

/ www.sciencexpress.org / 19 July 2007 / Page 1 / 10.1126/science.1144079

The game of checkers has roughly 500 billion billion
possible positions (5 × 1020). The task of solving the
game, determining the final result in a game with no
mistakes made by either player, is daunting. Since 1989,
almost continuously, dozens of computers have been
working on solving checkers, applying state-of-the-art
artificial intelligence techniques to the proving process.
This paper announces that checkers is now solved:
perfect play by both sides leads to a draw. This is the
most challenging popular game to be solved to date,
roughly one million times more complex than Connect
Four. Artificial intelligence technology has been used to
generate strong heuristic-based game-playing
programs, such as DEEP BLUE for chess. Solving a game
takes this to the next level, by replacing the heuristics
with perfection.

Since Claude Shannon’s seminal paper on the structure of a
chess-playing program in 1950 (1), artificial intelligence
researchers have developed programs capable of
challenging and defeating the strongest human players in
the world. Super-human-strength programs exist for
popular games such as chess [DEEP FRITZ (2)], checkers
[CHINOOK (3)], Othello [LOGISTELLO (4)] and Scrabble
[MAVEN (5)]. However strong these programs are, they are
not perfect. Perfection implies solving a game: determining
the final result (game-theoretic value) when neither player
makes a mistake. There are three levels of solving a game
(6). For the lowest level, ultra-weakly solved, the perfect-
play result is known but not a strategy for achieving that
value (e.g., Hex is a first-player win, but for large board
sizes the winning strategy is not known (7)). For weakly
solved games, both the result and a strategy for achieving it
from the start of the game are known (e.g., Go Moku is a
first-player win and a program can demonstrate the win
(6)). Strongly solved games have the result computed for
all possible positions that can arise in the game (e.g., Awari
(8)).
 Checkers (8 × 8 draughts) is a popular game enjoyed by
millions of people worldwide, with numerous annual
tournaments and a series of competitions that determine the
world champion. There are numerous variants of the game
played around the world. The game that is popular in North
American and the (former) British Commonwealth has
pieces (checkers) moving forward one square diagonally,
kings moving forward or backward one square diagonally,
and a forced-capture rule (see online supporting text).
 The effort to solve checkers began in 1989 and the
computations needed to achieve that result have been
running almost continuously since then. At the peak in

1992, over 200 processors were being used simultaneously.
The end result is one of the longest running computations
completed to date.
 This paper announces that checkers has been weakly
solved. From the starting position (Fig. 1A), we have a
computational proof that checkers is a draw. The proof
consists of an explicit strategy that never loses – the
program can achieve at least a draw against any opponent,
playing either the black or white pieces. That checkers is a
draw is not a surprise; grandmaster players have
conjectured this for decades.
 The checkers result pushes the boundary of artificial
intelligence (AI). In the early days of AI research, the
easiest path to achieving high performance was seen to be
emulating the human approach. This was fraught with
difficulty, especially the problems of capturing and
encoding human knowledge. Human-like strategies are not
necessarily the best computational strategies. Perhaps the
biggest contribution of applying AI technology to
developing game-playing programs was the realization that
a search-intensive (“brute-force”) approach could produce
high-quality performance using minimal application-
dependent knowledge. Over the past two decades, powerful
search techniques have been developed and successfully
applied to problems such as optimization, planning, and
bioinformatics. The checkers proof extends this approach,
by developing a program that has little need for
application-dependent knowledge and is almost completely
reliant on search. With advanced AI algorithms and
improved hardware (faster processors, larger memories,
and larger disks), it becomes possible to push the limits on
the type and size of problems that can be solved. Even so,
the checkers search space (5 × 1020) represents a daunting
challenge for today’s technology.
 Computer proofs in areas other than games have been
done numerous times. Perhaps the best known is the four
color theorem (9). This deceptively simple conjecture –
given an arbitrary map with countries, you need at most
four different colors to guarantee that no two adjoining
countries have the same color – has been extremely
difficult to prove analytically. In 1976, a computational
proof was demonstrated. Despite the convincing result,
some mathematicians were skeptical, distrusting proofs that
had not been verified using human-derived theorems.
Although important components of the checkers proof have
been independently verified, there may be skeptics.
 This article describes the background behind the effort
to solve checkers, the methods used for achieving the
result, an argument that the result is correct, and the

Checkers Is Solved
Jonathan Schaeffer,* Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller, Robert Lake, Paul Lu, Steve Sutphen

Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada.

*To whom correspondence should be addressed. E-mail: jonathan@cs.ualberta.ca

/ www.sciencexpress.org / 19 July 2007 / Page 2 / 10.1126/science.1144079

implications of this research. The computer proof is online
at www.cs.ualberta.ca/~chinook.
 Background. The development of a strong checkers
program began in the 1950s with Arthur Samuel’s
pioneering work in machine learning. In 1963, his program
played a match against a capable player, winning a single
game. This result was heralded as a triumph for the
fledgling field of AI. Over time, the result was exaggerated,
resulting in claims that checkers was now “solved” (3).
 The CHINOOK project began in 1989 with the goal of
building a program capable of challenging the world
checkers champion. In 1990, CHINOOK earned the right to
play for the World Championship. In 1992, World
Champion Marion Tinsley narrowly defeated CHINOOK in
the title match. In the 1994 rematch, Tinsley withdrew part
way due to illness. He passed away eight months later. By
1996 CHINOOK was much stronger than all human players,
and with faster processors this gap has only grown (3).
 Tinsley was the greatest checkers player that ever lived,
compiling an incredible record that included only three
losses in the period 1950-1991. The unfinished Tinsley
match left the question unanswered as to who was the
better player. If checkers were a proven draw, then a
“perfect” CHINOOK would never lose. As great as Tinsley
was, he occasionally made losing oversights – he was
human after all. Hence, solving checkers would once and
for all establish computers as better than all fallible
humans.
 Numerous non-trivial games have been solved,
including Connect Four (6, 10), Qubic (6), Go-Moku (6),
Nine Men’s Morris (11), and Awari (8). The perfect-play
result and a strategy for achieving that result is known for
these games. How difficult is it to solve a game? There are
two dimensions to consider (6):
 • Decision complexity, the difficulty of making correct
move decisions, and
 • Space complexity, the size of the search space.
 Checkers is considered to have high decision complexity
(it requires extensive skill to make strong move choices)
and moderate space complexity (5 × 1020, see Table 1). All
the games solved thus far have either low decision
complexity (Qubic; Go-Moku), low space complexity
(Nine Men's Morris, size 1011; Awari, size 1012) or both
(Connect Four, size 1014).
 Solving checkers. Checkers represents the most
computationally challenging game solved to date. The
proof procedure has three algorithm/data components (12):
 1. Endgame databases (backward search). Computations
from the end of the game back towards the starting position
have resulted in a database of 3.9 × 1013 positions (all
positions with ≤ 10 pieces on the board) for which the
game-theoretic value has been computed (strongly solved).
 2. Proof-tree manager (forward search). This component
maintains a tree of the proof in progress (a sequence of
moves and their best responses), traverses it, and generates
positions that need to be explored to further the proof's
progress.
 3. Proof solver (forward search). Given a position to
search by the manager, this component uses two programs
to determine the value of the position. These programs
approach the task in different ways, thus increasing the
chances of obtaining a useful result.

 Figure 2 illustrates this approach. It plots the number of
pieces on the board (vertically) versus the logarithm of the
number of positions (Table 1). The endgame database
phase of the proof is the shaded area; all positions with ≤
10 pieces. The inner oval area illustrates that only a portion
of the search space is relevant to the proof. Positions may
be irrelevant because they are unreachable or are not
required for the proof. The little circles illustrate positions
with more than 10 pieces for which a value has been
proven by a solver. The figure also shows the boundary
between the top of the proof tree that the manager sees (and
stores on disk) and the parts that are computed by the
solvers (and are not saved to reduce disk storage needs).
 In the manager, the proof tree can be hand-seeded with
an initial line of play. From the human literature, a single
“best” line of play was identified and used to guide the
initial foray of the manager into the depths of the search
tree. Although not essential for the proof, this is an
important performance enhancement. It allows the proof
process to immediately focus its work on the parts of the
search space that are likely to be relevant. Without it, the
manager may spend unnecessary effort looking for an
important line to explore. The line leads from the start of
the game into the endgame databases (Fig. 2).
 Backward search. Positions at the end of the game can
be searched and their win/loss/draw value determined. The
technique is called retrograde analysis, and has been
successfully used for many games. The algorithm works
backwards by starting at the end of the game and working
towards the start. It enumerates all 1-piece positions,
determining their value (in this case, a trivial win for the
side with the piece). Next all 2-piece positions are
enumerated and analyzed. The analysis for each position
eventually leads to a 1-piece position with a known value,
or a repeated position (draw). Next, all the 3-piece
positions are tackled, and so forth (see supporting online
text). Our program has computed all the positions with ≤10
pieces on the board. The endgame databases are crucial to
solving checkers. The checkers forced-capture rule quickly
results in many pieces being removed from the board,
giving rise to a position with ≤10 pieces – and a known
value.
 The databases contain the win/loss/draw result for a
position, not the number of moves to a win/loss.
Independent research has discovered a 10-piece database
position requiring a 279-ply move sequence to demonstrate
a forced win (a ply is one move by one player) (13). This is
a conservative bound, as the win length has not been
computed for the more difficult (and more interesting)
database positions.
 The complete 10-piece databases contain 39 trillion
positions (Table 1). They are compressed into 237
gigabytes, an average of 154 positions per byte! A custom
compression algorithm was used which allows for rapid
localized real-time decompression (14). This means that the
backward and forward search programs can quickly extract
information from the databases with a relatively small
overhead.
 The first databases, constructed in 1989, were for ≤4
pieces. In 1994, CHINOOK used a subset of the 8-piece
database for the Tinsley match (3). By 1996, the 8-piece
database was completed, giving rise to hope that checkers

/ www.sciencexpress.org / 19 July 2007 / Page 3 / 10.1126/science.1144079

could be solved. However, the problem was still too hard,
and the effort came to a halt. In 2001, realizing that
computer capabilities had increased dramatically, the effort
was restarted. It took seven years (1989-1996) to compute
the 8-piece databases; in 2001 it took only a month! In
2005, the 10-piece database computation finished. At this
point, all computational resources were focused on the
forward search effort.
 Forward search. Development of the forward search
program began in 2001, with the production version up and
running in 2004. The forward search consists of two parts:
the proof-tree manager, which builds the proof by
identifying positions that need to be assessed, and the proof
solvers, which search individual positions.
 The manager maintains the master copy of the proof,
and identifies a prioritized list of positions that need to be
examined using the Proof Number search algorithm (6).
Typically several hundred positions of interest are
generated at a time, so as to keep multiple computers busy.
Over the past year, we averaged using 50 computers
continuously.
 The solvers get a position to evaluate from the manager.
The result of a position evaluation can be proven (win, loss,
draw), partially proven (at least a draw, at most a draw), or
heuristic (an estimate of how good or bad a position is).
Proven positions need no further work; partially proven
positions need additional work if the manager determines
that a proven value is needed. If no proven information is
available then the solver returns a heuristic assessment of
the position. The manager uses this assessment to prioritize
which positions to consider next. The manager updates the
proof tree with the new information, decides on which
positions need further investigation, and generates new
work to do. This process is repeated until a proven result
for the game is determined.
 The solver uses two search programs to evaluate a
position. The first program (targeted at 15 seconds, but
sometimes much longer) uses CHINOOK to determine a
heuristic value for the position (Alpha-Beta search to
nominal search depths of 17-23 ply). Occasionally this
search determines that the position is a proven win or a
loss. CHINOOK was not designed to produce a proven draw,
only a heuristic draw; demonstrating proven draws in a
heuristic search seriously degrades performance.
 The Alpha-Beta search algorithm is the mainstay of
game-playing programs. The algorithm does a depth-first,
left-to-right traversal of the search tree (15) (see supporting
online text). The algorithm propagates heuristic bounds on
the value of a position: the minimum value that the side to
move can achieve and the maximum value that the
opponent can limit the side to move to. Lines of play that
are provably outside this range are irrelevant and can be
eliminated (cutoff). A d-ply search with an average of b
moves to consider in every position results in a tree with
roughly bd positions. In the best case, the Alpha-Beta
algorithm needs only examine bd/2 positions.
 If CHINOOK does not find a proven result, then a second
program is invoked (100 seconds). It uses the Df-pn
algorithm (16), a space-efficient variant of Proof Number
search. The search returns a proven, partially proven, or
unknown result.

 Algorithms based on proof numbers maintain a measure
of the difficulty of proving a position. This difficulty is
expressed as a proof number, a lower bound on the
minimum number of positions that need to be explored to
result in the position being proven. The algorithm
repeatedly expands the tree below the position requiring the
least effort to impact the original position (a “best-first”
approach). The result of that search is propagated back up
the tree, and a new best candidate to consider is
determined. Proof number search was specifically invented
to facilitate the proving of games. The Df-pn variant builds
the search tree in a depth-first manner, requiring less
computer storage.
 Iterative search algorithms are commonplace in the AI
literature. Most iterate on search depth (first 1 ply, then 2,
then 3, etc.). The manager uses the novel approach of
iterating on the error in CHINOOK’s heuristic scores (12).
The manager uses a threshold, t, and assumes that all
heuristic scores ≥t are wins and all scores ≤-t are losses. It
then proves the result given this assumption. Once
completed, t is increased to t+∆ and the process is repeated.
Eventually t reaches the value of a win and the proof is
complete. This iterative approach concentrates the effort on
forming the outline of the proof with low values of t, and
then fleshing out the details with the rest of the
computation.
 One complication is the graph-history interaction (GHI)
problem. It is possible to reach the same position through
two different sequences of moves. This means that some
draws (e.g., draws by repetition) depend on the moves
played leading to the duplicated position. In standard
search algorithms, GHI may cause some positions to be
incorrectly inferred as drawn. Part of this research project
was to develop an improved algorithm for addressing the
GHI problem (17).
 Correctness. Given a computation that has run for so
long on many processors, an important question to ask is
“Are the results correct?” Early on in the computation, we
realized that there were many potential sources of errors,
including algorithm bugs and data transmission errors.
Great care has been taken to eliminate any possibility of
error by verifying all computation results and doing
consistency checks. As well, some of the computations
have been independently verified (see supporting online
text).
 Even if an error has crept into the calculations, it likely
does not change the final result. Assume a position that is
40 ply away from the start is incorrect. The probability that
this erroneous result can propagate up 40 ply and change
the value for the game of checkers is vanishingly small
(18).
 Results. Our approach to solving the game was to
determine the game-theoretic result by doing the least
amount of work. In tournament checkers, the standard
starting position (Fig. 1A) is considered “boring”, so the
first three moves (ply) of a game are randomly chosen at
the start. The checkers proof consisted of solving 19 three-
move openings, leading to a determination of the starting
position’s value: a draw. Although there are roughly 300
three-move openings, over 100 are duplicates (move
transpositions). The rest can be proven to be irrelevant by
an Alpha-Beta search.

/ www.sciencexpress.org / 19 July 2007 / Page 4 / 10.1126/science.1144079

 Table 2 shows the results for the 19 openings solved to
determine the perfect-play result for checkers. (Other
openings have been solved but are not included here.) The
table shows the opening moves (using the standard square
number scheme in Fig. 1B), the result, the number of
positions given to the solvers, and the position furthest
from the start of the game that was searched. After an
opening was proven, a post-processing program pruned the
tree to eliminate all the computations that were not part of
the smallest proof tree. In hindsight, the pruned work was
unnecessary, but was not so at the time that it was assigned
for evaluation. The last two columns of Table 2 give the
size and ply depth of this minimal tree. Figure 3 shows the
proof tree for the first three ply. The diagram shows the
move sequences using the notation from Fig. 1B, with the
from-square and to-square of the move separated by a dash.
The result of each position is given for Black, the first
player to move (“= D”, a proven draw; “= L”, a proven
loss; “<= D”, loss or draw; and “>=D”, draw or win). In
some positions, only one move needs to be considered; the
rest are cutoff, as indicated by the rotated “T”. Some
positions have only one legal move because of the forced-
capture rule.
 The leftmost move sequence in Fig. 3 is as follows:
Black moves 09-13, White replies 22-17, and then Black
moves 13-22. The resulting position has been searched and
shown to be a draw (=D; opening line 1 in Fig. 3). That
means the position after 22-17 is also a draw, since there is
only one legal move available (13-22) and it is a proven
draw. What is the value of the position after Black moves
09-13? To determine this, all possible moves for White
have to be considered. The move 22-17 guarantees White at
least a draw (at most a draw for Black). But it is possible
that this position is a win for White (loss for Black). The
remaining moves (21-17, 22-18, 23-18, 23-19, 24-19 and
24-20; opening lines 2-7 in Fig. 3) are all shown to be at
least a draw for Black (>= D). Hence White prefers the
move 22-17 (no worse than any other move). Thus, 09-13
leads to a draw (White will move 22-17 in response).
 Given that 09-13 is a draw, it remains to demonstrate
that the other opening moves cannot win for Black. Note
that some openings have a proven result, while for others
only the partial result needed for the proof was computed.
The number of openings is small because the forced-
capture rule was exploited. Opening lines 13-19 in Fig. 3
are needed to prove that the opening 12-16 is not a win.
Actually, one opening would have sufficed (12-16 23-19
16-23). However human analysts consider this line to be
winning for Black, and the preliminary analysis agreed.
Hence, the seven openings beginning with the moves 12-16
24-19 were proved instead. This led to the least amount of
computing.
 There is anecdotal evidence that the proof tree is correct.
Main lines of play were manually compared to human
analysis (19), with no errors found in the computer’s results
(unimportant errors were found in the human analysis).
 The proof tree shows the perfect lines of play needed to
achieve a draw. If one side makes a losing mistake, the
proof tree may not necessarily show how to win. This
additional information is not necessary for proving the
draw result.

 The stored proof tree is “only” 107 positions. Saving the
entire proof tree, from the start of the game so that every
line ends in an endgame database position, would require
many tens of terabytes, resources that were not available.
Instead only the top of the proof tree, the information
maintained by the manager, is stored on disk. When a user
queries the proof, if the end of a line of play in the proof is
reached, then the solver is used to continue the line into the
databases. This dramatically reduces the storage needs, at
the cost of re-computing (roughly two minutes per search).
 The longest line analyzed was 154 ply. The position at
the end of this line was analyzed by the solver, and that
analysis may have gone 20 or more ply deep. At the end of
this analysis is a database position, which could be the
result of several hundred ply of analysis. This provides
supporting evidence of the difficulty of checkers – for
computers and humans.
 How much computation was done in the proof? Roughly
speaking, there are 107 positions in the stored proof tree,
each representing a search of 107 positions (relatively small
because of the extensive disk I/O). Hence, 1014 is a good
ballpark estimate of the forward search effort.
 Should we be impressed with “only” 1014 computations?
At one extreme, checkers could be solved using storage –
build endgame databases for the complete search space.
This would require 5x1020 data entries. Even an excellent
compression algorithm might only reduce this to 1018 bytes,
impractical with today’s technology. This also makes it
unlikely that checkers will soon be strongly solved.
 An alternative would be to use only computing: build a
search tree using the Alpha-Beta algorithm. Consider the
following unreasonably optimistic assumptions: number of
moves to consider is 8 in non-capture positions, a game
lasts 70 ply, all captures are of a single piece (23 capture
moves), and Alpha-Beta search does the least possible
work. The assumptions result in a search tree of 8(70-23) =
847 states. The perfect Alpha-Beta search will halve the
exponent, leading to a search of roughly 847/2 ≈ 1021. This
would take more than a lifetime to search, given current
technology.
 Conclusion. What is the scientific significance of this
result? The early research was devoted to developing
CHINOOK and demonstrating super-human play in checkers,
a milestone that predated the DEEP BLUE success. The
project has been a marriage of research in artificial
intelligence and parallel computing – with contributions
made in each of these areas. Of interest is that this research
has been used by a bioinformatics company; real-time
access of very large data sets for use in parallel search is as
relevant for solving a game as it is for biological
computations.
 The checkers computation pushes the boundary of what
can be achieved by search-intensive algorithms. It provides
compelling evidence of the power of limited-knowledge
approaches to artificial intelligence. Deep search implicitly
uncovers knowledge. Furthermore, search algorithms are
well poised to take advantage of the dramatic increase in
on-chip parallelism that multi-core computing will soon
offer. Search-intensive approaches to AI will play an
increasingly important role in the evolution of the field.
 With checkers done, the obvious question is whether
chess is solvable. Checkers has roughly the square root of

/ www.sciencexpress.org / 19 July 2007 / Page 5 / 10.1126/science.1144079

the number of positions in chess (somewhere in the 1040-
1050 range). Given the effort required to solve checkers,
chess will remain unsolved for a long time, barring the
invention of new technology. The disk-flipping game of
Othello is the next popular game that is likely to be solved,
but it will require considerably more resources than were
needed to solve checkers (7).

References and Notes
1. C. Shannon, Philos. Mag. 41, 256 (1950).
2. “The Duel: Man vs. Machine”

(www.rag.de/microsite_chess_com, 2007).
3. J. Schaeffer, One Jump Ahead (Springer-Verlag, New

York, 1997).
4. M. Buro, IEEE Intell. Syst. J. 14, 12 (November-

December 1999).
5. B. Sheppard, thesis, Universiteit Maastricht (2002).
6. V. Allis, thesis, University of Limburg (1994).
7. J. van den Herik, J. Uiterwijk, J. van Rijswijck, Artif.

Intell. 134, 277 (2002).
8. J. Romein, H. Bal, IEEE Computer 36, 26 (October

2003).
9. K. Appel, W. Haken, Sci. Am. 237, 108 (September

1977).
10. “John’s Connect Four Playground”

(http://homepages.cwi.nl/~tromp/c4/c4.html, 2007).
11. R. Gasser, thesis, ETH Zürich (1995).
12. J. Schaeffer et al., “Solving Checkers”

(www.ijcai.org/papers/0515.pdf, 2005).
13. “Longest 10PC MTC”

(http://pages.prodigy.net/eyg/Checkers/longest-10pc-
mtc.htm, 2007).

14. J. Schaeffer et al., in Advances in Computer Games, J.
van den Herik, H. Iida, E. Heinz, Eds. (Kluwer,
Dordrecht, Netherlands, 2003).

15. D. Knuth, R. Moore, Artif. Intell. 6, 293 (1975).
16. A. Nagai, thesis, University of Tokyo (2002).
17. A. Kishimoto, M. Müller, in Proceedings of the

Nineteenth National Conference on Artificial
Intelligence (AAAI Press, Menlo Park, CA, 2004), pp.
644–649.

18. D. Beal, thesis, Universiteit Maastricht (1999).
19. R. Fortman, Basic Checkers

(http://home.clara.net/davey/basicche.html, 2007).
20. The support of NSERC, iCORE, CFI, WestGrid and the

University of Alberta is greatly appreciated. Numerous
people contributed to this work including Martin Bryant,
Joe Culberson, Brent Gorda, Brent Knight, Duane
Szafron, Ken Thompson and Norman Treloar.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1144079/DC1
Materials and Methods
Figs. S1 to S4
References

20 April 2007; accepted 6 July 2007
Published online 19 July 2007; 10.1126/science.1144079
Include this information when citing this paper.

Fig. 1. Black to play and draw. (A) Standard starting board.
(B) Square numbers used for move notation.

Fig. 2. Forward and backward search.

Fig. 3. The first three moves of the checkers proof tree.

/ www.sciencexpress.org / 19 July 2007 / Page 6 / 10.1126/science.1144079

Table 1. The number of positions in the game of checkers.

Pieces Number of Positions Pieces Number of Positions
1 120 11 259,669,578,902,016
2 6,972 12 1,695,618,078,654,976
3 261,224 13 9,726,900,031,328,256
4 7,092,774 14 49,134,911,067,979,776
5 148,688,232 15 218,511,510,918,189,056
6 2,503,611,964 16 852,888,183,557,922,816
7 34,779,531,480 17 2,905,162,728,973,680,640
8 406,309,208,481 18 8,568,043,414,939,516,928
9 4,048,627,642,976 19 21,661,954,506,100,113,408
10 34,778,882,769,216 20 46,352,957,062,510,379,008
 21 82,459,728,874,435,248,128
 22 118,435,747,136,817,856,512
 23 129,406,908,049,181,900,800
 24 90,072,726,844,888,186,880
Total 1-10 39,271,258,813,439 Total 1-24 500,995,484,682,338,672,639

Table 2. Openings solved. Note that the total does not match the sum of the 19 openings. The combined tree has some
duplicated nodes, which have been removed when reporting the total.

Opening Proof Searches Max ply Minimal size Max ply
1 09-13 22-17 13-22 Draw 736,984 56 275,097 55
2 09-13 21-17 05-09 Draw 1,987,856 154 684,403 85
3 09-13 22-18 10-15 Draw 715,280 103 265,745 58
4 09-13 23-18 05-09 Draw 671,948 119 274,376 94
5 09-13-23-19 11-16 Draw 964,193 85 358,544 71
6 09-13 24-19 11-15 Draw 554,265 53 212,217 49
7 09-13 24-20 11-15 Draw 1,058,328 59 339,562 58
8 09-14 23-18 14-23 ≤Draw 2,202,533 77 573,735 75
9 10-14 23-18 14-23 ≤Draw 1,296,790 58 336,175 55
10 10-15 22-18 15-22 ≤Draw 543,603 60 104,882 41
11 11-15 22-18 15-22 ≤Draw 919,594 67 301,310 59
12 11-16 23-19 16-23 ≤Draw 1,969,641 69 565,202 64
13 12-16 24-19 09-13 Loss 205,385 44 49,593 40
14 12-16 24-19 09-14 ≤Draw 61,279 45 23,396 44
15 12-16 24-19 10-14 ≤Draw 21,328 31 8,917 31
16 12-16 24-19 10-15 ≤Draw 31,473 35 13,465 35
17 12-16 24-19 11-15 ≤Draw 23,803 34 9,730 34
18 12-16 24-19 16-20 ≤Draw 283,353 49 113,210 49
19 12-16 24-19 08-12 ≤Draw 266,924 49 107,109 49
Overall Draw Total

15,123,711
Max
154

Total
3,301,807

Max
94

