
Specifying and Analyzing Early Requirements: Some Experimental Results

Ariel Fuxman
�

Lin Liu
�

Marco Pistore
��� �

Marco Roveri
�

John Mylopoulos
��� �

�
Department of Computer Science, University of Toronto, 40 St. George St. M5S 2E4, Toronto, Canada�

Department of Information and Comm. Technology, University of Trento, Via Sommarive 14, I-38050, Trento, Italy�
ITC-IRST, Via Sommarive 18, I-38050, Trento, Italy	

afuxman,liu,jm
 @cs.toronto.edu pistore@dit.unitn.it roveri@irst.itc.it

Abstract
Formal Tropos is a specification language for early re-

quirements. It is based on concepts from an agent-oriented
early requirement model framework (i*) and extends them
with a rich temporal specification language. In earlier
work, we demonstrated through a small case study how
model checking could be used to verify early requirements
written in Formal Tropos. In this paper we address issues
of methodology and scalability for our earlier proposal. In
particular, we propose guidelines for producing a Formal
Tropos specification from an i* diagram and for deciding
what model checking technique to use when a particular
formal property is to be validated. We also evaluate the
scope and scalability of our proposal using a tool, the T-
Tool, that maps Formal Tropos specifications to a language
that can be handled by NUSMV, a state-of-the-art model
checker. Our experiments are based on a course manage-
ment case study.

1. Introduction

Early requirements engineering [18] is concerned with
the analysis of the operational environment where a soft-
ware system will eventually function. For organiza-
tional software, this environment consists of stakehold-
ers and their objectives, business processes, and inter-
dependencies. Early requirements engineering is usually
done informally (if at all), and errors or misunderstandings
at this stage are both frequent and costly. We are working
on the development of a formal framework for modeling
and analyzing early requirements. Our framework adapts
results from the formal methods community to offer means
for the precise modeling and analysis of an organizational
environment.

Formal methods have been successfully applied to the
verification and certification of software systems. In sev-
eral industrial fields, formal methods are becoming integral
components of standards [5]. Generally, formal methods
have been applied to later phases of the development pro-
cess, e.g., at the architectural or detailed design phase. This
is basically due to mismatches between the constructs sup-
ported by formal specification languages and the concepts

used in (early) requirements.
The framework we propose supports the automatic veri-

fication of early requirements specified in a formal model-
ing language. This framework is part of a wider on-going
project called Tropos, whose aim is to develop an agent-
oriented software engineering methodology, starting from
early requirements. The methodology is to be supported by
a variety of analysis tools based on formal methods. In this
paper we focus on the application of model checking tech-
niques to early requirement specifications.

The Formal Tropos (hereafter FT) specification lan-
guage [10, 11] has integrated concepts from i* [18] with a
temporal specification language. In [10, 11] the formal ver-
ification of an FT specification was performed using stan-
dard model checking techniques. A simple case study was
used to illustrate the benefits of the formal analysis during
early requirement analysis, e.g., by revealing incomplete-
ness or inconsistencies that were not trivial to discover in
an informal setting.

In this paper we tackle the problem of applying the tech-
niques of [10, 11] to a case study of more substantial size
than the example used in [10, 11], and discuss extensions,
refinements and improvements we have developed to this
purpose. We also introduce a prototype tool, called the T-
Tool, which is based on the state-of-the-art symbolic model
checker NUSMV [8]. The T-Tool automatically translates
an FT specification into an Intermediate Language (IL)
specification that could potentially link FT with different
verification engines. The IL representation is then auto-
matically translated into NUSMV, which performs differ-
ent kinds of formal analysis, such as consistency checking,
animation of the specification, and property verification.

In addition, we define some general heuristic techniques
for rewriting an i* diagram into a corresponding FT speci-
fication. We also offer guidelines on how to use the T-Tool
effectively for formal analysis, e.g., by suggesting what
model checking technique to use when a particular formal
property is to be validated. Finally, we report the results of
a series of experiments that we have conducted in order to
evaluate the scope and scalability of the approach.

The paper is structured as follows. Section 2 shows how
to build an FT specification from an i* model. In Section 3

Figure 1. Annotated i* model of the course exam management case study

we present the T-Tool, focusing on its functionalities, ar-
chitecture, and usage guidelines. Section 4 presents the ex-
periments we carried out. Section 5 discusses related work,
draws conclusions, and outlines future work.

2. From i* to Formal Tropos – A case study

In this section we use a course exam management case
study to describe how an FT specification can be obtained
from an i* model.

2.1. Strategic modeling with i*

The i* framework [18] supports goal- and agent-oriented
modeling of early requirements of complex systems. It of-
fers three main categories of concepts: actors, intentional
elements, and intentional links. An actor is an active entity
that carries out actions to achieve its goals. Figure 1 depicts
the i* model of a course exam management case study with
its two main actors — a Student and a Teacher. From the i*
diagram, we can see that each actor has her own high-level
goals/tasks and alternative ways to refine and operationalize
them. Moreover, the goal hierarchies of the actors are inter-
connected through dependency/delegation relationships, in
terms of which individual actors form social and operational
networks.

Intentional elements in i* include goals, softgoals, tasks,
and resources, and can either be internal to an actor, or
define dependency relationships between actors. A goal
(rounded rectangle) is a condition or state of affairs in the
world that the stakeholders would like to achieve. For ex-
ample, a student’s objective to pass a course is modeled
as goal Pass[Course]. A softgoal (irregular curvilinear

shape) is typically a non-functional attribute, with no clear-
cut criteria as to when it is achieved. For instance, the fact
that a student may want that the marking of her exam is
fair is modeled as softgoal FairMarking[Exam]. A task
(hexagon) specifies a particular course of action that pro-
duces a desired effect. In our example, all intentional ele-
ments of Teacher are modeled as tasks. A resource (rect-
angle) is a physical or information entity. Thus, Instruc-
tions[Exam], Answer[Exam], and Mark[Exam] are mod-
eled as resources. In Figure 1 a boundary delimits the in-
tentional elements internal to an actor. Intentional elements
outside the boundaries correspond to goals, softgoals, tasks
and resources whose responsibility is delegated from one
actor to another.

Intentional links include means-ends, decomposition,
contribution and dependency links. Each element con-
nected to a goal by a means-ends link () is an alterna-
tive way to achieve the goal. For instance, in order to pass a
course (Pass[Course]), a student can pass all the exams of
the course (Pass[Exam]), or can do a research project for
the course (DoResearchProject[Course]). Decomposition
links () define a refinement for a task. For instance, if
the student wants to pass an exam (Pass[Exam]), she needs
to attend the exams (Take[Exam]), and get a passing mark
(GetPassingMark[Exam]). A contribution link () de-
scribes the impact that an element has on another. This can
be negative or positive (FairMarking[Exam]), and its ex-
tent can be partial or sufficient. Dependency links ()
describe inter-agent dependencies. For example, the stu-
dent depends on her teacher for Instructions[Exam] and
Mark[Exam], while the teacher depends on the student for
Answer[Exam] and Honesty.

In Figure 1 we have annotated the i* model with ad-

ditional constraints on the valid dynamics of the domain.
Prior-to links () can be used to represent the tem-
poral order of tasks. For example, a student can only
write a report after studying for the course, and can only
get a passing mark after she actually takes the exam.
The numbers labeling the links define cardinality con-
straints. For instance, for each Pass[Course] goal there
must be at least one Pass[Exam] subgoal, while to sat-
isfy the student’s expectation on the fairness of marking
(FairMarking[Exam]) there may be zero or more petitions
(PostExamDiscussion[Exam,Mark]). Links without num-
ber suggest one-to-one connections.

2.2. Formal Tropos specifications

An FT specification extends an i* model with annota-
tions in an expressive temporal specification language that
permits to restrict the valid behaviors of the model. With
an FT specification, one can ask questions such as: Can we
construct valid operational scenarios based on the model?
Is it possible to fulfill the primary goals of actors in the cur-
rent model? Do the decomposition links and the prior-to
constraints induce a meaningful temporal order for goal ful-
fillment? Do the dependencies represent a valid synergy or
synchronization between actors?

An FT specification consists of a sequence of class dec-
larations such as entities, actors, intentional elements, and
dependencies. Each declaration associates a set of attributes
to the class and characterizes its instances. Moreover, class
declarations contain temporal constraints expressed in a
typed first-order linear time temporal logic (LTL). These
constraints describe the valid lifetime evolutions of the
class instances and define synchronization between differ-
ent classes instances. A full definition of the Formal Tropos
language can be found in [10, 11].

Figure 2 is an excerpt of the FT specification of the
course exam example. The initial FT specification skele-
ton can be obtained from the i* model by mapping actors
and intentional elements into corresponding FT classes and
by adding non-intentional entities of the domain if any (e.g.,
Course and Exam).

Most of the attributes in FT are references to other
classes. For example, goal PassExam refers to the spe-
cific exam to be passed (attribute exam), and to the Pass-
Course goal that motivates the student to pass the exam (at-
tribute pass course). Similarly, dependency Mark refers
to the exam that has to be marked (attribute exam) and to
GetPassingMark goal of the student that motivates the ex-
pectation of having a mark (attribute gpm). There are also
attributes of elementary type, which define relevant states
of a class. For instance, Boolean attribute passed of de-
pendency Mark determines whether a mark is passing or
not. In most cases attributes that refer to other classes are
constant, i.e., their values do not change over time, while
the values of user-defined attributes such as passed usually
change during the lifetime of class instances.

Entity Course
Entity Exam

Attribute constant course : Course
Actor Student
Actor Teacher
Goal PassCourse

Actor Student
Mode achieve
Attribute constant course : Course

Goal PassExam
Actor Student
Mode achieve
Attribute constant exam : Exam

constant pass course : PassCourse
Goal GetPassingMark

Actor Student
Mode achieve
Attribute constant exam : Exam

constant pass exam : PassExam
Softgoal Integrity

Actor Student
Mode maintain

Task GiveExam
Actor Teacher
Mode achieve
Attribute constant exam : Exam

Resource Dependency Mark
Depender Student
Dependee Teacher
Mode achieve
Attribute constant exam : Exam

constant gpm : GetPassingMark
passed : boolean

Figure 2. Excerpt of FT class declaration

Since actor Student is the owner of goal PassExam and
of softgoal Integrity, the FT specification has Student as
the Actor attribute of the two goals. Similarly, Depender
and Dependee attributes of dependencies represent the two
parties involved in a delegation relationship. Intentional ele-
ments also have a Mode attribute, which defines the modal-
ity of the fulfillment of the goal. For instance, the mode of
goal PassExam is achieve, which means that the student
wants to reach a state where the exam has been passed, and
therefore the goal is fulfilled. Softgoal Integrity, instead,
has a maintain mode, since the condition of no cheating is
to be continuously maintained.

Figure 3 contains some examples of constraints on the
lifetime of class instances. Invariant constraints define con-
ditions that should be true throughout the lifetime of class
instances. Typically, invariants define relations on the pos-
sible values of attributes, or cardinality constraints on the
instances of a given class. For instance, the first invariant
of Figure 3 binds a Mark object with its associated Get-
PassingMark object, while the second invariant imposes a
cardinality constraint for Mark objects.

Two critical moments in the lifecycle of intentional el-
ements and dependencies are the instants of their creation
and fulfillment. The creation of a goal is interpreted as
the moment in which the owner or depender expects or de-
sires to achieve the goal, while its fulfillment is the mo-

Resource Dependency Mark
Depender Student
Dependee Teacher
Mode achieve
Attribute constant exam : Exam

constant gpm : GetPassingMark
passed : boolean

Invariant
gpm.exam = exam � gpm.actor = depender

Invariant��� m : Mark ((m �� self) � (m.gpm = gpm))
Creation condition� Fulfilled (gpm)
Fulfillment condition� im : InitialMarking (im.exam = exam �

im.actor = dependee � Fulfilled (im))
Fulfillment trigger

G (Changed (passed) �� r : ReEvaluation ((r.mark = self) �
JustFulfilled (self)))

Figure 3. Example of FT constraints

ment in which the goal condition is actually achieved. In
FT, creation and fulfillment constraints can be used to de-
fine conditions for these two moments in the life of inten-
tional elements. Creation constraints should be satisfied
whenever a new object is created, while Fulfillment con-
straints should hold whenever a goal or softgoal is satis-
fied, a task is performed, a resource is made available, or a
dependum is delivered. Typically, primary intentional ele-
ments, (e.g., Integrity, PassCourse) have fulfillment con-
straints, but no creation constraints: we are not interested in
modeling the reasons why a student wants to pass a course
and to maintain her integrity. Subordinate intentional ele-
ments (e.g., PassExam, GetPassingMark) typically have
constraints that relate their creation with the state of their
parent intentional elements. For instance, Figure 3 shows
that a creation condition for an instance of dependency
Mark is that the parent goal GetPassingMark is not yet
fulfilled: if the student has received a passing mark, there
is no need to ask for another mark. Creation and fulfill-
ment constraints are further distinguished as sufficient con-
ditions (keyword trigger), necessary conditions (keyword
condition), and necessary and sufficient conditions (key-
word definition) (see [10, 11] for details). We note that
the creation condition of dependency Mark together with
the fulfillment condition of task GetPassingMark elaborate
the delegation relationship between Student and Teacher
in the corresponding i* diagram. Goal decomposition rela-
tionships can be specified in a similar fashion.

In an FT specification we also need to specify properties
desired to hold in the domain. These properties are then
verified against the model we built. Figure 4 presents such
properties for the course exam case study. We distinguish
between assertion properties (A1-4) that should hold for
all valid evolutions of the FT specification, and possibility
properties (P1-4) that should hold for at least one. Proper-
ties A1, A2, A3, and P3 are “anchored” to some important

event in the lifetime of a class instance. For example, asser-
tion A2 requires that whenever an instance of PassExam is
created, no other instance of PassExam exists correspond-
ing to the same exam and the same student. Properties A4,
P1, P2, and P4 are “global”, i.e., they express conditions
on the entire model, and are not attached to any particular
event.

2.2.1. From i* to FT: Translation guidelines

It is usually hard to develop a satisfactory formal specifica-
tion of a system, even when one starts from a good informal
specification. In our experience, the difficulties of writing
an FT specification can be substantially reduced if one ex-
tracts as much information as possible from the i* model
to produce a “reasonable” initial FT model. In fact, most of
the constraints of an FT specification already appear implic-
itly in the i* model. For instance, in dependency Mark (see
Figure 3), the two invariant conditions, the creation condi-
tion and the fulfillment conditions express constraints that
are related to goal delegation and to cardinality constraints
in the i* model. These constraints can all be derived from
the i* model automatically by applying specific translation
rules. The additional non-standard constraints that should
be manually added to the FT specification are necessary to
capture the nature of the applicative domain. For instance,
the last constraint in dependency Mark expresses that a suf-
ficient condition for the fulfillment of the dependency is that
whenever a mark change status there must be a correspond-
ing reevaluation just fulfilled.

The following are some of the rules that we have defined
for generating FT specification based on i* model:
� The default creation condition of a sub-goal is that the

parent goal exists, but has not been fulfilled yet. The
default creation condition for a dependency is that the
depender goal exists but has not been fulfilled yet.

� The fulfillment condition of a parent goal (or task) usu-
ally depends on the fulfillment of the sub-goals (tasks).
If the sub-goals are connected to the parent goal with
means-ends links, then the fulfillment of at least one
of the subgoals is necessary for the fulfillment of the
parent goal (OR decomposition). If they are connected
with decomposition links then the fulfillment of all the
subgoals is necessary (AND decomposition).

� Parent goals and sub-goals typically share the same
entity and owner. So, an invariant condition should
be added to the sub-goal in order to force the binding
between the attributes of the two goals. For instance,
PassExam and TakeExam refer to the same Exam.

� When there is a prior-to constraint between two sub-
goals with a common parent, an extra creation con-
dition needs to be added to the goal that comes later.
Such constraints state that a necessary condition for the
creation of the later goal is that the previous goal has
already been fulfilled.

Goal PassExam
Creation assertion condition /* A1: A student can only pass an exam once. */

�
p : PassExam (p.actor = actor � p.exam = exam � p.pass course = pass course � p = self)

Resource dependency Mark
Fulfillment assertion condition /* A2: For each mark there was an answer corresponding to it. */� a : Answer (a.dependee = depender � a.depender = dependee � a.exam = exam � Fulfilled (a))

Resource dependency Mark
Fulfillment assertion condition /* A3: A mark can only be changed if there is a petition. */� passed � F passed � F � ped : PostExamDiscussion (ped.mark = self)

Global Assertion /* A4: If the student wants to maintain her integrity, she cannot pass an exam without studying. */
�

h : Honesty (Fulfilled (h) � �
k : KnowCorrectAnswer ((k.actor = h.dependee) �

(k.exam = h.give exam.exam � Fulfilled (k) � � s : Study ((s.actor = k.actor) �
(s.course = k.exam.course) � Fulfilled (study)))))

Global Possibility /* P1: It is possible for a student to pass a course. */� pc : PassCourse (Fulfilled (pc))
Global Possibility /* P2: It is possible that a student passed a course without passing the exam. */� pc : PassCourse (Fulfilled (pc) � � � pe : PassExam ((pe.pass course = p) � Fulfilled (pe))
Goal PassExam

Fulfillment possibility condition /* P3: It is possible that a student passed an exam, but still thinks that the marking is not fair. */� f : FairnessBeDecided (f.pass exam = self � Fulfilled (f) � � f.satisfied)
Global Possibility /* P4: It is possible that a teacher expects an exam answer from a student who is never committed to the exam. */� a : Answer (G � � p : PassExam (p.exam = a.exam � p.actor = a.dependee))

Figure 4. Example of Formal Tropos properties

These rules are not meant to be definitive and exhaustive,
but their intelligent application leads to a quick generation
of a reasonable initial FT model, that can then be corrected
and improved using the techniques described in the next
sections. We are currently developing a tool to support the
designer in the automatic extraction of an initial FT specifi-
cation starting from an i* diagram.

3. The T-Tool

The T-Tool is based on finite-state model checking [9]. It
takes as input an FT specification along with parameters that
specify which parts of the specification to consider and, for
the selected classes, an upper bound to the number of class
instances that can be instantiated. The T-Tool builds a finite
model that represents all possible behaviors of the domain
that satisfy the constraints of the specification, and checks
the model to ensure that it exhibits desired behaviors. The
tool provides different verification functionalities, including
interactive animation of the specification, automated con-
sistency checks, and validation of the specification against
possibility and assertion properties. The verification phase
usually comes out with feedback on errors in the FT speci-
fication and with hints on how to fix them. The verification
phase iterates on each fixed version of the model, possi-
bly with different upper bounds of the number of class in-
stances, until a reasonable confidence on the quality of the
specification has been achieved.

3.1. T-Tool functionalities

3.1.1. Animation

An advantage of formal specifications is the possibility to
animate them. Through animation, the user can obtain im-

mediate feedback on the effects of constraints. An anima-
tion session consists of an interactive generation of a valid
scenario for the specification. Stepwise, the T-Tool pro-
poses to the user next possible valid evolutions of the anima-
tion and, once the user has selected one, the system evolves
the state of the animation. Animation allows for a better un-
derstanding of the specified domain, as well as for the early
identification of trivial bugs and missing requirements that
are often taken for granted, and are therefore difficult to de-
tect in an informal setting. Animation also facilitates com-
munication with stakeholders by generating concrete sce-
narios for discussing specific behaviors.

3.1.2. Consistency checks

Consistency checks are standard checks to guarantee that
the FT specification is not self-contradictory. Inconsistent
specifications occur quite often due to complex interactions
among constraints in the specification, and they are very
difficult to detect without the support of automated analy-
sis tools. The consistency checks are performed automati-
cally by the T-Tool and are independent of the application
domain. The simplest consistency check verifies whether
there is any valid scenario that respects all the constraints
of the FT specification. Another consistency check verifies
whether there exists a valid scenario where all the class in-
stances will be eventually created. This check aims at ver-
ifying whether the current upper bounds of the number of
class instances are reasonable, and whether they violate any
cardinality constraint in the specification. The T-Tool also
checks whether there exists a valid scenario where all the
instances of a particular goal or dependency will be eventu-
ally created and fulfilled, i.e., the fulfillment conditions for
that goal or dependency are “compatible” with other con-
straints in the specification.

3.1.3. Possibility checks

Possibility checks verify whether we are over-constraining
the specification, that is, whether we have ruled out sce-
narios expected by the stakeholders. When a possibility
property of the FT specification is checked, the T-Tool ver-
ifies that there are valid traces of the specification that sat-
isfy the condition expressed in the possibility. The expected
outcome of a possibility check is an example trace that wit-
nesses the fact that the possibility is valid. If no such trace
is found, an error message is reported. In a sense, possi-
bility checks are similar to consistency checks, since they
both verify that the FT specification allows for certain de-
sired scenarios. Their difference is that consistency is a
generic formal property independent of the application do-
main, while possibility properties are domain-specific.

3.1.4. Assertion checks

The goal of assertion properties is dual to that of possi-
bilities. The aim is to verify whether the requirements are
under-specified and allowing for invalid scenarios. Also the
behavior of the T-Tool in the case of assertion checks is dual
to the behavior for possibility checks, namely, the tool ex-
plores all the valid traces and checks whether they satisfy
the assertion property. If this is not the case, an error mes-
sage is reported and a counter-example trace is generated.
Such counter-examples facilitate the detection of problems
in the FT specification that caused the assertion violation.
For instance, in the course exam case study, an assertion
that we wish to hold is “a student can never pass a course
without taking all the exams of the course and without do-
ing a research project”. If this (quite reasonable) assertion
is false, the T-Tool will produce a trace that shows under
what circumstances the student can pass the course without
passing exams and doing a research project. Discussions
with the stakeholder may then clarify whether the trace pro-
duced corresponds to a valid scenario (and hence the asser-
tion has to be changed) or whether the FT specification has
to be strengthened in order to prohibit the counter-example.

3.2. T-Tool architecture

The T-Tool performs the verification of an FT specifi-
cation in two steps (see Figure 5). In the first step, the
FT specification is translated into an Intermediate Language
(IL) specification. In the second step, the IL specification is
given in input to the verification engine, which is built on
top of the NUSMV model checker [8].

3.2.1. From FT to IL

IL can be seen as a simplified version of FT, where the syn-
tactic sugar of the FT specification is removed. The focus of
IL is on the dynamic aspects of the application domain. An
IL specification consists of four parts: class declarations,

F
T
2
I
L

L
2
S
M
V

I N
u
S
M
V

FT

#

IL

Verification Engine

T−Tool

IL Scenario
FT Scenario

Figure 5. The T-Tool framework

temporal specifications, possibilities, and assertions. The
class declarations in IL correspond to the entity, actor, goal,
and dependency declarations of an FT specification. The
distinction among these different types of classes is ignored
and all the special attributes are transformed into standard
attributes. Temporal specifications in IL restrict the valid
temporal behaviors of the objects in the specification. As in
FT, assertions (resp. possibilities) in IL describe expected
properties that should be exhibited by all (resp. by some of)
the valid scenarios of the specification. Unlike FT, tempo-
ral specifications, assertions and possibilities are all global
in IL, that is, they are not anchored to the relevant “strate-
gic” components anymore.1

The FT2IL architectural block takes care of the transla-
tion of an FT specification to the corresponding IL. More-
over, it translates back in FT the counter-examples scenarios
produced by the verification engine. Thus, the internals of
the verification engine are hidden to the user.

In this architecture, IL plays an important role in provid-
ing the T-Tool with an open architecture and a flexible ap-
proach for linking requirements specification languages and
the languages used by a variety of formal verification tools.
On one hand, it allows for the adoption of existing verifica-
tion techniques for different specification languages, at the
cost of writing new translators to IL. On the other hand, it
allows the tool to be linked with other analyzers, by writing
translators from IL to the native language of these analyz-
ers.

3.2.2. The model checking verification engine

The actual verification is performed by NUSMV [8].
NUSMV is a state-of-the art model checker based on sym-
bolic model checking techniques. Symbolic techniques
have been developed to reduce the effects of the state-
explosion problem, thus enabling the verification of large
designs [9, 16]. NUSMV adopts symbolic model checking
algorithms based on Binary Decision Diagrams (BDD) [6]
and on propositional satisfiability (SAT) [4]. BDD-based
model checking performs an exhaustive traversal of the
model by considering all possible behaviors in a compact
way. Such exhaustive exploration allows BDD-based model
checking algorithms to conclude whether a given property is
satisfied (or falsified) by the model. On the other hand, this

1For lack of space, we refer to [10, 11] for a more elaborate description
of IL and its semantics.

exhaustive exploration makes BDD-based model checking
very expensive for large models. SAT-based model check-
ing algorithms look for a trace of a given length that satisfies
(or falsifies) a property. SAT-based algorithms are usually
more efficient than BDD-based algorithms for traces of rea-
sonable length, but, if no trace is found for a given length,
then it may still be the case that the property is satisfied
by a longer trace. That is, SAT-based model checking veri-
fies the satisfiability of a property only up to a given length,
and is hence called Bounded Model Checking (BMC) [4].
As we will discuss in Section 3.3, the T-Tool exploits both
BDD-based and SAT-based model checking.

Several extensions have been applied to the NUSMV
model checker to allow for the verification of IL specifi-
cations. An IL2SMV module has been added. It takes
an IL specification and builds a finite state machine in the
NUSMV format. Given the IL specification and the upper
bounds of the number of class instances, IL2SMV synthe-
sizes a model for the specification. The states of the model
respect the class part of the IL specification, while its tran-
sitions are those that respect the temporal specification con-
straints. Since the NUSMV formalism does not allow for
the creation of new objects at run-time, to deal with in-
stance creation, a special flag is added to each class during
the translation. Quantifiers in IL are interpreted over the
number of class instances that exist in the current state. To
construct the model, IL2SMV adopts the synthesis algo-
rithm for LTL specification provided by NUSMV.

To handle the different facets of an FT specification,
NUSMV has also been extended with new functionalities:
for instance, the BMC engine has been extended with past
operators [2], and a new more flexible interactive simulator
has been added.

3.3. Heuristics for model construction and property
verification

The T-Tool needs to build a finite state model from an
infinite state specification. An upper bound of the number
of class instances has to be specified in the FT specifica-
tion. The choice of the upper bound plays a critical role
in the verification step. There can be bugs that only ap-
pear when a certain number of class instances are allowed,
as well as valid scenarios that require a given number of
class instances. Therefore, the checks performed by the
T-Tool only guarantee the correctness of the specification
with the considered number of class instances. In practice,
it is convenient to generate and check various models with
different number of class instances, so that a larger set of
possible cases is covered in the verification. As we set the
upper bound of class instances, three basic approaches are
used. First, a uniform upper bound can be set for all classes,
e.g., a 1-instance or a 2-instance case. Second, according
to the cardinality constraints in the i* model, different up-
per bounds can be set for different groups of classes, e.g.,
there is 1 teacher vs. 2 students, 1 course vs. 2 exams, etc.

Third, a subset of the classes can be selected for instanti-
ation, based on the property to be verified. No instance is
allowed for the classes that are not selected. This approach
is referred to as the reduced case.

For complex FT specifications, verification of properties
against a given model can take a very long time and can
require considerable effort. For this situation, we provide
some guidelines for an effective application of the verifica-
tion methods supported by the T-Tool.

For possibility (and consistency) checks, SAT-based
bounded model checking techniques are preferable, as they
are very effective in finding scenarios of bounded length
that satisfy a given property. Since most scenarios are actu-
ally short, if no scenario is found within reasonable length
(typically 5 to 10 steps), then it is likely the case that the
possibility cannot be satisfied. In this case, direct inspec-
tions of the specification and interactive simulations have
shown to be effective means for finding the problem in the
FT specification.

For assertion checks, SAT-based bounded model check-
ing techniques can only be used to give preliminary results.
In fact, these techniques are able to find counter-examples
if the given assertion is false, but are able to prove the
truth of the assertion only up to a given length of the pos-
sible counter-examples. To guarantee that an FT specifica-
tion satisfies a given assertion, BDD-based techniques are
a must, since they allow for an exhaustive analysis of the
model. A strategy that can help when checking assertions
using BDD-based techniques is to consider only a subset of
the constraints in the FT specification. The rationale behind
this is that whenever we check an assertion � on a spec-
ification composed of a finite set � of constraints ��� with��� � , we are looking for solutions to the following prob-
lem: � �
	�� � �� � . If we can derive a positive answer
using a subset ����� of constraints, the job is done. Indeed,
the more constraints we add, the more restricted is the be-
havior of the system. Since we are interested in verifying
that all possible scenarios compatible with the specification
satisfy � , if we prove that � holds in an under-constrained
system, � must hold in the more constrained system. If
we fail in checking the property we need to consider a new
set of constraints � , such that ��������� , and iterate.
The counter-example produced for subset � can guide the
selection of new constraints to be added to � , since it ex-
hibits a possible behavior that violates relevant constraints
not yet considered. This iterative process will eventually
terminate since the set of constraints � is finite. While in
theory the initial set of constraints can be chosen arbitrar-
ily (e.g., it can be the empty set), in practice starting with
a good guess for � is very important to reduce the number
of iterations. In most practical cases, the user has in mind
the reason why a given assertion needs to hold and how to
exploit such knowledge to choose a suitable set � . We re-
mark that the “abstraction” techniques described here are
common practice in the model checking community [3].

Possibility Checks
1 instance 1..2 instances 2 instances

BMC BDD BMC BDD BMC BDD
P1 Valid[3] Valid[3] Valid[3] Undecided Valid[3] Undecided

9.4sec / 29Mb 1786sec / 64Mb 55.7sec / 77Mb T.O. 860sec / 295Mb M.O.
P2 Valid[3] Valid[3] Valid[3] Undecided Valid[3] Undecided

9.3sec / 29Mb 1719sec / 63Mb 55.6sec / 77Mb T.O. 842sec / 295Mb M.O.
P3 Valid[4] Valid[5] Valid[4] Undecided Valid[4] Undecided

14.2sec / 38Mb 1979sec / 64Mb 94.9sec / 96Mb T.O. 1629sec / 375Mb M.O.
P4 Undecided[10] Invalid Undecided[10] Undecided Undecided[4] Undecided

105sec / 84Mb 1626sec / 64Mb 2143sec / 237Mb T.O. T.O M.O.

Table 1. Results for possibility checks

Assertion Checks
1 instance 1..2 instances

BMC BDD BDD-reduced BMC BDD BDD-reduced
A1 NoBug[10] Valid Valid NoBug[10] Undecided Valid

100sec / 83Mb 1298sec / 64Mb 0.3sec / 2Mb 1086sec / 237Mb T.O. 30.8sec / 4.2Mb
A2 NoBug[10] Valid Valid Invalid[3] Undecided Invalid[7]

111sec / 84Mb 1295sec / 64Mb 44sec / 17Mb 57.6sec / 77Mb T.O. 757sec / 100Mb
A3 NoBug[10] Valid Valid NoBug[10] Undecided Undecided

107sec / 83Mb 2110sec / 64Mb 2.5sec / 4Mb 2837sec / 234Mb T.O. T.O.
A4 NoBug[10] Valid Valid NoBug[9] Undecided Undecided

114sec / 83Mb 1297sec / 63Mb 0.1sec / 2Mb T.O. T.O. T.O.

Table 2. Results for assertion checks

4. Experimental results

Following the guidelines described in the previous sec-
tions, we have conducted several iterations of experiments.
During each iteration, an FT specification was validated
by human inspection, animation, consistency checking, and
possibility/assertion verification. Whenever a bug was de-
tected, the FT specification (and, in some cases, the i*
model) was revised, and a new iteration was performed.
This iterative refinement of the specification has ended
when all checks on the FT specification were successful.

4.1. Setup of the experiments

In order to illustrate the performance of the tool, and
the verification process, we present the experiments re-
sults of an intermediate version of the FT specification
that still contains some bugs. Moreover, we report the
results only for some of the assertions and possibilities
that are present in the model, namely for assertions A1-
4 and for possibilities P1-4 in Figure 4. More results can
be found at the URL http://sra.itc.it/tools/
t-tool/experiments/cm.

To stress the scalability of the proposed verification tech-
niques, we have performed the tests considering models
of different size. More precisely, we have considered dif-
ferent upper bounds to the number of instances for each
class. We report here the case of 1 and 2 instances for each
class, and one intermediate 1..2 case where we allow 2 in-
stances for some classes (in particular, the student and its
goals and tasks), but only 1 instance for other classes (the
teacher and its tasks, and the course). Moreover, we ex-
perimented with the different model checking techniques,

namely SAT-based bounded model checking (“BMC” in the
tables), BDD-based model checking (“BDD”), and, in the
case of assertions, BDD-based model checking on reduced
models, as described in Section 3.3 (“BDD-reduced”). The
case study is composed of 33 classes and 229 constraints
The model with 1 instance per class requires 477 Boolean
state variables, while the 2 instance requires 1077 Boolean
state variables. Thus, the state space grows from ������� to
�
���
�	� states while moving from the 1 instance to the 2 in-

stance per class.

4.2. Results

The results of the experiments carried out are reported in
Table 1 and Table 2. The experiments were executed on a
PC Pentium III, 700 MHz, 6GB of RAM, running Linux.
All the verification tests have been executed with a time
limit of 3600 seconds (1 hour) and memory limit of 1GB.
For each problem we report the CPU time in seconds and
the amount of memory in MB. With “T.O.” we mark the ex-
periments that did not complete within the time limit, while
with “M.O.” we mark those experiments that exceed mem-
ory limits. The maximum length considered for bounded
model checking experiments is 10.2 The experiments show
that:

1. Possibilities P1-3 are valid, and witness scenarios of
length 3, 3 and 4 respectively are produced by the T-
Tool.

2. Possibility P4 is invalid. No witness scenario is found
up to length 10 for the 1 and 1..2 instances and up to

2The experiments confirm that this is a reasonable bound: all generated
witness scenarios and counter-examples are of length 5 or shorter.

length 4 for 2 instances. An analysis of the specifi-
cation shows that possibility P4 (“A teacher expects
an exam answer from a student that does not intend
to pass the exam”) cannot occur, because we have as-
sumed that the teacher knows which students want to
pass the exam (e.g., by requiring them to register).
This possibility has been removed in the final version
of the FT specification.

3. Assertions A1, A3, and A4 are correct. No counter-
example scenarios are found in the performed checks.

4. Assertion A2 is false. No counter-example is found
in 1 instance case, but a counter-example of length 3
is found in the 1..2 instances case. This is due to a
missing creation condition for dependency Mark that
allows the teacher to assign marks to students that have
not provided exam answers. This bug has been fixed
in the final version of the FT specification. We re-
mark that in the case of 1 instance no counter-example
is found since, according to the FT specification, the
teacher only starts marking if at least one student takes
the exam.

4.3. Discussion

4.3.1. Effectiveness

For our case study, the proposed approach was effective
in producing an FT specification of good quality. It also
led to an improved understanding of the domain by reveal-
ing several tricky aspects of the case study. The validation
techniques provided by the T-Tool have been useful in de-
tecting bugs, while animation was useful during early val-
idation steps by identifying trivial bugs. For instance, due
to a missing creation condition for the student goal Take-
Exam, a student was allowed to try to take an exam even if
no teacher was giving it. Likewise, the consistency checks
have been able to detect a trivial error in the creation con-
dition of student’s goal Study, which does not allow two
students to study the same course. The validation of asser-
tions and possibilities has revealed subtle bugs due to the
interaction of different goals, dependencies and constraints.
For instance, due to an error in the fulfillment condition of
ReceiveAnswers, a student could prevent the teacher from
fulfilling the task GiveExam by declaring her intention to
take the exam and by never taking it. In another case, a stu-
dent could not decide on the fairness of marking (softgoal
FairMarking) even after she received a Mark, since she
was expecting a marking scheme from the wrong teacher.
This was due to a missing creation condition in the depen-
dency FairMarkingScheme. In both cases, the T-Tool’s
ability to generate counter-examples helped in pinpointing
the problems.

The experiments show that the usage of the abstraction
techniques described in Section 3.3 for checking assertions
on a reduced model is very promising. For most properties,
the use of these techniques has resulted in speed-ups of one

to two orders of magnitude with respect to the case of the
whole model. This allows us to check the correctness of
assertions for the 1..2 instances case, but is not enough for
the 2-instances case.

A limiting factor of the current framework consists in the
fact that correctness of the specification can be asserted up
to the considered upper bounds of the number of class in-
stances. We are currently investigating heuristics and tech-
niques for choosing upper bounds that guarantee the cor-
rectness of the FT specifications regardless of the upper
bounds.

4.3.2. Performance

Performance results on the T-Tool are encouraging, even
though further work is needed in order to allow for a black
box usage of these techniques. The fact that the T-Tool al-
lows for the usage of different verification techniques is a
very important factor for its effectiveness. In particular,
BDD-based and BMC-based model checking complement
each other. BMC-based verification is efficient in check-
ing possibility properties. On average, a valid scenario for
a possibility property can be produced in a few seconds.
BMC-based verification is also good for a preliminary ver-
ification of assertion properties. On the other hand, BDD-
based model checking does not work in practice for large
models with big state spaces. The heuristics proposed for
reducing the model point out a promising direction for the
verification of assertion properties, even if they do not (yet)
completely solve the performance problem. The animation
of the specification was useful, but it should be improved by
reducing the setup time and by improving its usability, e.g.,
allowing the automated generation of a scenario given a set
of target states.

5. Related work and conclusions

In earlier work [10, 11] we have proposed a framework
for the specification and verification of early requirements.
This paper presents the T-Tool, a prototype tool that sup-
ports the process of verification, and demonstrates through
experiments that the framework can scale up and serve as a
useful basis for the verification of early requirements. The
T-Tool permits the generation of finite models from an FT
specification and supports model checking on such models.
The T-Tool is based on NUSMV, an open architecture for
model checking. In our experience, the possibility of ex-
tending NUSMV with new functionalities (e.g., a new input
language, past operators, enhanced simulator) has been cru-
cial for its effective application to the analysis of FT speci-
fication.

Formal analysis is often used to verify correctness of
specifications, but, it is usually applied in later phases. For
instance, in [1, 12] formal verification techniques were used
for the analysis of specifications expressed in the SCR for-
malism, and in [7] NUSMV is used for the verification

of RSML specifications. The works that are most rele-
vant to ours are Alcoa/Alloy [14, 13], KAOS [15], and the
work on “Topoi Diagrams” [17]. Alcoa [14] is a tool for
analyzing object models that describe the architectural or
structural properties of a system design. It has been used
to verify various architectural frameworks, protocols, and
schemes. The input language – Alloy [13] – is a notation
based on Z, but has been tailored to fit object models and is
amenable to automatic analysis. Similarly to the T-Tool, Al-
coa uses SAT-based bounded model checking for assertion
analysis (under-specify checking) and possibility analysis
(over-specify checking). The main differences between Al-
coa and the T-Tool is their focus on different applications
(object vs requirements models). Moreover, the T-Tool
supports a broader set of verification techniques, including
BDD-based model checking and heuristics for reducing the
model size for proving assertion properties. KAOS [15] is
a framework that supports (early) requirements analysis. It
shares with FT the goal-oriented flavor. Also the design of
the temporal logic component in FT has been inspired by
KAOS. The main difference between the two frameworks
is in the analysis techniques used. The T-Tool supports
model checking verification techniques, while KAOS is
based on theorem proving techniques. Topoi diagrams [17]
represent statements of gradual influence between variables
(e.g., the more X, the more Y) and can be used in system
requirements to describe how designers believe influence
should propagate through a system. Topoi diagrams are re-
lated to i* diagrams, where intentional links describe influ-
ences between the intentional elements of a domain. On
top of the topoi diagrams, temporal logic formulas describ-
ing a property of the model can be checked. The focus
of this approach is limited to formulas of a specific form
that check whether a given input results in an expected out-
put. Moreover, the framework in [17] is based on explicit
state model checking techniques [9], rather than on sym-
bolic techniques.

There are several directions for further research. First,
we are investigating the use of techniques that guarantee
that an FT specification is correct regardless of the upper
bounds of the number of class instances. We are also work-
ing to the refinement and the automation of the verification
approach proposed in this paper, by defining heuristics to
choose and refine the set of constraints considered while
proving a property, and by alternating automatically phases
in which the tool tries to prove the validity of a model and
phases where the tool tries to find bugs. Optimizations of
the model generator and advanced abstraction techniques
that exploit, for instance, possible symmetries in the spec-
ification are also under investigation. Finally, we are plan-
ning to develop a graphical front end to the T-Tool, that will
allow the user to write the FT specifications as annotations
of an i* model, and to see the scenarios produced by the
T-Tool as animations of the i* diagrams.

References

[1] J. M. Atlee and J. Gannon. State-based model checking of
event-driven systems requirements. IEEE Transactions on
Software Engineering, 19(1):24–40, Jan. 1993.

[2] M. Benedetti and A. Cimatti. Bounded Model Checking for
Past LTL. In the ���

�
Int. Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, 2003.
[3] S. Berezin, S. Campos, and E. M. Clarke. Compositional

reasoning in model checking. In COMPOS, volume 1536 of
LNCS, pages 81–102. Springer, Sept. 1998.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In the � �

�
Int. Conference

on Tools and Algorithms for the Construction and Analysis
of Systems, 1999.

[5] J. Bowen and V. Stavridou. Safety critical systems, formal
methods and standards. IEEE/BCS Software Engineering
Journal, 8(4), July 1993.

[6] R. E. Bryant. Symbolic boolean manipulation with or-
dered binary-decision diagrams. ACM Computing Survey,
24(3):293–318, 1992.

[7] Y. Choi and M. P. E. Heimdahl. Model checking RSML ���
requirements. In the �	�

�
IEEE Int. Symposium on High

Assurance Systems Engineering, pages 109–119, Tokyo,
Japan, Oct. 2002. IEEE Computer Society.

[8] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NUSMV 2: An opensource tool for symbolic model check-
ing. In Computer Aided Verification, number 2404 in LNCS,
Copenhagen (DK), July 2002. Springer.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[10] A. Fuxman. Formal analysis of early requirements specifi-
cations. Master’s thesis, University of Toronto, 2001.

[11] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso.
Model checking early requirements specifications in Tro-
pos. In IEEE Int. Symposium on Requirements Engineering,
pages 174–181, Toronto (CA), Aug. 2001. IEEE Computer
Society.

[12] C. Heitmeyer, J. Kirby, and B. Labaw. The SCR method for
formally specifying, verifying, and validating requirements:
tool support. In the
����

�
Int. Conference on Software Engi-

neering, pages 610–611. ACM Press, 1997.
[13] D. Jackson. Alloy: a lightweight object modeling notation.

ACM Transaction on Software Engineering Methodology,
11(2):256–290, 2002.

[14] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the al-
loy constraint analyzer. In the �	��

�
Int. Conference on on

Software Engineering, Limerik, June 2000. ACM Press.
[15] E. Leiter. Reasoning about Agents in Goal-oriented Require-

ments Engineering. PhD thesis, Universite Catholique de
Louvain, 2001.

[16] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publ., 1993.

[17] T. Menzies, J. Powell, and M. E. Houle. Fast formal analysis
of requirements via ”topoi diagrams”. In the �����

�
Int. Con-

ference on Software Engineering, pages 391–400, Toronto,
CA, May 2001. ACM Press.

[18] E. Yu. Towards modeling and reasoning support for early
requirements engineering. In IEEE Int. Symposium on Re-
quirement Engineering, pages 226–235. IEEE Computer
Society, 1997.

