took seven years (1989-1996) to compute 
the 8-piece databases; in 2001 it took only a month! In 
2005, the 10-piece database computation finished. At this 
point, all computational resources were focused on the 
forward search effort. 
 Forward search. Development of the forward search 
program began in 2001, with the production version up and 
running in 2004. The forward search consists of two parts: 
the proof-tree manager, which builds the proof by 
identifying positions that need to be assessed, and the proof 
solvers, which search individual positions. 
 The manager maintains the master copy of the proof, 
and identifies a prioritized list of positions that need to be 
examined using the Proof Number search algorithm (6). 
Typically several hundred positions of interest are 
generated at a time, so as to keep multiple computers busy. 
Over the past year, we averaged using 50 computers 
continuously. 
 The solvers get a position to evaluate from the manager. 
The result of a position evaluation can be proven (win, loss, 
draw), partially proven (at least a draw, at most a draw), or 
heuristic (an estimate of how good or bad a position is). 
Proven positions need no further work; partially proven 
positions need additional work if the manager determines 
that a proven value is needed. If no proven information is 
available then the solver returns a heuristic assessment of 
the position. The manager uses this assessment to prioritize 
which positions to consider next. The manager updates the 
proof tree with the new information, decides on which 
positions need further investigation, and generates new 
work to do. This process is repeated until a proven result 
for the game is determined. 
 The solver uses two search programs to evaluate a 
position. The first program (targeted at 15 seconds, but 
sometimes much longer) uses CHINOOK to determine a 
heuristic value for the position (Alpha-Beta search to 
nominal search depths of 17-23 ply). Occasionally this 
search determines that the position is a proven win or a 
loss. CHINOOK was not designed to produce a proven draw, 
only a heuristic draw; demonstrating proven draws in a 
heuristic search seriously degrades performance. 
 The Alpha-Beta search algorithm is the mainstay of 
game-playing programs. The algorithm does a depth-first, 
left-to-right traversal of the search tree (15) (see supporting 
online text). The algorithm propagates heuristic bounds on 
the value of a position: the minimum value that the side to 
move can achieve and the maximum value that the 
opponent can limit the side to move to. Lines of play that 
are provably outside this range are irrelevant and can be 
eliminated (cutoff). A d-ply search with an average of b 
moves to consider in every position results in a tree with 
roughly bd positions. In the best case, the Alpha-Beta 
algorithm needs only examine bd/2 positions. 
 If CHINOOK does not find a proven result, then a second 
program is invoked (100 seconds). It uses the Df-pn 
algorithm (16), a space-efficient variant of Proof Number 
search. The search returns a proven, partially proven, or 
unknown result. 

 Algorithms based on proof numbers maintain a measure 
of the difficulty of proving a position. This difficulty is 
expressed as a proof number, a lower bound on the 
minimum number of positions that need to be explored to 
result in the position being proven. The algorithm 
repeatedly expands the tree below the position requiring the 
least effort to impact the original position (a “best-first” 
approach). The result of that search is propagated back up 
the tree, and a new best candidate to consider is 
determined. Proof number search was specifically invented 
to facilitate the proving of games. The Df-pn variant builds 
the search tree in a depth-first manner, requiring less 
computer storage. 
 Iterative search algorithms are commonplace in the AI 
literature. Most iterate on search depth (first 1 ply, then 2, 
then 3, etc.). The manager uses the novel approach of 
iterating on the error in CHINOOK’s heuristic scores (12). 
The manager uses a threshold, t, and assumes that all 
heuristic scores ≥t are wins and all scores ≤-t are losses. It 
then proves the result given this assumption. Once 
completed, t is increased to t+∆ and the process is repeated. 
Eventually t reaches the value of a win and the proof is 
complete. This iterative approach concentrates the effort on 
forming the outline of the proof with low values of t, and 
then fleshing out the details with the rest of the 
computation. 
 One complication is the graph-history interaction (GHI) 
problem. It is possible to reach the same position through 
two different sequences of moves. This means that some 
draws (e.g., draws by repetition) depend on the moves 
played leading to the duplicated position. In standard 
search algorithms, GHI may cause some positions to be 
incorrectly inferred as drawn. Part of this research project 
was to develop an improved algorithm for addressing the 
GHI problem (17). 
 Correctness. Given a computation that has run for so 
long on many processors, an important question to ask is 
“Are the results correct?” Early on in the computation, we 
realized that there were many potential sources of errors, 
including algorithm bugs and data transmission errors. 
Great care has been taken to eliminate any possibility of 
error by verifying all computation results and doing 
consistency checks. As well, some of the computations 
have been independently verified (see supporting online 
text). 
 Even if an error has crept into the calculations, it likely 
does not change the final result. Assume a position that is 
40 ply away from the start is incorrect. The probability that 
this erroneous result can propagate up 40 ply and change 
the value for the game of checkers is vanishingly small 
(18). 
 Results. Our approach to solving the game was to 
determine the game-theoretic result by doing the least 
amount of work. In tournament checkers, the standard 
starting position (Fig. 1A) is considered “boring”, so the 
first three moves (ply) of a game are randomly chosen at 
the start. The checkers proof consisted of solving 19 three-
move openings, leading to a determination of the starting 
position’s value: a draw. Although there are roughly 300 
three-move openings, over 100 are duplicates (move 
transpositions). The rest can be proven to be irrelevant by 
an Alpha-Beta search. 
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 Table 2 shows the results for the 19 openings solved to 
determine the perfect-play result for checkers. (Other 
openings have been solved but are not included here.) The 
table shows the opening moves (using the standard square 
number scheme in Fig. 1B), the result, the number of 
positions given to the solvers, and the position furthest 
from the start of the game that was searched. After an 
opening was proven, a post-processing program pruned the 
tree to eliminate all the computations that were not part of 
the smallest proof tree. In hindsight, the pruned work was 
unnecessary, but was not so at the time that it was assigned 
for evaluation. The last two columns of Table 2 give the 
size and ply depth of this minimal tree. Figure 3 shows the 
proof tree for the first three ply. The diagram shows the 
move sequences using the notation from Fig. 1B, with the 
from-square and to-square of the move separated by a dash. 
The result of each position is given for Black, the first 
player to move (“= D”, a proven draw; “= L”, a proven 
loss; “<= D”, loss or draw; and “>=D”, draw or win). In 
some positions, only one move needs to be considered; the 
rest are cutoff, as indicated by the rotated “T”. Some 
positions have only one legal move because of the forced-
capture rule. 
 The leftmost move sequence in Fig. 3 is as follows: 
Black moves 09-13, White replies 22-17, and then Black 
moves 13-22. The resulting position has been searched and 
shown to be a draw (=D; opening line 1 in Fig. 3). That 
means the position after 22-17 is also a draw, since there is 
only one legal move available (13-22) and it is a proven 
draw. What is the value of the position after Black moves 
09-13? To determine this, all possible moves for White 
have to be considered. The move 22-17 guarantees White at 
least a draw (at most a draw for Black). But it is possible 
that this position is a win for White (loss for Black). The 
remaining moves (21-17, 22-18, 23-18, 23-19, 24-19 and 
24-20; opening lines 2-7 in Fig. 3) are all shown to be at 
least a draw for Black (>= D). Hence White prefers the 
move 22-17 (no worse than any other move). Thus, 09-13 
leads to a draw (White will move 22-17 in response). 
 Given that 09-13 is a draw, it remains to demonstrate 
that the other opening moves cannot win for Black. Note 
that some openings have a proven result, while for others 
only the partial result needed for the proof was computed. 
The number of openings is small because the forced-
capture rule was exploited. Opening lines 13-19 in Fig. 3 
are needed to prove that the opening 12-16 is not a win. 
Actually, one opening would have sufficed (12-16 23-19 
16-23). However human analysts consider this line to be 
winning for Black, and the preliminary analysis agreed. 
Hence, the seven openings beginning with the moves 12-16 
24-19 were proved instead. This led to the least amount of 
computing. 
 There is anecdotal evidence that the proof tree is correct. 
Main lines of play were manually compared to human 
analysis (19), with no errors found in the computer’s results 
(unimportant errors were found in the human analysis). 
 The proof tree shows the perfect lines of play needed to 
achieve a draw. If one side makes a losing mistake, the 
proof tree may not necessarily show how to win. This 
additional information is not necessary for proving the 
draw result. 

 The stored proof tree is “only” 107 positions. Saving the 
entire proof tree, from the start of the game so that every 
line ends in an endgame database position, would require 
many tens of terabytes, resources that were not available. 
Instead only the top of the proof tree, the information 
maintained by the manager, is stored on disk. When a user 
queries the proof, if the end of a line of play in the proof is 
reached, then the solver is used to continue the line into the 
databases. This dramatically reduces the storage needs, at 
the cost of re-computing (roughly two minutes per search). 
 The longest line analyzed was 154 ply. The position at 
the end of this line was analyzed by the solver, and that 
analysis may have gone 20 or more ply deep. At the end of 
this analysis is a database position, which could be the 
result of several hundred ply of analysis. This provides 
supporting evidence of the difficulty of checkers – for 
computers and humans. 
 How much computation was done in the proof? Roughly 
speaking, there are 107 positions in the stored proof tree, 
each representing a search of 107 positions (relatively small 
because of the extensive disk I/O). Hence, 1014 is a good 
ballpark estimate of the forward search effort. 
 Should we be impressed with “only” 1014 computations? 
At one extreme, checkers could be solved using storage – 
build endgame databases for the complete search space. 
This would require 5x1020 data entries. Even an excellent 
compression algorithm might only reduce this to 1018 bytes, 
impractical with today’s technology. This also makes it 
unlikely that checkers will soon be strongly solved. 
 An alternative would be to use only computing: build a 
search tree using the Alpha-Beta algorithm. Consider the 
following unreasonably optimistic assumptions: number of 
moves to consider is 8 in non-capture positions, a game 
lasts 70 ply, all captures are of a single piece (23 capture 
moves), and Alpha-Beta search does the least possible 
work. The assumptions result in a search tree of 8(70-23) = 
847 states. The perfect Alpha-Beta search will halve the 
exponent, leading to a search of roughly 847/2 ≈ 1021. This 
would take more than a lifetime to search, given current 
technology. 
 Conclusion. What is the scientific significance of this 
result? The early research was devoted to developing 
CHINOOK and demonstrating super-human play in checkers, 
a milestone that predated the DEEP BLUE success. The 
project has been a marriage of research in artificial 
intelligence and parallel computing – with contributions 
made in each of these areas. Of interest is that this research 
has been used by a bioinformatics company; real-time 
access of very large data sets for use in parallel search is as 
relevant for solving a game as it is for biological 
computations. 
 The checkers computation pushes the boundary of what 
can be achieved by search-intensive algorithms. It provides 
compelling evidence of the power of limited-knowledge 
approaches to artificial intelligence. Deep search implicitly 
uncovers knowledge. Furthermore, search algorithms are 
well poised to take advantage of the dramatic increase in 
on-chip parallelism that multi-core computing will soon 
offer. Search-intensive approaches to AI will play an 
increasingly important role in the evolution of the field. 
 With checkers done, the obvious question is whether 
chess is solvable. Checkers has roughly the square root of 



 

/ www.sciencexpress.org / 19 July 2007 / Page 5 / 10.1126/science.1144079 

the number of positions in chess (somewhere in the 1040-
1050 range). Given the effort required to solve checkers, 
chess will remain unsolved for a long time, barring the 
invention of new technology. The disk-flipping game of 
Othello is the next popular game that is likely to be solved, 
but it will require considerably more resources than were 
needed to solve checkers (7). 
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Fig. 1. Black to play and draw. (A) Standard starting board. 
(B) Square numbers used for move notation. 

Fig. 2. Forward and backward search. 

Fig. 3. The first three moves of the checkers proof tree. 
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Table 1. The number of positions in the game of checkers. 

Pieces Number of Positions Pieces Number of Positions 
1 120 11 259,669,578,902,016 
2 6,972 12 1,695,618,078,654,976 
3 261,224 13 9,726,900,031,328,256 
4 7,092,774 14 49,134,911,067,979,776 
5 148,688,232 15 218,511,510,918,189,056 
6 2,503,611,964 16 852,888,183,557,922,816 
7 34,779,531,480 17 2,905,162,728,973,680,640 
8 406,309,208,481 18 8,568,043,414,939,516,928 
9 4,048,627,642,976 19 21,661,954,506,100,113,408 
10 34,778,882,769,216 20 46,352,957,062,510,379,008 
  21 82,459,728,874,435,248,128 
  22 118,435,747,136,817,856,512 
  23 129,406,908,049,181,900,800 
  24 90,072,726,844,888,186,880 
Total 1-10 39,271,258,813,439 Total 1-24 500,995,484,682,338,672,639 

 

Table 2. Openings solved. Note that the total does not match the sum of the 19 openings. The combined tree has some 
duplicated nodes, which have been removed when reporting the total. 

# Opening Proof Searches Max ply Minimal size Max ply 
1 09-13 22-17 13-22 Draw 736,984 56 275,097 55 
2 09-13 21-17 05-09 Draw 1,987,856 154 684,403 85 
3 09-13 22-18 10-15 Draw 715,280 103 265,745 58 
4 09-13 23-18 05-09 Draw 671,948 119 274,376 94 
5 09-13-23-19 11-16 Draw 964,193 85 358,544 71 
6 09-13 24-19 11-15 Draw 554,265 53 212,217 49 
7 09-13 24-20 11-15 Draw 1,058,328 59 339,562 58 
8 09-14 23-18 14-23 ≤Draw 2,202,533 77 573,735 75 
9 10-14 23-18 14-23 ≤Draw 1,296,790 58 336,175 55 
10 10-15 22-18 15-22 ≤Draw 543,603 60 104,882 41 
11 11-15 22-18 15-22 ≤Draw 919,594 67 301,310 59 
12 11-16 23-19 16-23 ≤Draw 1,969,641 69 565,202 64 
13 12-16 24-19 09-13 Loss 205,385 44 49,593 40 
14 12-16 24-19 09-14 ≤Draw 61,279 45 23,396 44 
15 12-16 24-19 10-14 ≤Draw 21,328 31 8,917 31 
16 12-16 24-19 10-15 ≤Draw 31,473 35 13,465 35 
17 12-16 24-19 11-15 ≤Draw 23,803 34 9,730 34 
18 12-16 24-19 16-20 ≤Draw 283,353 49 113,210 49 
19 12-16 24-19 08-12 ≤Draw 266,924 49 107,109 49 
Overall  Draw Total 

15,123,711 
Max 
154 

Total 
3,301,807 

Max 
94 

 
 








