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A short introduction

One of the key challenges in the development of open distributed systems – like the
Semantic Web – is enabling the exchange of meaningful information across applica-
tions which may use autonomously developed models/schemas for organizing locally
available data, and need to interact/collaborate to achieve their users’ goals. Typical
examples are databases using different schemas, document repositories using different
classification structures or annotated with respect to different ontologies, file systems,
poorly annotated multimedia content.

One possible approach to this problem is that of creating global schemas (or shared
models) onto which local schemas are mapped and thus interoperated. This ”central-
ized” approach may work in restricted environments, like a small corporate Intranet.
However, in open environments (like the Web), it does not seem a viable solution, as it
can be very difficult to reconciliate/integrate schemas/models that suit different needs
in a single shared model; in addition, it would be almost impossible to maintain such a
shared model in a highly dynamic environment.

The aim of this workshop on Meaning Coordination and Negotiation (MCN-04)is
to investigate an alternative approach to semantic interoperation, namely an approach
in which no global schemas are presupposed, and schemas/models are directly mapped
onto each other in a ”peer-to-peer” spirit. A requirement of the proposed approach is
that it must be applicable to scenarios where peers that cannot assess semantic prob-
lems by ”looking into each other’s head”, like humans or software agents (what we call
semantically autonomous entities).

In such a scenario, it is possible to distinguish between two different processes:

– a process of meaning coordination, through which the involved parties try to es-
tablish mappings between the meaning of a collection of expressions. Such an
agreement could result, for example, in a collection of mappings between their
ontologies/schemas;

– a process of meaning negotiation, namely the process of solving semantic conflicts
among parties when a direct mapping is not possible (e.g., different parties adopt
with different ontological assumptions, and this makes impossible for them to find
a correspondence between the meaning of what they say).

In game theoretic terms, the first is a coordination problem, as (i) all parties have a
common interest in achieving such an agreement, but (ii) there are many possible solu-
tions to the problem, and thus the selection of one of these solutions can be problematic;



the second is a negotiation problem, as (i) an agreement is valuable for all parties, but
(ii) parties may have conflicting preferences over which solution should be selected, so
that every agreement implies that at least someone has to concede to some extent to
other party.

The problem of meaning coordination and negotiation can be addressed from many
different perspectives, using different conceptual and technological tools, and with dif-
ferent motivations in mind. So we expect that the workshop will attract people from
very different fields, such as knowledge representation, ontology engineering, agents,
databases, natural language processing, machine learning, game theory, philosophy of
language, cognitive linguistics. The papers presented at this workshop provide a sig-
nificant selection of approaches and methods to achieve meaning coordination and ne-
gotiation, and at the same time illustrate how challenging such a problem is and how
stimulating from a research point of view.
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Abstract: We address the problem of semantic coordination, namely 
finding an agreement between the meanings of heterogeneous 
semantic models. We propose a new approximation method to 
discover and assess the “strength” (preciseness) of semantic mappings 
between concepts from different concept hierarchies. We apply this 
method in the music domain. We present the results of preliminary 
tests on mapping two music concept hierarchies from actual sites on 
the Internet. 

 
 
 

1. Introduction 
 
The progress of information technology has made it possible to store and access large 
amounts of data. However, since people think in different ways and use different 
terminologies to store information, it becomes hard to search each other’s data stores. 
With the advent of the Internet, which has enabled the integrated access of an ever-
increasing number of such data stores, the problem becomes even more serious. The 
music domain is no exception. (We restrict to legal distribution.) The variety and size 
of offered content makes it difficult to find music of interest. It is often cumbersome 
to retrieve even a known piece of music.  

Our ultimate goal is to improve this Internet music search. We aim to use 
semantics in the retrieval process, which is conveyed in the Semantic Web. In this 
context we study the problem of semantic integration over different music provider’s 
schemas. More specific, the problem is to find pairs of concepts (genres, styles, 
classes...) from different metadata schemas that have an equivalent meaning. It is not 
sufficient to use the concept labels only, since, for example, their position in the 
schemas influences their meaning as well. Figure 1 illustrates with an example from 
existing music schemas. Although the labels are equivalent (“Experimental”), they 
represent different classes. 
 
The problem of finding the right music that fits a user’s preferences is similar to the 
problem of matching the schemas of two different providers. In the latter case we 
need to find the pairs of concepts that have equivalent meaning. In the first case, we 
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can treat the user’s preferences as concepts themselves, and the problem is to match 
the preferred concept with those in the provider’s terminology. 
 
Being able to search for matches at the level of concepts (without using instances) is 
important. The search may use instances (artists, releases, tracks), but when it comes 
to user preferences we think that we cannot rely on instances solely, in contrast to the 
recommender systems, which appeared to rely on instances only [Dublin]. 
 

 
Figure 1 Two music genres. Although the labels are equivalent, they represent 

different classes. 
 
In this paper we address the problem of matching between two different music 
metadata schemas. We base ourselves on the approach proposed by Bouquet et al. 
(2003), see the next section. Our main contributions are the following: 
 

- We propose a new method to approximate mappings between concepts from 
two different Concept Hierarchies. Given two concepts from different Concept 
Hierarchies, our method checks whether the first concept is a subconcept of 
the second [Trento], but in addition, when that’s not the case, it calculates 
“how strongly” the first concept is subconcept of the second. This is indicated 
by a value that we call sloppiness between 0.0 and 1.0 for each pair of 
concepts. The sloppiness indicates the error in the subsumption relation 
between the two concepts. Closer to 0.0 means that most of the (semantic) 
content of the first concept is also present in the second concept, while values 
closer to 1.0 indicate that there is no subsumption relation.  

 
- We present first results from an analysis of the approximation method. We 

conducted experiments on actual schemas as used by music sites on the 
Internet. We extracted the music metadata schemas, which were underlying 
the navigation paths at the provider sites. We applied our approximation 
method on those schemas and compared them with the matches based on the 
actual instances (music artists) in the classes. We discuss the problems we 
encountered in applying our method and the level of correspondence observed 
between concepts and instances. 

 
In Section 2 we discuss the approach of Bouquet et al. (2003) [Trento], with 
limitation to our scope. In the section 3 we discuss the present situation with the 
music metadata schema on the Internet. In section 4 we introduce and explain our idea 
of approximate matching. In section 5 we present results from applying our 
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approximate method. In section 6 we identify the future possible improvements on 
this work. Section 7 gives brief conclusion of the work presented in this paper. 
 
 
 

2. Semantic coordination  
 
We have taken the approach of Bouquet et al. (2003) [Trento]. We briefly summarize 
their approach as relevant to our contribution. 

The goal is to find mappings between the concepts of two Concept Hierarchies. 
For the current discussion a Concept Hierarchy can be thought of as a rooted tree 
where each node and each edge has a label. It has the explicit purpose to provide an 
object classification. 
 
Next to the label of the nodes, the method accounts for the position of the nodes in the 
hierarchy. The method works in three main phases: 
 

- Linguistic interpretation: The senses that WordNet [Wordnet] returns on the 
node’s label are combined as propositional terms in a logical formula. The 
formula represents all the possible linguistic interpretations of the label. 

 
- Contextualization: The position of the nodes in the hierarchy is encoded in the 

logical formula. Each node’s formula is considered in conjunction with its 
ancestor’s formula, i.e. each node is assumed to be in the intersection with its 
ancestor. This makes sense because we expect a superclass to contain 
everything that the subclasses contain. In a similar way the disjointness of 
siblings in the hierarchy is encoded into the formula.  

 
- Semantic comparison: The so-obtained formulas from both hierarchies are 

evaluated for relationships. This is done by pair-wise encoding of the formulas 
in the relationship to be tested. And by testing the satisfiability of the obtained 
logical relation. Five relationships are considered: (i) they are equivalent, (ii) 
they are disjoint, (iii) they are not in a subconcept relation but have a 
non-empty intersection, (iv) the first is a subclass of the second and (v) the 
second is a subclass of the first. 

 
For more details see Bouquet et al. (2003) [Trento]. 
 
 
 

3. Internet Music Schemas 
 
On the Internet, music metadata schemas mostly exist in the form of a navigation path 
through the music offered. A metadata schema isn’t always offered next to the music, 
but a visitor can interactively navigate through different pages that list the music 
offered. We consider this structure of navigation paths together with the labeling on 
the links and pages as the metadata schema of that provider.   

After considering several music provision sites, we selected seven of them and 
extracted the schema (navigation path): CDNOW (Amazon.com) [CDNow], 
MusicMoz [MM], CD Baby [CDBaby], ARTIST direct Network [ADN], allmusic 



 

[AMG], LAUNCH cast on Yahoo [Yahoo] and ArtistGigs.com [ArtistGigs]. 
Commercial providers often include classes whose meaning lies outside the music 
styles domain (Example: “Music Accessories”). Most of the schemas have some 
peculiarities that are typical or unique for that schema. After the extraction we applied 
some simplifying modifications to the data. In the first place, we normalized the 
labels in order to make the data more suitable for our experiments. This included the 
correction of typing mistakes and the removal of abbreviations and similar 
peculiarities. 
 

CDNow 
(Amazon.com) 

Size 2410 classes 

Depth 5 levels 

 

MusicMoz 
Size 1073 classes 

Depth 7 levels 

 

Artist Direct 
Network 

Size 465 classes 

Depth 2 levels 

 

All Music 
Guide 

Size 403 classes 

Depth 3 levels 

 

ArtistGigs 
Size 382 classes 

Depth 4 levels 

 

CD baby 
Size 222 classes 

Depth 2 levels 

 

Yahoo 
Size 96 classes 

Depth 2 levels 

 
Figure 2 The extracted schemas. 

 
In Figure 2 we present a general overview of the data. 
 
Discussion on the criteria used to create the classes in the schemas  
Most of the labels in the ontologies appeared to be of one of the following kinds: style 
of music (the genre of the music), geographic region with music style (region where 
the music originates from) and time or historical period when the music was created 
(decades like “90’s”, named periods like “baroque”…). All of the schemas are 
concept hierarchies that only used the subconcept relationship. Sibling subclasses 
often have overlap (they are not disjoint).  

The nodes are often named with more then one word. These words either denote 
the intersection of the terms they express (example: Chicago Blues), or they are a 
multiword (example: “New Zealand Rock”, New Zealand is a term and should not be 
considered as separate words). The first case happens most often. 
 
Fuzziness in music classification 
There are no objective criteria that sharply define music classes. Genre is not 
precisely defined. As a result, different providers often classify the same music 
entities (artists, albums, songs...) differently. Widely used terms like Pop and Rock do 
not denote the same sets of artists at different portals. That is also the case for even 
more specific styles of music like Speed Metal. 



In our experiments when testing with instance data, we restricted to the artists 
shared by Music Moz and Artist Direct Network, i.e. artists that are present and 
classified in both portals. In the sequel we refer to them as MM and ADN, 
respectively. From the class named Rock (including its subclasses) in MM there are 
471 shared classified artists, in ADN there are 245, and 196 shared artists are 
classified under Rock in both of them. Hence, from all the artists classified under 
Rock in at least one of the two portals, only about 38% is classified under Rock in 
both portals. This example shows that there is a high degree of fuzziness present in 
the music domain. Therefore we expect that exact reasoning methods to create 
matching are not useful, and approximate methods would be more useful. 
 
 
 

4. Approximate matching 
 
We follow the approach of semantic coordination to find subclass relations between 
music classes. In this section we explain how we extend the approach with a form of 
approximation to handle the impreciseness occurring in the actual data. First the 
(propositional) formulas representing the classes in the Concept Hierarchies are 
rewritten in normal forms. 

We want to check whether a left-hand formula is a subclass of a right-hand 
formula. The left-hand formula is transformed into disjunctive normal form and the 
right-hand side into conjunctive normal form. In this way, the subclass check can be 
split into a set of subproblems, each checking if one (left) disjunct is a subclass of a 
(right) conjunct. If all the subproblems are satisfied, the original problem is satisfied. 
In our approximation, we allow a few of the subproblems to be unsatisfiable, while 
still declaring the original problem satisfiable. The (relative) number of satisfiable 
subproblems is a measure of how strongly the subclass relation between the two 
given formulas hold. 

Below, we explain the approach in a more formal way. In our notion we confuse 
logical notion and interpretation: disjunct (logical or) to union, conjunct by 
intersection, and implication by subset. 
 
Normal Forms 
Given the two propositional logic formulas A  and B , the problem is to check whether 
the relation  

BA ⊆    (1) 
holds. We transform A  into disjunctive normal form and B  into conjunctive normal 
form.  
 
The Disjunctive Normal Form (DNF) has the following form: 

( ) ( ) ( )In
III

nn AAAAAAAAAA ∩∩∩∩∩∩∩∩∩= ............ 21
2

2
2

1
21

2
1

1
1

21 UUU  
where each n

iA  is an atomic concept. Briefly it can be written as 

IAAAA UUU ...21=  where ( )in
iiii AAAA ∩∩∩= ...21  for each i  from 1 to I . The 

short form iA  is called a disjunct.  
The Conjunctive Normal Form (CNF) has the following form: 

( ) ( ) ( )Jkm
JJJ

mm BBBBBBBBBB ∪∪∪∪∪∪∪∪∪= ............ 21
2

2
2

1
21

2
1

1
1

21 III  



 

where each m
iB  is an atomic concept Briefly it can be written as 

JBBBB III ...21=  where ( )jm

jjjj BBBB ∪∪∪= ...21  for each j  from 1 to J . The 
short form jB  is called a conjunct.  
 
Now, the problem to check whether BA ⊆  can be written as  

JI BBBAAA IIIUUU ...... 2121 ⊆   
This relation holds if and only if (iff) anything that belongs to some of the iA  
disjuncts on the left side also belongs to all of the jB  conjuncts on the right side. 
Written formally it looks like this: 

JI BBBAAA IIIUUU ...... 2121 ⊆  iff ( )( )ji BAJjIi ⊆==∀ ..1,..1 . 
Now the problem to check whether BA ⊆  is transformed into IxJ  subproblems: 

( )( )ji BAji ⊆∀ ,  (2) 
 

Now we introduce the idea of approximation: The relation (1) holds iff for all 
disjunct-conjunct pairs the subclass relation (2) holds. If for only a few of the 
subproblems the relation (2) doesn’t hold, we may say that the relation (1) BA ⊆  
almost holds. Even more, we can express the strength at which the relation (1) holds 
as the ratio between the number of false disjunct-conjunct pairs (pairs that do not 
satisfy the subclass relation) and the total number of pairs. We call this ratio the 
sloppiness and we use the letter s  to denote its value. Formally: 

 ( )
( ){ }

JI

BAji
BAs

ji

×

⊄
=⊆

:,
 

Here ( ){ }ji BAji ⊄:,  denotes the number of disjunct-conjunct pairs that do not 
satisfy the subclass relation, I  is the number of disjuncts in the DNF form of the 
formula A  and J  is the number of conjuncts in the CNF form of the formula B . 
 
Note that this method works on the concepts level and can be applied when no 
information about the instances is available. 
 
 
 

5. Experiment: Approximate matching on ADN and MM 
 
5.1 Approximate matching 
In this section we summarize the results from some preliminary experiments we 
conducted on the approximate matching method. We used the metadata schema as 
extracted from ADN and MM.  

The linguistic interpretation (building of the formulas from the labels of the 
nodes) was done using simple techniques. For example, “Alternative Rock” was 
transformed into the following formula: 
 ( ) RockeAlternativRockeAlternativ _∪∩  
Special characters “&” and “/” were treated as logical union, For example: 
“Pop & Rock” was transformed into the following formula: 

RockPop ∪  



 

No background knowledge was used. When using background knowledge, each of the 
atomic concepts (Alternative, Rock, Alternative_Rock) should be replaced with union 
of the different senses for that concept.  

We made the assumption that concepts with the same label have the same 
meaning. When comparing the disjunct-conjunct relations we simplify a little: we 
considered a disjunct to be a subclass of a conjunct when at least one part in the 
disjunct (which is an intersection of literals) is found in the conjunct (which is an 
union of literals). So, given a disjunct-conjunct pair: 

( )in
iiii AAAA ∩∩∩= ...21 , ( )jm

jjjj BBBB ∪∪∪= ...21  

we say that ji BA ⊆  if the class names of n
iA  and m

jB  are equal for some n  and m . 
If none such pair is found, it was considered that the disjunct iA  is not a subclass of 
conjunct jB . In principal, this simplification may reject correct subclass relationships, 
however. 
 
Now we explain the process of approximate inferring an equivalence relation in 
detail. For the sake of the explanation we have chosen an example that produces 
simple formulas, however in the reality these can grow bigger and complex. 

In our example, we considered the relation between two styles from ADN and 
MM that are named “Glam Rock” on both of the portals. See Figure 3. 

 
 

Figure 3 Glam Rock style from the schemas of ADN and MM 
 
The first step is to transform the concepts into formulas. We first transform the “Glam 
Rock” style from ADN. First thing to consider is that “Glam Rock” is a substyle of 
“Rock”. Next, as “Glam Rock” consists of two words, we have to account for the 
separate meanings of the two member part words (that is the intersection of their 
meanings), as well as considering it as a multiword (as the case of “New Zealand”). 
Therefore, the formula representing the meaning of “Glam Rock” from ADN is the 
following: 

Glam_Rock_A = Rock ∩ ((Glam ∩ Rock) ∪ Glam_Rock)   
The normal forms of the formula are the following: 

Glam_Rock_DNF_A =  (Glam ∩ Rock)  ∪  (Glam_Rock ∩ Rock) (3) 
Glam_Rock_CNF_A =  (Rock)  ∩  (Glam ∪ Glam_Rock)   (4) 

 
Following the same way of construction, the “Glam Rock” style from MM is 
transformed into the formula: 

Glam Rock 

Rock 

ADN 
Rock

Glam 

Glam Rock 

MM 



 

Glam_Rock_B =  
Rock ∩ Glam ∩ ((Glam ∩ Rock) ∪ Glam_Rock)  =   
Rock ∩ Glam 

The literal Glam_Rock in the formula is discarded because of the absorption. 
The normal forms of the formula are the following: 

Glam_Rock_DNF_B =  (Glam ∩ Rock)     (5) 
Glam_Rock_CNF_B =  (Rock)  ∩  (Glam)     (6) 

 
Now, we use these formulas to test for the equivalence relation between the two 
concepts Glam_Rock_A and Glam_Rock_B. Therefore we have to check whether the 
subsumption relation holds between them in both directions. 

In the case of the subsumption Glam_Rock_B ⊆ Glam_Rock_A we need the 
formulas (4) and (5). Glam_Rock_B consists of only one disjunct, and Glam_Rock_A 
consists of two conjuncts. So we have to check for two pairs, namely: 

(Glam ∩ Rock) ⊆ (Rock)   - is true (Rock is on both sides) 
(Glam ∩ Rock) ⊆ (Glam ∪ Glam_Rock) - is true (Glam is on both sides) 

Both pairs satisfy the relation, so Glam_Rock_B ⊆ Glam_Rock_A holds with 
sloppiness 0%. 
 
In the case of the subsumption Glam_Rock_A ⊆ Glam_Rock_B we need the formulas 
(3) and (6). Glam_Rock_A consists of two disjunct, and Glam_Rock_B consists of 
two conjuncts. So we have to check for four pairs, namely: 

(Glam ∩ Rock)  ⊆  (Rock)    - true (Rock is on both sides) 
(Glam ∩ Rock)  ⊆  (Glam)    - true (Glam is on both sides) 
(Glam_Rock ∩ Rock)  ⊆  (Rock)   - true (Rock is on both sides) 
(Glam_Rock ∩ Rock)  ⊄  (Glam)   - false 

Three out of four disjunct-conjunct pairs satisfy the relation, but one, the last pair does 
not. That makes 25% of the pairs wrong, and therefore the relation 
Glam_Rock_A ⊆ Glam_Rock_B holds with sloppiness 25%. 
 
When assessing the sloppiness in the equivalence relation between Glam_Rock_A 
and Glam_Rock_B, we take the maximum of the sloppiness calculated in the two 
subsumptions. That makes the equivalence relation between Glam_Rock_A and 
Glam_Rock_B inferred with sloppiness 25%. 
 
5.2 Comparison with instance data 
For our experiments we extracted real data from the Internet, see section 3. In the 
sequel, we present some results that we obtained on these data sets: MM and ADN, 
Figure 4. 

Most of the shared classified artists are classified under “Rock”-related classes 
(Alternative Rock, Glam Rock, Heavy Metal...). A significant limitation of our dataset 
is that the number of instances is of the same order as the number of classes. 
  

Name 
Number of 

classes 
Number of 

artists 
Number of 

classified artists 
Number of shared 
classified artists 

ArtistDirectNetwork 465 16072 16072 
MusicMoz 1073 6415 2356 

1183 

Figure 4 Size of the data in ArtistDirectNetwork and MusicMoz 
 



 

We tested for equivalence matchings between the classes in both hierarchies, i.e. 
whether each is a subclass of the other. We varied the sloppiness measure in the tests. 
In order to assess the success of the matching we introduce a value called 
significance, which we defined as the cardinality ratio between the intersection and 
the union of the two classes. Here, by class we mean set of artists. Formally: 

( )
BA

BA
BAcesignifican

∪

∩
=⇔.  

The significance is close to 0 when the two classes have no big overlap, i.e. a 
relatively small amount of the instances belong to their intersection. When the value is 
close to 1.0 (or 100%) then the two classes denote almost the same set of instances.  

Figure 5 shows the results. We distinguished four different intervals for sloppiness 
values, as shown on the left column. In the right column is the average of the 
significance of these equivalences, inferred with sloppiness value from the interval 
denoted in the left column. 
 

Sloppiness Average significance 

0%-30% 29.055% 
30%-45% 26.778% 
45%-55% 11.439% 
55%-100% less then 6.7% 

Figure 5 Equivalence testing between ADN and MM 
 
We considered only the results from the equivalences where both of the classes had at 
least 10 instances. The relations inferred on sloppiness less then 30% are mostly 
“true” matches, i.e. matches that one would expect to be found with a sloppiness of 
0%. However, it appeared that most of them remained undiscovered when the 
sloppiness was set to 0%. In the case of Figure 3 the equivalence relation was 
discovered with a sloppiness of 25%. 
 
The relatively low value of the average significance revealed in the performed tests, is 
a notification that people do not agree on the meaning of the music styles names. 
While given the same names, the actual songs are stored in different ways. 
 
Figure 6 shows the number of equivalence relations inferred, in dependence of the 
value for the sloppiness parameter. As the sloppiness is increased the number of 
inferences increases very slowly in the beginning. That is reasonable since a relatively 
small amount of pairs of classes from different sources should be considered as 
equivalent or “almost” equivalent. In general most of the pairs of classes are not 
related at all, and sloppiness should not change that. From 50% toward the end, the 
number of inferences increases more rapidly. At the end there is a “cliff” at the 
sloppiness of 100%, because on sloppiness 100% all classes are equivalent. The 
statistic of Figure 6 gives confidence in the method. 
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6. Future work 
 
This general scheme of approximation can be improved in several directions. For 
example, not all disjunct-conjunct pairs are equally important in their contribution to 
the tested formulas. Disjuncts and conjuncts can have a different size, i.e. the number 
of literals they consist of. Literals may also have different size when it comes to the 
sets of instances they denote. Accounting for these differences may result in a more 
accurate sloppiness measure. 

We expect that a bigger size of the disjuncts and conjuncts should have less 
impact on the result. The intuition is that more parts in the disjunct make it a class of 
smaller scope, since it is an intersection, so its contribution to the total class 
(disjunction) is smaller. A similar intuition holds for the conjuncts, more parts in the 
conjunct make it a class of bigger scope since it is a union. 

A final heuristic is to assign more weight to “rare” classes. The intuition is that the 
more general concept names have wider use, and therefore matching them only 
provides general confidence. When matching “Rock” between two classes, or when 
matching “Cajun”, it is natural to expect a stronger relation in the second case. 
 
 
 

7. Conclusion 
 
In this paper we have presented a new method to do approximate matching between 
concept hierarchies. We have discussed the situation and the present problems in the 
music artist classifications on the Internet. Fuzziness is highly present and the 



approximate matching method that we proposed may help to deal with this problem. 
First results from applying the approximate matching method in the music domain 
were presented. 

This is a preliminary work; we still need to do thorough testing and to implement 
the improvements of this method. We also need to test against other approximate 
matching methods. 
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Abstract. One of the key challenges in the development of open semantic-based
systems is enabling the exchange of meaningful information across applications
which may use autonomously developed schemata. Semantic coordination is the
problem of discovering mappings across schemata and schema matching is one
of the proposed approaches. In this paper we provide a preliminary investigation
on the notion of correctness of semantic methods for schema matching. We de-
fine a first notion of semantic soundness (and completeness), but immediately
show that this notion is not appropriate to capture the intuitive notion of cor-
rectness for a method. We then introduce the idea of pragmatic soundness, and
argue that it corresponds to what we intuitively expect, but that it can’t be di-
rectly computed. Finally, we discuss some preliminary conditions under which a
semantically sound method can guarantee pragmatic soundness as well, which is
– in our opinion – the best we can get from semantic methods.

1 Introduction

One of the key challenges in the development of open semantic-based systems is en-
abling the exchange of meaningful information across applications which may use
autonomously developed schemata (database schemata, classifications, even directory
trees on file systems in peer-to-peer applications) for organizing locally available data.
As in open system a beforehand agreement on the meaning of schemata seems im-
possible in practice, a large number of methods and systems have been proposed to
automatically match schemata1. The resulting mappings are then used as the basis for a
runtime semantic-based coordination of such a network of autonomous applications.

Methods may differ along many dimensions: the type of structures to which they
can be applied (e.g., trees, directed acyclic graphs, graphs); the type of result they re-
turn (e.g., similarity measures, model-theoretic relations, fuzzy relations); the resources
they use to compute such a relation (e.g. external lexical resources, ontologies, string
manipulators, graph matching techniques, instance-based techniques). In this paper, for

? The work presented in this paper was done as part of the EU funded project VIKEF,(Virtual
Information and Knowledge Environment Framework), contract n. 507173.

1 A very partial list includes [14, 13, 11, 10, 4, 6, 9, 2, 5, 8, 3]. A detailed description of these
methods is out of the scope of this paper.



reasons that will be explained in detail, we are mostly concerned with a class of meth-
ods that we call semantic methods. The general intuition underlying semantic methods
is that they aim at discovering relations between (pairs of) entities belonging to different
schemata based on the meaning of the two entities. However, beyond this point, there
is a significant disagreement on what characterizes a semantic method from a non se-
mantic method. For example, a recent paper by Giunchiglia and Schvaiko [7] proposes
to include among semantic methods only those methods that directly return a seman-
tic relation (e.g., material implication or logical equivalence), namely a relation with a
well-defined model-theoretic interpretation. This analysis is far from being shared in the
community, as other people feel that a method is semantic if it uses semantic informa-
tion to return its results, or if there is a principled way to assign an indirect semantics to
its results (e.g., mapping numerical values on semantic relations through the definition
of suitable thresholds).

In such a situation, it is not surprising that we still lack a clear definition of the
conditions under which a semantic method can be said to work “correctly”. Suppose,
for example, that we have a method α that takes in input two nodes nA and nB from
two schemata SA and SB respectively and returns True if the two nodes represent
equivalent concepts, False otherwise. Now, imagine that α is fed with the categories
/IMAGES/TUSCANY/FLORENCE and /PHOTOS/ITALY/FLORENCE2 belonging
to two classification schemata, and that it returns True. Is the result “correct”? Why?
And what if the result were False? Under what conditions would we accept this result
as “correct”?

This paper aims at answering this kind of questions. We start by providing a precise
characterization of schema matching for a special (but interesting) case of schemata,
namely hierarchical classifications. Then we propose a characterization of semantic-
based methods based on the idea that they must at least provide an explicit and formal
interpretation of the entities they compare, and of the resulting relation. Finally, for
this class of methods, we define the notions of semantic soundness and completeness,
but immediately show that this notion is not appropriate to capture the intuitive notion
of correctness for a method. We then introduce the idea of pragmatic soundness, and
argue that it corresponds to what we intuitively expect, but that it can’t be directly
computed. Finally, we discuss some preliminary conditions under which a semantically
sound method can guarantee pragmatic soundness as well, which is – in our opinion –
the best we can get from a semantic method for schema matching.

2 The problem of schema matching

Schema is a broad term, that applies to different kinds of structures. In [3], it was ar-
gued that it makes no much sense to speak about schema matching in general, and
that the analysis should be done case by case along the dimension of the intended
use of a schema. Accordingly, in this paper we restrict our attention to a special kind
of schemata, hierarchical classifications, whose explicit purpose is to classify objects

2 Throughout the paper we will use the notation X/.../Y to refer to a path in schema in
analogy with the notation for paths in a file system. If the schema is a tree, then / represent
the root of the schema and /X/.../Y a path from the root to Y through X.



(e.g., documents). This restriction does not affect the generality of our investigation, as
the method of analysis can be applied to study the problem of matching other types of
schema, such as database schemata, service descriptions, datatypes.

We start with a few definitions that characterize the kind of schemata we deal with,
namely topic hierarchies used as classification schemata.

Definition 1 (Topic hierarchy). Let Λ be a set of labels (e.g., words in natural lan-
guage). A topic hierarchy S = 〈K, E, l〉 is a triple where K is a finite set of nodes, E

is a set of arcs on K, such that 〈K, E〉 is a rooted tree, and l is a function from K to Λ.

Two simple examples of topic hierarchies are depicted in Figure 1.

ITALY

FLORENCELUCCA FLORENCE

TUSCANY

IMAGES IMAGES

LUCCA

CHURCHES MUSEUMS

Fig. 1. Two simple topic hierarchies

A possible use for topic hierarchies is to classify documents. To express this for-
mally, we introduce the notion of classification function.

Definition 2 (Classification function). Let D be a set of documents and S a topic
hierarchy 〈K, E, l〉. A classification function over S is a function τ : D → K from
documents to nodes of S.

A classification function places a document under a node in a topic hierarchy. We asso-
ciate to each classification function a retrieval function, which is a function from nodes
to the sets of documents attached to them in a topic hierarchy. It essentially plays the
inverse rôle of the classification function.

Definition 3 (Retrieval function). Let D be a set of documents, S = 〈K, E, l〉 a topic
hierarchy, and τ a classification function over S. The retrieval function of τ over S is a
function µτ : K → 2D satisfying the following condition:

for every d ∈ D, d ∈ µτ (τ(d))

Finally, we want to formalize the intuition of a classification being a hierarchical
classification (hereafter HC). Intuitively, it must satisfy the following requirement: doc-
uments classified under a node Z along a path X/.../Y/Z could be also classified
under the ancestor nodes of the same path (though with a lower degree of precision) if
Z were removed from the topic hierarchy:



Definition 4 (Hierarchical classification). Given a set of documents D, a hierarchical
classification H = 〈S, τ 〉 is a pair where S is a topic hierarchy and τ is a classification
function over S which satisfies the following property: if τ classifies a document d

under a node Z along a path X/.../Y/Z, and we remove Z from the path, then τ

would assign d to the node Y of the path X/.../Y.

Schema matching can be defined as the problem of computing relations between
pairs of nodes belonging to different HCs. Let < be a set of relations that may hold
between two nodes belonging to two distinct schemata SA and SB . Then a mapping is
defined as follows:

Definition 5 (Mapping). A mapping MA→B between two HCs HA = 〈SA, τA〉 and
HB = 〈SB , τB〉 is a set of triples 〈nA, nB , r〉, where:

– nA and nB are two nodes belonging to SA and SB , respectively;
– r ∈ < is a relation between nA and nB .

Each triple 〈nA, nB , r〉 belonging to a mapping is called a mapping element.
Finally, as our goal is to discuss properties of schema matching methods, we for-

mally define a method as a function which returns true when a given relation holds
between two elements of different schemata, false otherwise:

Definition 6 (Schema Matching Method). Let MA→B be a mapping between two
HCs HA and HB . A schema matching method α : MA→B → {T, F} is a function
from mapping elements to boolean values.

Of course, it is more natural to view a method as a function which takes two nodes
as input and returns a relation as output. Here we adopt this more abstract (but after all
equivalent) characterization as it is more appropriate for our analysis.

3 Semantic methods for schema matching

In the previous section, we deliberately left the definition of schema matching methods
quite vague, as we wanted to characterize the problem of schema matching in a very
general form. Here we provide a precise characterization of semantic methods in a
precise way through two general principles that, in our opinion, distinguish semantic
methods from non semantic methods.

A method for schema matching is a semantic methods if it satisfies the two follow-
ing principles:

Explicit representation of meaning: a semantic method must match schema elements
on the basis of an explicit representation of their meaning, where meaning is a for-
mal object of a logical type which corresponds to the type intended by the schema
designer. Notationally, if n is a node of a HC, then R(n) is the formal representa-
tion of its meaning;

Computation of relations based on meaning: given two nodes n and m belonging
to different HCs, a semantic method must return a relation which connects the
meanings of the schema elements under comparison. Such a relation must in turn
have an interpretation defined over the meaning of the compared elements.



So, according to the first principle, a semantic method should explicitly interpret
the elements of a HC as concepts, and provide a corresponding formal representation
of type concept (e.g., as terms in some Description Logic system [1]). For example,
the meaning of the nodes FLORENCE belonging to the right hand side schema and
CHURCHES belonging to the left hand side of schema of Figure 1 approximately corre-
sponds to the two concepts “Images of Florence in Tuscany” and “Images of churches
in Florence, in Italy”. Notice that a schema describing how a web service works (basi-
cally, a finite state automaton) should be interpreted in a completely different way, as
nodes would represent states that can be reached through actions associated to arcs.

Then, according to the second principle, when matching HCs, a semantic method
should return a relation between concepts (e.g., subsumption, equivalence, and so on).
Notice that here we will privilege classical model-theoretic relations, though it is pos-
sible to work with fuzzy-theoretic relations between concepts (see e.g. the common
framework for ontology alignment produced as part of the EU network of excellence
called Knowledge Web). Going back to the example of Figure 1, the relation between
the two nodes FLORENCE and CHURCHES (interpreted as we said above) is that the
first is more general than the second. We note that, in this case, determining the relation
between the two concepts intuitively requires to use knowledge that was not extracted
from the two schemata, namely that Tuscany is in Italy. In the following, we will refer
to this external knowledge as the ontology associated to a method. In analogy to what
we said above, a relation between elements of two service description schemata would
be completely different.

We are now ready to start our discussion about soundness of semantic methods.

4 Semantic soundness and completeness

Given the two principles discussed above, a semantic method α is defined by: (i) a
language L suitable to explicitly represent the meaning of each schema element, (ii) a
procedure for extracting the meaning of each element n (R(n)), (iii) a (possibly empty)
ontologyO, and (iv) a set of relations < that it can compute. The 4-tuple 〈L,O,R(),<〉
is what we call the semantic frame of the method.

We now propose a notion of semantic soundness and completeness with respect to
a semantic frame F . The intuition is the following: a method is semantically sound
w.r.t. F if, whenever it computes a relation between two elements of distinct schemata,
the relation follows from what the method knows about the meaning associated to the
two elements; and is semantically complete if, whenever one of the relations in < be-
tween the meaning of two nodes follows from what the method knows, then the method
actually returns that relation. More formally:

Definition 7 (Semantic Soundness). Let F = 〈L,O,R(),<〉 be the semantic frame
of a method α and HA and HB be two HCs. Then α is semantically sound w.r.t. F if
and only if for any mapping element 〈nA, nB , r〉 the following holds:

if α(〈nA, nB , r〉) = T, then O |=
L
R(nA) r R(nB)



Definition 8 (Semantic Completeness). Let F = 〈L,O,R(),<〉 be the semantic frame
of a method α and HA and HB be two HCs. Then α is semantically complete w.r.t. F

if and only if for any two nodes nA and nb the following holds:

if O |=
L
R(nA) r R(nB), then α(〈nA, nB, r〉) = T

Though this notion of semantic soundness and completeness seems reasonable, it
should be quite evident that it does not capture the intuition of a correct method. Indeed,
what we want to say is that a method is sound when it computes the “right” relation
between two elements, namely the relation that follows from the “correct” interpretation
of the schemata and from the use of the “right” background knowledge. Instead, what
the definitions above says is only that, given an ontology and a formal representation
of the meaning of two nodes, then a semantic method is sound if and only if it derives
only relations that logically follows from the background knowledge provided by its
ontology. But this is tantamount as saying that a semantic method is sound if and only
if the reasoner used to compute the relation between meanings is sound, which is a
very trivial result (similarly for completeness). Indeed, imagine a dummy method that
associate the same concept k to all the elements of two HCs, and always returns the
equivalence relation for any pair of nodes (for all k ∈ S and k′ ∈ S ′, α(k, k′,≡) = T ).
Since any concept is always equivalent to itself, then this method is semantically sound.
But is this method of any interest?

Intuitively, the problem is that semantic soundness as we defined it (and a similar
argument can be done for completeness) does not say anything on the appropriateness
of the meaning explicitation performed by the method and on the relation between the
meaning of nodes and the available ontology. In short, semantic soundness is a neces-
sary but not sufficient condition to capture the intuitions we have about the correctness
of a method. What we need as a sufficient condition is a way for excluding dummy
methods like the one described above, namely methods that build arbitrary interpreta-
tions and use pertinent knowledge about the meaning of schema elements.

However, this is an extremely tough problem not only in schema matching, but
in general for any semantic theory based on formal logic. Indeed, as we know from
classical results (see e.g. the model-theoretic argument discussed by the philosopher
H. Putnam in [12]), there’s nothing we can do to prevent unintended interpretations of
a formal language. The form in which Putnam discusses this problem is the following:
even if two agents agreed on the truth value of all the sentences of a language L (includ-
ing modal propositions on the necessity of propositions), this would not be sufficient to
fix the interpretations of the terms they use, which means that they may still be talking
about different things. Our version of this argument is that, even if we can guarantee
that a method is semantically sound and complete, there’s nothing which guarantees
that the two elements were correctly interpreted, and therefore that the relation between
the two nodes is the one we would expect.

To get around this problem, there are basically two approaches available for seman-
tic methods. The first one, which we will call the linguistic approach, is to exploit the
fact that almost invariably the labels of schemata are meaningful expressions of natural
language, e.g. English. If this is the case, then not every interpretation is acceptable,
though ambiguity is still possible. For example, the word “bank” can mean “depository



financial institution” or “the slope beside a body of water” (Wordnet 1.7), but cannot
mean “animal with four legs”, unless we relax the assumptions that labels are taken
from English3. The second approach, which we call instance-based approach, is to ex-
ploit the data attached to a schema (e.g., the documents attached to the categories of a
HC) to guess or refine the interpretation of the category itself. The idea is that we can
determine the meaning of an element in a schema by processing the documents asso-
ciated to that element, e.g. by analyzing the number of times a word occur in a docu-
ment, or the co-occurrence of words in the same document. Both approaches, however,
have their drawbacks: the linguistic approach suffers from the “ambiguity problem”,
namely there is still the possibility that we haven’t caught the intended interpretation of
a schema element (as natural languages are ambiguous in different respects); instance-
based methods suffers from the “contingency problem”, namely the actual set of doc-
uments attached to an element may be insufficient to capture the intended concept (let
alone the fact that there may be schemata not populated with documents at all).

To sum up, linguistic and instance-based approaches improve the situation of se-
mantic methods, but do not provide the sufficient conditions we are looking for. Is there
another way of defining the correctness of a method which does not refer to the explic-
itation of meanings? In the next section we propose a possible answer.

5 Pragmatic Soundness

The main reason why people develop schemata is to provide a suitable organization of
a body of relevant data, e.g. records in a database, file in a file system, documents in a
classification schema. Schema matching methods should allow applications to exchange
data in a meaningful way through the exploitation of mappings across schemata. For
example, when we match two HCs, the goal is to find mappings that allow us to retrieve
documents on a given topic which are classified under (possibly different) categories
in different HCs. From this perspective, if a semantically sound method derives that
two nodes are equivalent, then one would expect that a user would classify the same
documents under those two nodes; if the methods derives that a node is more general
than another one, then one would expect that the documents classifiable under the first
node are a superset of those classifiable under the second; and so on. If this holds, then
the method is intuitively correct, as it “does the right thing” for its users. This notion of
correctness, based on data rather than on the meaning of schema elements, is pragmatic,
as it refers to how people use schemata, and not (directly) to how they interpret it. Let
us try to make this intuition more precise.

Preliminary, we introduce the notation to refer to all documents classified in a sub-
tree of a topic hierarchy, and not only in a single node. The reason is the following.
Consider the two HCs of Figure 1. Note that the node FLORENCE in the right hand
side topic hierarchy has two children (CHURCHES and MUSEUMS), whereas the left
one has no children. This means that the documents that in the right hand side topic
hierarchy are classified under CHURCHES, would be probably classified under the node
FLORENCE in the left hand side topic hierarchy. Therefore, we introduce the notation

3 This is the basis, for example, of what in [3] is called semantic coordination.



µτ (n↓) to denote the set of documents classified under a subtree rooted at the node n.
More formally, let n↓= {k ∈ K | k is a descendant of n} denote the set of nodes in the
subtree rooted at n, then µτ (n↓) =

⋃

m∈n↓ µτ (m).
Let D be a set of documents and < a set of relations between sets of documents

(for example, < = {=,⊆,⊇,⊥}, where ⊥ means disjoint). Furthermore, imagine that
someone classifies all documents of D in two different HCs (HA and HB). Then a first
tentative definition of pragmatic soundness is the following:

Definition 9 (Strong Pragmatic Soundness). Let HA and HB be two HCs and α a
semantic method. Then α is strongly pragmatically sound if for any mapping element
〈nA, nB , r〉 (with r ∈ <) the following holds:

if α(〈nA, nB , r〉) = T then µτ (nA↓) r µτ (nB↓)

Intuitively, this means that if a semantic method α discovers a relation r between two
nodes nA and nB , then the corresponding set-theoretic relation r also holds between
the sets of documents classified by the function τ in the subtree rooted at the nodes nA

and nB
4.

However, this definition presupposes two very strong assumptions. First, D must
be the set of all possible documents of the universe; otherwise, it may happen that an
actual set of documents is not sufficient to discriminate between some set-theoretical
relations, such as ⊂ and = (it may happen that no document which would be associated
to nA but not to nB belongs to D, and therefore the two sets would be contingently the
same, whereas they would not if we had had more documents available).

But even more important, it presupposes that each document can be classified in
a unique way. Of course, this is not the case in general, as documents are typically
rich objects, and can be classified under different categories, depending on what as-
pect of the document is taken as dominant. For example, this paper could be classi-
fied under different categories (e.g. SEMANTIC INTEROPERABILITY, ONTOLOGY
INTEGRATION, SCHEMA MATCHING, FORMAL MODELS, . . . ), and each of these
categories would reflect a legitimate point of view on the paper. Therefore, even if two
categories in two different HCs – populated by the same classifier – are semantically
related, we can’t guarantee that the sets of documents classified under those two cate-
gories will be in the same relation.

The considerations above suggest that we need a weaker notion of pragmatic sound-
ness, which can take into account the possibility that a classifier (human or automatic)
can legitimately classify the same document under different categories. In this situa-
tion, the question arises of whether there can be a reasonable notion of correctness.
Intuitively, we propose a counterfactual notion of correctness: a method is correct if a
classifier would not disagree with the answers produced by the method; in other words

4 To keep the formalism simple, we are abusing our notation by using the symbol r to refer both
to the (semantic) relation computed by a semantic method and the relation which holds be-
tween sets of documents. In fact, we rely on the intuitive mapping between semantic relations
(say, subsumption between concepts) and set-theoretic relations between their interpretation
(for subsumption, it would be set inclusion). To be precise, such a mapping should be explic-
itly defined.



if, no matter what his/her actual classification is, the classifier could have classified the
documents according to the relation discovered by the method.

To capture this intuition, we first introduce the following notion of classifier:

Definition 10 (Classifier). A classifier C is a pair 〈{τi}, F 〉, where {τi} is a set of
classification functions, and F =

〈

LC ,OC ,RC(),<
〉

is a semantic frame.

Associating a set of classification functions to a classifier allows us to capture the
fact that s/he can classify the same set of document in different ways. Therefore, when
populating a topic hierarchy, we allow classifiers to employ any of their classification
functions. Intuitively, the set {τi} can be seen as a set of “acceptable” classification
functions, in the sense that the classifier will be prepared to accept classifying a doc-
ument under a given node if there is a classification function belonging to {τi} which
would classify that document under the same node.

But this is not enough. Indeed, we also expect that there is a rationale behind the
classification tasks of any “reasonable” classifier. In other words, we expect that classi-
fiers perform their task based on their knowledge about the documents to be classified
and about the available categories. Here is where the ontology OC and the interpreta-
tion function RC() associated to a classifier come into play. Intuitively, the ontology
and the interpretation function represents the knowledge classifiers use to understand
the meaning of a node and, consequently, for classifying a document. Classifiers are
then called pragmatically adequate if they act consistently with their knowledge. We
capture this by imposing the following condition: when a classifier C recognizes a re-
lation holding between (the meaning of) two nodes nA and nB of two HCs HA and
HB , then – whatever classification function she is actually using – if this function clas-
sifies under nA and nB the sets X and Y of documents, then there must be a (possibly
distinct) acceptable classification function which would classify under nA a set X ′ of
documents in such a way that the corresponding set-theoretic relation holds between
the sets X ′ and Y . The following definition formalizes this intuition.

Definition 11 (Compatible classification functions). Let C be a classifier, τ1 and τ2

two classification functions of C, r any relation in <, and nA in HA and nB in HB two
nodes. We say that τ1 is compatible with τ2 w.r.t. nA and nB if the following holds:

if OC |= RC(nA) r RC(nB), then µτ1
(nA↓) r µτ2

(nB↓)

Intuitively, two classification functions of a classifier are compatible w.r.t. two nodes
if their respective way of classifying documents under the two nodes preserve the re-
lation the classifier recognizes between the meanings of the two nodes. We can now
formalize the notion of pragmatically adequate classifier.

Definition 12 (Pragmatic adequacy). Let C = 〈{τi}, F 〉 be a classifier. Then C is
pragmatically adequate if, given any two nodes nA in HA and nB in HB , and any
classification function τ1 ∈ {τi}, there is another τ2 ∈ {τi} which is compatible with
τ1 w.r.t. nA and nB .

This definition simply says that if a classifier C associate a set of documents to
some node nA, and nA is in a certain relation r with a second node nB , then C must



be prepared, possibly by employing some other acceptable classification function of
his (namely, a compatible classification function), to classify under the nA a set of
documents holding the same relation r with the set of documents attached to nB .

Based on the definitions above, we can now attempt a second definition of prag-
matic soundness which, we believe, is the best we can expect from a schema matching
method. Intuitively, we say that a schema matching method is pragmatically sound if
whenever it derives a relation r between two nodes nA and nB , a pragmatically ad-
equate classifier would consider this result as “acceptable” according to the possible
ways he could classify a set of documents. By “acceptable” here we mean that whatever
set of documents C has actually placed under nA and nB (using one of his classification
functions), C could have placed under nA, using a possibly different admissible classi-
fication function, a set of documents in the same relation r with the set of documents
actually placed under nB . This intuition is captured by the following definition:

Definition 13 (Pragmatic Soundness). Let C = 〈{τi}, F 〉 be a pragmatically ade-
quate classifier, and HA and HB be two HCs. A method α is pragmatically sound w.r.t.
C if, for any mapping element 〈nA, nB , r〉, the following holds: if α(〈nA, nB , r〉) = T ,
then for any classification τ2 ∈ {τi} there is a classification τ1 ∈ {τi} such that, for
any r ∈ <, µτ1

(nA↓) r µτ2
(nB↓).

6 Can semantic methods be pragmatically sound?

Assume now we have a semantically sound matching method α which can answer
whether a semantic relation between two nodes holds or not. In this section we try to
answer the question of what can condition can guarantee that a sound semantic method
α is also pragmatically sound5. We can state the following proposition:

Proposition 1. Let F = 〈L,O,R(),<〉 be a semantic frame, α a method semanti-
cally sound w.r.t. F , and C =

〈

{τi}, F
C

〉

a pragmatically adequate classifier (where
F C =

〈

LC ,OC ,RC(),<
〉

). If OC v O and RC(m) = R(m), then α is pragmati-
cally sound. Moreover, if |{τi}| = 1, then α is strongly pragmatically sound.

The proposition states that if (i) α is semantically sound, (ii) the ontology used by
α is subsumed by a pragmatically competent classifier knowledge (i.e., it is a sound
but not necessarily complete representation of the classifier knowledge), and (iii) the
meaning assigned to the nodes by RC(m) andR(m) is the same (namely, |= RC(m) ≡
R(m)), then α is also pragmatically sound. If, in addition, (iv) the classifier always uses
the same classification function, then clearly α is also strongly pragmatically sound.

The first part of the proposition immediately follows from Definitions 7, 12 and 13.
The second part descends from Definitions 7, 12 and 9. A sketch of proof follows. Since
any relation between concepts that can be deduced from a less specific ontology (O) can
also be deduced by a more specific one (OC), Condition (i) together with Condition (ii)
ensure that any relation discovered by the method α would also be inferred by any

5 The problem of pragmatic completeness is significantly harder and out of the scope of this
paper. We will not discuss it here.



classifier. Moreover, if C is a pragmatically adequate classifier, whatever classification
function τ he has used to place documents under node nA and nB , by Definition12
there must be another acceptable classification function τ′ of C using which C would
have placed under nA a set of documents holding the relation r with those placed by
τ under nB . Hence pragmatic soundness follows. Adding the additional constraint that
the classifier only allows for a single classification function, immediately leads to strong
pragmatic soundness.

Let us now briefly comment on the conditions we needed to guarantee pragmatic
soundness of a semantic matching method. Condition (i) is quite easy to ensure, as we
already pointed out in Section 3. A logic framework powerful enough to express the
desired semantic relations between the concepts of interest, for which decidability is
guaranteed will suffice. Condition (ii) seems to be a relatively weak requirement. This
is an important observation, since providing a method with complete knowledge with
respect to a classifier is likely to be a very hard task, let alone the problem of providing
complete knowledge with respect to any classifier. Even though the first two conditions
seem to be reasonably easy to satisfy, Condition (iii) turns out to be quite strong. Notice
that weakening the condition on the semantic explicitation functions is problematic.
Soundness with respect to any set of semantic relations can indeed be ensured only if
the matching method and the classifier both assign the same interpretation (in terms
of concepts) to all the nodes of the HCs. Nevertheless, soundness can still be retained
on some specific sets of semantic relations, depending on the cases. For instance, if
we consider the set of relations {v,⊥}, then any semantically sound method employ-
ing a more specific semantic explicitation function than that of the classifier (namely,
|= RC(m) w R(m)) will still be pragmatically sound. Unfortunately, soundness with
respect to none of the other relations we have been considering in the paper would be
preserved in this case. Similarly, any semantically sound method employing a less spe-
cific semantic explicitation function than that of the user (namely, |= R(m) w RC(m))
will still be pragmatically sound only with respect to the relation w.

7 Conclusions

The consequence of Proposition 1 is that semantic methods can be guaranteed to obtain
pragmatically correct results under conditions (i)–(iii) (also (iv) if we want strong prag-
matic soundness). As condition (i) is quite trivial, we can conclude that the roadmap to
correct semantic methods is quite clear: (a) we need to build ontology which reflect the
classifier’s (or the user’s) point of view on the world (OC v O) and (b) we need to de-
sign tools that interpret a schema element as the user interprets it. These two problems
are not trivial, but they can be addressed with well-known methods belonging to disci-
plines like ontology engineering and knowledge representation. Ontology engineering
can help us to design better ontologies, e.g. ontologies that appropriately represent what
am individual or a community knows on a given domain; knowledge representation
gives us methods for representing the meaning of different types of schemata, beyond
classifications.

To conclude, we see our work as a small step towards a much more general goal,
namely the construction of a theory which explains how semantically autonomous en-



tities (agents) can communicate without presupposing a beforehand agreement on how
things should be represented. In other words, a theory of the role of meaning coordi-
nation in a theory of (inter)action. A lot remains to be done, but this goes beyond the
scope of this paper.
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Abstract. One of the main issues in the development of the Semantic Web is the
design and implementation of query languages that allow users to retrieve infor-
mation from semantically annotated sources. In this paper, we describe a general
methodology for querying a distributed collection of semantically heterogeneous
resources, linked to each others through a collection of semantic mappings. The
main contribution of this paper is the definition of semantic query, namely a query
which enables users to tune a collection of semantic parameters to formulate the
intended request. We show why this is different from what is typically done in
data integration and peer-to-peer query reformulation.

1 Introduction

One of the main issues in the development of the Semantic Web is the design and imple-
mentation of query languages that allow users to retrieve information from semantically
annotated sources. This problem, and several proposals have been put forward.

This problem has two fundamental dimensions. The first, which we call the local
dimension, has to do with the problem of querying a single knowledge source (for ex-
ample, an RDF [12] or an OWL [9] knowledge base) whose structure is known a priori
and semantic heterogeneity is not a serious issue. A solution to this problem essentially
amounts to proposing a query language (or family of languages) that does for Seman-
tic Web languages what SQL does for relational databases. This problem neglects a
crucial aspect of the Semantic Web, namely that in most real situations information
will be distributed over a collection of distributed resources. This introduces the sec-
ond dimension of the problem, called the distributed dimension, namely the problem
of querying a collection of knowledge sources whose structure is not known a priori
and where the degree of semantic heterogeneity can be quite high. Our work is focused
on this second dimension. Relevant work in this area can be divided into two classes:
global schema and peer-to-peer approaches. The first includes approaches based on
some form of global schema. The idea is that a solution to the distributed dimensions of
the querying problem requires the construction of a global schema which is then used
to reformulate queries, either in a local as view (LAV) or global as view (GAV) archi-
tecture [13]. The second class includes peer-to-peer approaches, namely approaches in
which the solution to the query problem is based on “horizontal” mappings across local

? The work presented in this paper was done as part of the EU funded project VIKEF,(Virtual
Information and Knowledge Environment Framework), contract n. 507173.



schemas. In such a scenario, a query can be thought of as a request formulated on a
local schema to find semantically related data/information from a collection of remote
schemas.

It was suggested (e.g. in [4]) that the problem of querying distributed and hetero-
geneous structures on a peer-to-peer basis can be divided into two main sub-problems:
(i) the problem of discovering mappings across heterogeneous schemas (the mapping
problem); and (ii) the problem of using a pre-existing collection of mappings to rewrite/
reformulate queries (the query rewriting problem). The idea is that first one needs to dis-
cover the (semantic) relation between two or more schemas; mappings are then used to
answer queries over heterogeneous schemas, e.g. by reformulating a query written on a
local schema into one or more queries on remote schemas.

In this paper, we argue that there is a further level, which we call the problem of
asking and answering semantic queries. Indeed, the query rewriting problem can be
restated as the problem of using semantic information (i.e., the available mappings) to
reformulate “syntactic queries”, namely queries that dig into the data associated to a
schema by exploiting its structural properties (for XML-based languages, an example
could be the rewriting of XPath expressions). But, in our view, a query is a seman-
tic query only when the parameters used in its formulation are intrinsically semantic,
namely are intended to refine the expression of a user’s intended meaning. In other
words, a semantic query is one whose result depends on parameters that are semantic in
nature. Of course, an important question is what counts as a semantic parameter. In this
paper we do not provide a general answer. However, since we will be mainly concerned
with the problem of querying heterogeneous classifications, the relevant semantic pa-
rameters we will consider are: (i) the type of relation; (ii) the ontological distance; and
(iii) the lexical distance.

2 The problem

Imagine that John is trying to find images for a book that he is writing about his holiday
in Tuscany. Two web sites (say PICS1 and PICS2) provide multi-media content. Fig-
ure 1 depicts a tiny portion of the structures they use to classify images. Suppose now
that John is navigating the structure in PICS1 and is interested in finding more images
of Tuscany. John would like to ask something like: “Get me more documents which are
related to what on this site is classified under IMAGES/TUSCANY”.

Following what we said in the introduction, this request can be addressed at three
different levels:

1. the first level corresponds to what in the introduction we called the mapping prob-
lem. It has to do with the discovery of the semantic relations between the cate-
gories of PICS1 and PICS2. In Figure 1 we reported some possible mappings,
for example that the category IMAGES/TUSCANY in PICS1 is more specific
than PHOTOS/ITALY in PICS2. At this level, one can say that there are many
categories in PICS2 semantically related to the category IMAGES/TUSCANY in
PICS1, and that there are different possible relations (e.g. more general categories,
or equivalent categories);
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Fig. 1. Semantic mapping across classifications

2. the second level corresponds to the query rewriting problem. It refers to the fact
that each semantic relation (i.e., each arrow from IMAGES/TUSCANY in PICS1
to a category in PICS2) can be used to rewrite a query like IMAGES/TUSCANY
on the schema PICS1 into some query on the schema PICS2;

3. the third level corresponds to what we called the semantic query problem. It has to
do with the fact that a query like IMAGES/TUSCANY on the schema PICS1 does
not provide enough information on what John may have in mind. For example: is
he interested only in images which are classified under nodes that are semantically
equivalent to the node TUSCANY? Is he willing to accept also images from more
specific categories? If so, to what extent? Is a photo of Florence acceptable? And
a photo of Dante’s house in Florence? Adding this information to a standard query
(or to any reformulation of a query) is what we define as asking a semantic query,
and is the main focus of this paper.

The problem of allowing semantic queries can be divided into two sub-problems,
which we call the How-To-Ask and the How-To-Answer problems respectively.
How-To-ask. The first class of problems is related to the parameters that John should be
able to “tune” to specify his request. The parameters we are interested in are semantic
parameters, namely parameters that can be used to refine the interpretation of John’s
request. The three parameters we take into account in this paper are: (i) type of relation,
which is used to restrict the query to categories which are in a specific semantic relation
with the category of the source schema; (ii) the ontological distance, which is used to
specify the acceptable distance from the category in the source schema and categories in
other schemas (with respect to some reference ontology); and (iii) the lexical distance,
which is used to tune the distance between the linguistic formulation of the category in
the source schema and the linguistic formulation of categories in other schemas.
How-To-answer. Once a semantic query is formulated, there is the problem of answer-
ing it appropriately. In this paper, we will ignore the details of solving the “structural”
part of the query, instead, we will focus on the semantic part, namely the resolution of



semantic constraints specified by users. To do this, we will assume that a collection of
semantic relations across the different structures has already been computed by some
matching algorithm1, and show how these mappings can be used to answer a query
which specifies the values of these semantic parameters. The “How-To-Answer” part
of the problem is non-trivial, as it requires one to take into account the fact that the
evaluation of semantic parameters depends on what knowledge is used. For example,
two concepts that are ontologically very close for John might be very distant for Mary,
in particular if they use different background ontologies to evaluate such a distance.
Therefore we need to provide a solution in which it is clear whose knowledge is being
used.

Returning to the example, John can ask the following semantic query: “Get me doc-
uments classified in categories which are equivalent or more specific than the category
IMAGES/TUSCANY in PICS1, where the ontological distance is less or equal to n
and the linguistic distance is unbounded”. Intuitively, if we assume that at PICS2 an
ontology is available according to which Dante’s house is in Florence, and Florence is
in Tuscany, then we can deduce that the node FLORENCE in PICS2 is ontologically
less distant from the node IMAGES/TUSCANY in PICS1 than the node DANTE’S
HOUSE, even though they are both related to the source category by the same semantic
relation (i.e. less general).

3 Semantic queries over distributed classifications

Considering a collection S1, . . . , Sn of semantically heterogeneous structures and a set
of mappings M1, . . . , Mj across them, a distributed query is a request, posed on one of
the structures, to retrieve data from the other structures. Such a query is a semantic query
when the answer is based on the satisfaction of a collection of semantic parameters.

In this section we focus in particular on a specific scenario, where S1, . . . , Sn are
hierarchical classifications, such as Web directories or catalogs. For such an applica-
tion, we now propose a precise notion of semantic query, in which semantic parameters
are explicitly listed, and then define the notion of semantically appropriate answer. In
the following section, we show that this notion of semantic query can be easily im-
plemented on top of CTXMATCH, an algorithm presented in [3] which automatically
generates mappings across hierarchical classifications.

3.1 Choosing the mapping

As stated in the introduction, the problem of semantic queries is different from the
problem of discovering mappings across structures, and that semantic queries use pre-
existing mappings. We now discuss what types of mappings are needed to support se-
mantic queries.

Generally speaking, a mapping between two schemas S1 and S2 (including tax-
onomies, ontologies, catalogs) can be thought of as a triple 〈n1, n2, R〉, where n1 is

1 Section 4 describes one possible method for computing these relations, based on the work
presented in [3].



a node of S1, n2 is a node of S2, and R is a relation between the two nodes. These
mappings are calculated in many different ways and the existing approaches can be
classified in two main categories, depending on the nature of the relation they compute:

– methods that return numerical values (typically between 0 and 1), whose intended
meaning is the semantic proximity between the two nodes. Examples include CU-
PID [14], MOMIS [1], and GLUE [6];

– methods that return semantic relations, i.e., a relation with a clear model-theoretic
interpretation (e.g., logical equivalence or subsumption). Examples include CTX-
MATCH [3], S-MATCH [10].

From the perspective of semantic queries, the problem with the first category is
that the interpretation of the result is unclear. In fact, for example, could be difficult to
interpret in the right way a 0.9 similarity? These questions are important if we want to
allow such logical relation between concepts as semantic parameters. For this reason,
we assume in this paper that the available mappings are a collection of coordination
rules, defined as follows.

Definition 1 (Coordination rule). A coordination rule from a structure SA to a SB is
a quadruple 〈id,m, n, r〉, where:

– id is a unique identifier for the rule;
– m ∈ SA and n ∈ SB are nodes in the corresponding structures;
– r is the semantic relation holding between m and n.

In [3], it is argued that, when the structures are classifications, the following set
< of semantic relations must be considered: ≡ (equivalence), ⊂ (the first is strictly
less general than the second), ⊃ (the first is strictly more general than the second), ∗
(partial overlapping), ⊥ (exclusion). Relations are interpreted in terms of documents
that would be classified under the two categories. Given a collection of documents D,
≡ means that the same subset of D would be classified under the two categories, ⊂
means that all documents classified under the category in the source structure would be
classified also under the category of the target structure (and similarly for ⊃), ∗ means
that there is a possible intersection between the sets of documents classified under the
two categories, ⊥ means that no document can be classified under both categories.

A mapping is defined as a set of coordination rules:

Definition 2 (Mapping). A mapping MA→B between two structures SA and SB is
a pair 〈id, CR〉, where id is a unique identifier for the mapping and CR is a set of
coordination rules from nodes of SA to nodes of SB .

3.2 Choosing the relevant semantic parameters

We now discuss the types of parameters we consider. They may depend on the types of
structures that are queried, or on the specific application. We propose a list of semantic
parameters that, in our opinion, are among the most important for the specification of
semantic queries.

In [3], it is argued that computing semantic mappings across hierarchical classifica-
tions depends on three different types of knowledge:



Ontological Knowledge. Ontological Knowledge (O) represents what is known about
a given domain, or about the world in general.2. Intuitively, O can be thought of as
the set of ‘objects’, or concepts, that an agent has knowledge about together with
some relations among them. Facts in the O used in our example include the fact that
Florence is located in Tuscany, that Tuscany is part of Italy, that Italy is in Europe,
and that Europe is a continent.

Lexical knowledge. Lexical knowledge represents knowledge about the relationship
between the concepts of an ontology O and their encoding into the language that
is d used to communicate with other agents. One of the best-known instances of
lexical knowledge is WORDNET [7], but note that WORDNET also includes part of
what we call ontological knowledge.

Structural knowledge. Structural knowledge refers to the fact that a classification typ-
ically classifies documents under categories that correspond to concepts which are
not directly defined in the ontology, but are obtained from the “composition” of
concepts defined in one or more ontologies. For example, the category ‘photos of
Italian mountains’ from the schema PICS2 in Figure 1 is obtained by combining
the concepts photo, Italy, and mountains. This knowledge is called structural, as it
is used to build the structure of the classification.

If we assume that a mapping is used as a way of rewriting queries for different
schemas, then the parameters associated to a semantic query should be used to filtering
out some of these rewritings. To make this possible, we introduce parameters that are
related to the way that each of the three kinds of knowledge described above are used
to compute each coordination rule in a mapping. The result is the following list of
parameters:
1. Ontological distance. This parameter encodes the ‘ontological effort’ that is required
for determining the semantic relation between two concepts. As an example, we show
that the ontological distance between PHOTOS/ITALY/FLORENCE in PICS2 and
IMAGES/TUSCANY in PICS1 is smaller that the ontological distance between PHO-
TOS/ITALY/FLORENCE/DANTE’S HOUSE in PICS2 and IMAGES/TUSCANY in
PICS1. Both pairs of nodes are connected via two coordination rules which contain the
same relation (⊃). However, the computation of the second rule requires the use of more
ontological knowledge, as it depends on at least two facts: that Florence is in Tuscany,
and that Dante’s house is in Florence. The computation of the first rule depends only on
the first fact. This observation can be used to conclude that, given an ontology which
contains these two facts, the derivation of the second coordination rule requires a greater
“ontological effort” and therefore that the ontological distance is higher3.
2. Lexical distance. This parameter represents the ‘lexical effort’ needed to determine
if two words denote the same concept. The prototypical example of lexical effort is
the substitution of a word with a synonym. However, other (not strictly semantic) tech-
niques can be used to force words occurring in different schemas to refer to the same

2 Here, we use the word ‘ontology’ in the broad sense of an explicit and formal conceptualization
of the world. Indeed, at this level, we do not need to distinguish between types of ontologies,
e.g. top level ontologies, domain ontologies, application ontologies, etc.

3 We would like to stress the fact that the ontological distance does not express a structural
distance between nodes, but only refers to how far a relation is from another w.r.t. the ontology.



concept. These include string manipulation, lemmatizers, ad hoc thesauri, etc. Lexical
distance allows us to say, for example, that the concept IMAGES/ITALY is closer to
IMAGES/TUSCANY in PICS1 than to the concept PHOTOS/ITALY in PICS2. In-
deed, even though one may argue that IMAGES/ITALY and PHOTOS/ITALY are the
same concept, the computation of the coordination rule which determines their semantic
relation with IMAGES/TUSCANY in PICS1 requires a greater lexical effort, namely
the use of the piece of lexical knowledge saying that, at least in one possible sense, the
word ‘PHOTO’ and the work ‘IMAGES’ are synonyms. In this paper, we shall only
consider only synonymy, in which case the lexical distance is a Boolean parameter with
values 0 or 1. In general, however, it could be used as a real distance, with sophisticated
techniques to introduce finer grained measures, where the similarity between words
could be expressed as a real number between 0 and 1.
3. Type of relation. Each coordination rule represents a semantic relation between two
complex concepts, i.e., concepts that are built from simple concepts defined in some
ontology and organized in a classification structure. As stated above, there is may be
more than one possible relation between two such concepts. This parameter is used to
select the relation of interest for a given query. For example, it allows John to say that he
wants only images that are classified under categories that are equivalent to the category
IMAGES/TUSCANY in PICS1; in our example this would return the empty set.

3.3 Semantic queries

We can now define formally the notion of a semantic query.

Definition 3 (Semantic Query). A semantic query Q is a 5-tuple 〈S,m, rM, ∆o, ∆l〉,
where:

– S is a structure;
– m is a node in S;
– rM ∈ < is a semantic relation;
– ∆o is the ontological distance;
– ∆l is the lexical distance;

A semantically appropriate answer to a semantic query Q can be defined as follows:

Definition 4 (Semantically Appropriate Answer). Let M be a mapping between a
source structure SA and a target structure SB , and let Q be a query. The semantically
appropriate answer to Q is the set of nodes n ∈ SB such that n is related to m through
the mapping rM, i.e., 〈id ,m, n, rM〉 ∈ M, for some values of id . Furthermore, n must
be at the appropriate ontological and lexical distance from m.

4 An example

We illustrate our general framework by showing how a semantic query engine can im-
plemented on top of CTXMATCH, the algorithm for discovering semantic mappings
across heterogeneous structures described in [3].



The input to CTXMATCH consists of two structures, and the result is a mapping
between them. This mapping is computed in two main steps: (i) semantic explicitation,
in which the meaning of each node of the two structures is made explicit and is encoded
as a set of logical formulas; and (ii) semantic comparison, in which the problem of dis-
covering the semantic relation between two nodes is now encoded as a relatively simple
problem of logical deduction. Then, determining whether there is an equivalence rela-
tion between two nodes becomes a problem of testing whether the formulas associated
to two nodes are logically equivalent, w.r.t. the appropriate axioms. Consequently it’s
used a standard SAT solver to checks the relations. Table 1 summarizes the satisfiability
problems associated to each relation, where φ represents the meaning associated to a
node in the source structure and ψ represents the meaning associated to a node in the
target structure. The tests are performed in the order listed in this table, and the relation
that is returned corresponds to the first positive answer4.

TEST RELATION RETURNED

1 Θ |= ¬(φ ∧ ψ) ⊥

2 Θ |= φ ≡ ψ ≡

3 Θ |= φ→ ψ ⊂

4 Θ |= ψ → φ ⊃

5 default ∗
Table 1. Set of SAT tests

In the current version of CTXMATCH, ontological knowledge O is represented as a
directed acyclic graph where nodes represent concepts and arcs represent roles.

Definition 5 (Ontological Knowledge). Let C be a set of concepts, and R a set of
roles. Ontological knowledge (denoted by O) is a quadruple 〈N,E, l, l′〉 where N is
a finite set of nodes, E ⊆ N × N is the set of arcs on N , l : N → C is a bijective
function from the set N of nodes to the set C of concepts and l′ : E → R is a function
from the set E of arcs to the set R of roles.

Lexical knowledge is a function which assigns sets of concepts to each word of a
lexicon5, where a lexicon is the set of words that are used to describe the concepts.
Formally, let C be a set of concepts and L a set of lemmas. Then lexical knowledge is
defined as follows:

4 Note that the relation returned by tests 3 and 4 is strict containment, since the system performs
test 3 only if a negative result was returned by test 2. If a positive answer is returned by 3,
it means that Θ |= φ → ψ ∧ ¬(φ ≡ ψ), which corresponds to the ‘⊂’ relation. A similar
explanation applies to the ∗ relation, which the default case.

5 We allow sets of concepts in the lexical function since in most human languages the same
lemma can express more that one concept (polysemy). In an ideal language, where no poly-
semy is possible, the sets L and C would be isomorphic and the lexicon function would be a
bijective function.



Definition 6 (Lexical knowledge). Lexical knowledge is a function L : L→ 2C from
lemmas to sets of concepts.

The coordination rules returned by CTXMATCH already contain information about
the semantic relations between pairs of nodes of two classifications. However, to imple-
ment the mechanism of semantic query on top of CTXMATCH, we also need to compute
the lexical and ontological distance associated to each rule. In this paper we decide to
precompute the values when creating the mapping, adding this information to the exist-
ing coordination rules 6.

The modified version of CTXMATCH therefore returns extended coordination rules:

Definition 7 (Extended Coordination Rule). An Extended Coordination Rule from a
structure SA to a structure SB is a 6-tuple 〈id,m, n, r, d, ld〉, where:

– id, m ∈ SA, n ∈ SB and r are as in Definition 1;
– d is the ontological distance of the coordination rule;
– ld is the lexical distance of the coordination rule.

Accordingly, we extend the definition of mapping as follows:

Definition 8 (Extended Mapping). A extended mapping MA→B between two struc-
tures SA and SB is a set of Extended Coordination Rules.

We now discuss how CTXMATCH actually computes the ontological and lexical
distance above.

Let O be an ontology as defined in Definition 5, and let c and c′ be two concepts
in O. We say that two concepts c and c′ are related iff there is at least one path on
the graph that connects the corresponding nodes l−1(c) and l−1(c′). The ontological
distance between c and c′ is then defined as follows.

Definition 9 (Ontological Distance between simple concepts). The Ontological Dis-
tance between c and c′, written Ds(c, c

′), is the length of the minimal path between the
nodes corresponding to c and c′ in O, if such a path exists, and is 0 otherwise.

For example, if ‘Florence
Part-Of
−→ Tuscany

Part-Of
−→ Italy’ is the minimal path in O be-

tween the simple concepts ‘Italy’ and ‘Florence’, then the ontological distanceDs(Italy,
Florence) is 2 (two arcs).

However, in general, we are interested in calculating the distance between two com-
plex concepts. To define this distance, we introduce the following definitions.

Definition 10 (Ontological Distance between sets of simple concepts). Let A and B
be two sets of simple concepts. The ontological distance between the sets A and B,
Dc(A,B), is

Σc∈A, c′∈BD(c, c′)

6 This fact does not increase the complexity of CTXMATCH.



The ontological distance between sets of simple concepts is the sum of the ontolog-
ical distances of all the possible pairs of simple concepts in the two sets.

This definition involves some redundancy, and we therefore introduce the notion of
normalized set of simple concepts.

Definition 11 (Normalized set of simple concepts). Let K be the set of simple con-
cepts occurring in a complex concept α. A normalized set of simple concepts K ′ ⊆
K = {c ∈ K | there is no path from c′ to c in O for some c′ ∈ K}.

For example, K = {Photos, Italy,Florence} is the set of simple concepts associ-
ated to the complex concept ‘Images of Florence in Italy’. Then the normalized set K ′

is {Images,Florence}, as the presence of the Part-Of relation between ‘Florence’ and
‘Italy’ in the ontology O allows us to delete ‘Italy’ from the set.

The ontological distance between complex concepts can now be defined as follows.

Definition 12 (Ontological Distance between complex concepts). Let A and B be
the set of simple concepts occurring in complex concepts φ and ψ respectively. The
Ontological Distance between the complex concepts φ and ψ is defined as Dc(A

′, B′),
where A′ and B′ are the normalized sets of simple concepts for A and B respectively.

For lexical distance, we introduce the notion of translation clause as follows.

Definition 13 (Translation clause). Let k be a node in a structure S and φ the asso-
ciated complex concept. Then a translation clause Cj for φ is a set of pairs 〈w,L(w)〉,
where w is a word occurring in one of the labels of the nodes lying in the path from root
to k, and L(w) = 〈s1, . . . , sn〉 is the set of possible concepts denoted by the word w
w.r.t. a lexicon L.

Consider the node TUSCANY of the right structure depicted in Figure 1. The trans-
lation clause for this node w.r.t. WORDNET (used as lexicon) is the set

{〈image , 〈image#1, . . . , image#7〉〉 , 〈Tuscany , 〈tuscany#1〉〉}

Definition 14 (Lexical Distance between complex concepts). Let φ and ψ complex
concepts and Cs and Ct be the ‘translation clauses’ for φ and ψ respectively. The
Lexical Distance between φ and ψ is 1 if Ct ⊆ Cs, and is 0 otherwise.

In this framework, the definition of semantically appropriate answer can be restated
as follows:

Definition 15 (Semantically Appropriate Answer Specialized). Let M be an ex-
tended mapping between a source structure SA and a target structure SB , and let Q be
a query. The semantically appropriate answer to Q is the set of nodes n ∈ SB such that
n is related to m through the mapping rM, i.e., 〈id ,m, n, rM, d, ld〉 ∈ M, for some
values of id . Furthermore, n is at the appropriate lexical distance, i.e. ld ≤ ∆l, and
ontological distance, i.e. d ≤ ∆o, from m.



We illustrate this definition with a simple example. We use a syntax is based on
XPath, extended to allow the specification of semantic parameters. The notation for the
semantic parameters is similar to XPath qualifiers, but using angle brackets to make the
distinction clear. We can therefore qualify a node by using: (i) 〈rel = r〉, where r ∈ <
(i.e., ≡, ⊂, etc.); (ii) 〈od ≤ k〉, to restrict the ontological distance to be less that of
equal to k (strict equality can also be used); (iii) 〈ld = 0〉 to restrict the lexical distance
(ld = 1 could be used, but would be redundant).

Consider Figure 1. The query ‘/IMAGES/TUSCANY〈rM =⊃〉 〈∆o ≤ 1〉 〈∆l = 0〉′,
expressed using a XPath expression on the source HC (on the left), specifies that the
user wants documents that are contained in nodes that are semantically related to the
path IMAGES/TUSCANY by means of a semantic relation ⊃, but that are ontologically
distant up to 1, and whose concepts are lexically equivalent.

Considering the mapping, we know that the path IMAGES/TUSCANY is related, in
some way, to six elements. The first constraint is represented by the restriction on the
semantic relation ‘⊃’. We can see that only the paths PHOTOS/ITALY/FLORENCE/
CHURCHES and PHOTOS/ITALY/FLORENCE/DANTE’S HOUSE satisfy this con-
straint. The second constraint is that on the ontological distance, which is satisfied
only be PHOTOS/ITALY/FLORENCE/CHURCHES respects the constraint. Indeed,
the path PHOTOS/ITALY/FLORENCE/CHURCHES is at ontological distance 2 from
IMAGES/TUSCANY, since ‘Dante’s house Part-Of Florence’, and ‘Florence Part-Of
Tuscany’. The third constraint is that on the lexical distance. This is satisfied by none of
the paths, as, the lexical distance between IMAGES/TUSCANY and PHOTOS/ITALY/
FLORENCE/CHURCHES is 1, since the translation clause 〈image , 〈s1, . . . , sn〉〉 is in
Ct but not in Cs.

5 Related Work

We present here roadmap to relevant work in the area of querying the Semantic Web.
We first distinguish approaches that address the problem of querying a single knowl-

edge source from those that address the issue of distributing queries across multiple
(heterogeneous) sources. In the first group we find RQL [12, 11], XML-QL [5], and
XQuery [2]). We also include DQL [8] and OWL-QL [9], even though they are de-
signed for a distributed environment. Indeed, they address the problem of a client-server
interaction, but, to the best of our knowledge, not the problem of querying semantically
heterogeneous resources.

In the other group, there are two main approaches, those that use a global schema
(GAV and LAV), and and P2P approaches. Among the P2P approaches, we classify the
relevant work according to the three levels discussed in the introduction: the mapping
level, the query rewriting level, and the semantic query level.

We have explained why the mapping problem is different from the problem of using
mappings to answer queries. The approach that is closest to ours is that of [4]. In this
paper, the two levels are (i) a particular kind of mapping between the exported fragments
Vl and Vr of a knowledge base from the local and the remote peers, and (ii) the query
problem, regarded as the problem of rewriting a query on the local structure into another
query on the remote structure using the ontological knowledge encoded in the mapping.



These two levels are different from our mapping and the semantic query levels, and both
of the problems of [4] are addressed at the mapping level. A set of semantic relations
relating a path m in a structure SA with a set of paths n1, . . . , nk in another structure
SB represents the set of all the possible rewritings in SB of a query q on m, so that the
‘syntactical rewriting’ of the query q would be redundant. Furthermore, our semantic
query level adds a further level called the asking and answering problem.

References

1. Sonia Bergamaschi, Silvana Castano, and Maurizio Vincini. Semantic integration of
semistructured and structured data sources. SIGMOD Record, 28(1):54–59, 1999.

2. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, and J. Simeon. XQuery 1.0:
An XML query language. Technical report, W3C, November 2003.

3. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a new approach and an
application. In K. Sycara, editor, Second International Semantic Web Conference (ISWC-
03), Lecture Notes in Computer Science, Sanibel Island (Florida, USA), October 2003.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. What to ask to a
peer: ontology-based query reformulation. In 9th International Conference on Principles of
Knowledge Representation and Reasoning (KR-2004), 2004.

5. A. Deutsch, M. Fernandez, A. Levy, and D. Suciu. XML-QL: A query language for XML.
Technical report, W3C, August 1998.

6. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies
on the semantic web. In 11th Int. WWW Conf., Hawaii, 2002.

7. Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. The MIT Press,
Cambridge, US, 1998.

8. R. Fikes, P. Hayes, and I. Horrocks. DQL - a query language for the semantic web. Technical
report, Knowledge Systems Laboratory, 2002.

9. R. Fikes, P. Hayes, and I. Horrocks. OWL-QL - a language for deductive query answering
on the semantic web. Technical report, Knowledge Systems Laboratory, Stanford, CA, 2003.

10. F. Giunchiglia and P. Shvaiko. Semantic matching. Proceedings of the workshop on Semantic
Integration, October 2003.

11. G. Karvounarakis. The RDF query language (RQL). Technical report, Institute of Computer
Science, Foundation of Research Technology, 2003.

12. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A
declarative query language for RDF. In Proc. of the eleventh international world wide web
conference, Honolulu, Hawaii, USA, May 2002.

13. A. Calı̀, D. Calvanese, G. De Giacomo, and M. Lenzerini, Data integration under integrity
constraints, In Information Systems, pages 147–163, 2004.

14. Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching with
cupid. In The VLDB Journal, pages 49–58, 2001.



Element Level Semantic Matching  

Fausto Guinchiglia, Mikalai Yatskevich 

Dept. of Information and Communication Technology  
University of Trento, 

38050 Povo, Trento, Italy 
{fausto, yatskevi}@dit.unitn.it  

Abstract. We think of Match as an operator which takes two graph-like struc-
tures and produces a mapping between semantically related nodes. The match-
ing process is essentially divided into two steps: element level and structure 
level. Element level matchers consider only labels of nodes, while structure 
level matchers start from this information to consider the full graph. In this pa-
per we present various element level semantic matchers, and discuss their im-
plementation within the S-Match system. The main novelty of our approach is 
in that element level semantic matchers return semantic relations (=, , , ⊥) 
between concepts rather than similarity coefficients between labels in the [0, 1] 
range.  

1. Introduction 

We think of matching as the task of finding semantic correspondences between ele-
ments of two graph-like structures (e.g., conceptual hierarchies, database schemas or 
ontologies). Matching has been successfully applied to many well-known application 
domains, such as schema/ontology integration, data warehouses, and XML message 
mapping. 

Semantic matching, as introduced in [4, 6], and its implementation within the S-
Match system [7] are based on the intuition that mappings should be calculated be-
tween the concepts (but not labels) assigned to nodes. Thus, for instance, two con-
cepts can be equivalent; one can be more general than the other, and so on. As from 
[6], all previous approaches are classified as syntactic matching. These approaches, 
though implicitly or explicitly exploiting the semantic information codified in graphs, 
differ substantially from our approach in that, instead of computing semantic relations 
between nodes, they compute syntactic “similarity” coefficients between labels, in the 
[0,1] range (see [6] for an in depth discussion about syntactic and semantic matching).  

The system we have developed, called S-Match, takes two trees, and for any pair 
of nodes from these two trees, it computes the strongest semantic relation holding be-
tween them. In order to perform this, the matching task is articulated into two basic 
steps, namely element and s tructure level matching (See [7] for details ). Element level 
matchers consider only the information at the atomic level (e. g., the information con-
tained in elements of the schemas), while structure level matchers consider also the 
information about the structural properties of the schemas.  



Our goal in this paper is to describe a set of element level semantic matchers, as 
they have been implemented within S-Match. In order to satisfy the input require-
ments of the structure level matchers the element level matchers return semantic rela-
tions (=, , , ⊥ ). Some matchers are modifications of previously developed syntactic 
matchers. The main novelty is the output returned. However, we have introduced the 
new method for determining semantic words relatedness namely semantic gloss com-
parison.  

The rest of the paper is organized as follows. Section 2 provides an overview of S-
Match. Section 3 is dedicated to semantic element level matchers. String based 
matchers are discussed in Section 4, while sense and gloss based matchers are de-
scribed in Sections 5 and 6, respectively. The descriptions of matchers are structured 
as follows. First, we give the overview of the matcher under consideration. After-
wards, we provide some examples of the matcher results with execution times (a ll 
tests were performed on a P4 computer with 512 Mb RAM installed). Finally, we dis-
cuss the results obtained.  

2. S-Match: Algorithm and Implementation 

According to [6] possible semantic relations returned by element level matchers are: 
equivalence (=); more general ( ); less general ( ); mismatch (⊥ ); overlapping (∩). 
They are ordered according to decreasing binding strength, e.g., from the strongest (=) 
to the weakest (∩). When no relations are found the special Idk  (I don’t know) rela-
tion returned.  

As from [7], the S-Match algorithm is organized in the following four macro steps: 
− Step 1 : for all labels in the two trees, compute concepts denoted by labels 
− Step 2 : for all nodes in the two trees, compute concepts at nodes 
− Step 3: for all pairs of labels in the two trees, compute semantic relations among 

concepts denoted by labels  
− Step 4: for all pairs of nodes in the two trees, compute semantic relations among 

concepts at nodes  
Let us consider, for instance, the two trees depicted in Figure 1a.   

Fig. 1. Simple schemas (a). Matrices of relations between labels (b) and concepts at nodes (c).  

During Step 1 we try to capture the meaning of the labels in the trees. In order to 
perform this we first tokenize the complex labels . Then for instance “Wine and 
Cheese” from Figure 1 becomes <Wine, and, Cheese>. Then, we lemmatize tokens; 
and “Images” becomes “image”. Then, an Oracle (at the moment we use WordNet 2.0 
as an Oracle) is queried in order to obtain the senses of the lemmatized tokens. After-
wards, these senses are attached to the atomic concepts. Finally, the complex concepts 



are built from the atomic ones. Thus, the concept of label Wine and Cheese, CWine and 

Cheese is computed as CWine and Cheese = <wine, {sensesWN#4}>&<cheese, {sensesWN#4}>, where 
<cheese, {sensesWN#4}> is taken to be the union of the four WordNet senses.  

Step 2 takes into account structural schema properties. The logical formula for a  
concept at node is constructed, most often as the conjunction of the formulas in the 
concept path to the root (see [7] for more details).   

Element level semantic matchers are applied during Step 3 while determining the 
semantic relations between labels . For example, we can derive from WordNet the in-
formation that image and picture are synonyms  (CImages = CPictures). The relations be-
tween the atomic concepts in our example in Figure 1a are depicted in Figure 1b. 
Element level semantic matchers provide the input to the structure level matcher, 
which is applied on the Step 4 and produces the matching result, which is depicted in 
Figure 1c. 

The pseudo code of Step 3 which contains the calls of element level semantic 
matchers is provided in  Figure 2. getRelation  takes two concept labels (sLabel, 
tLabel) and their WordNet senses (arrays sSenses, tSenses) as input, and pro-
duces a semantic relation between these two labels  (rel). First, it tries to obtain the 
relation from WordNet (line 2). If it does not succeed (the result is equal to Idk) the 
string, sense, and gloss based matchers are executed in sequential order (line 4).  
1.String getRelation(String[] sSenses,String[] tSenses, 
           String sLabel,String tLabel) 
2.  String rel=getWordNetRel (sSenses,tSenses);  
3.  if (rel==”Idk”) 
4.    rel=getMLibRel(sLabel,tLabel,sSenses,tSenses); 
5.  return rel; 

Fig. 2. Pseudo code of weak semantic matchers library. 

getWordNetRel takes two arrays of WordNet senses and produces the strongest 
semantic relation between any two senses. In order to perform this, it triple loops on 
relations, source, and target senses. If there no semantic relations are found, it returns 
Idk  . 
getMLibRel takes two labels and two arrays of WordNet senses and returns a se-
mantic relation between them. In order to perform this, it sequentially executes differ-
ent string, sense, and gloss based matchers. String based  matchers are executed once 
for each pair of input labels. Sense and gloss based  matchers are executed for each 
pair of concept senses and each possible semantic relation between them. If the 
matchers fail to determine the relation, Idk  is returned.  

Notice that element level semantic matchers are executed only in the case we can-
not obtain the necessary information from WordNet which is the only element level 
matcher whose result is guaranteed to be correct.  

3. Element level semantic matchers 

S-Match is implemented in Java 1.4. The current version contains 13 semantic ele-
ment level matchers listed in Table 1.  



Table 1. Element level semantic matchers implemented so far 

Matcher name Execution
Order 

Approximation
level 

Matcher type Schema info 

Prefix 2 2 

Suffix 3 2 

Edit distance 4 2 

Ngram 5 2 

Labels 

Text Corpus 13 3 

String based 

Labels + Corpus 

WordNet 1 1 

Hierarchy distance 6 3 
Sense based WordNet senses 

WordNet Gloss  7 3 

Extended WordNet Gloss 8 3 

Gloss Comparison 9 3 

Extended Gloss Comparison 10 3 

Semantic Gloss Comparison 11 3 

Extended semantic gloss comparison 12 3 

Gloss based WordNet senses 

The first column lists the matcher names. The second column lists the order in 
which they are called. The third column introduces the notion of approximation level. 
The relation produced by matcher with first approximation level is always considered 
to be correct (e. g., auto=car returned by WordNet). The relations of second approxi-
mation level matcher is likely to be correct (e.g., net=network  but hot=hotel  by Suf-
fix). The third approximation level relations are fuzzier in the sense that they depend 
on the context of the matching task (e.g., cat can be considered equivalent to dog by 
Extended Gloss Comparison in the sense they are both pets). It can be notified that 
matchers are executed following the order of increasing approximation. The fourth 
column reports the matcher type. The fifth column reports the matchers’ input. At the 
moment we have three ma in categories of matchers. String based matchers have two 
labels as input (with exception of the Text Corpus which takes also a text corpus). 
Sense based matchers have two WordNet senses in input. Gloss based matchers also 
have two WordNet senses as input and produce relations exploiting gloss comparison 
techniques.  

For lack of space in this paper we describe only some of the matchers. We do not 
consider: Suffix, Ngram and Semantic Gloss Comparison . A full description is re-
ported in the technical report version of this paper. 

4. String based matchers  

Approximate string matching techniques [10] are widely used in various schema 
matching systems [5, 13]. Our String based matchers are modifications of well known 
element level syntactic matchers, and produce an equivalence relation if the input la-
bels satisfy the given criteria, which are specific for each matcher. Otherwise, Idk  is 
returned. 



4.1 Prefix 

Prefix checks whether one input label starts with the other. It  returns an equivalence 
relation in this case, and Idk  otherwise. The examples of relations Prefix produced and 
the time it needs to compute them are summarized in Table 2.  

Prefix is efficient in matching cognate words and similar acronyms (e.g., RDF and 
RDFS) but often syntactic similarity does not imply semantic relatedness. Consider 
the examples in Table 2. The matcher returns equality for hot and hotel which is 
wrong but it recognizes the right relations in the case of the pairs net, network  and cat, 
core.  

Table 2. The relations p roduced by the prefix matcher and its execution time 

Source label Target label Relation Time, ms 
net network = 0.00006 
hot hotel = 0.00006 
cat core Idk 0.00005 

4.2 Edit Distance 

Edit distance calculates the edit distance measure between two labels. The calculation 
includes counting the number of the simple editing operations (delete, insert and re-
place) needed to convert one label into another and dividing the obtained number of 
operations with max(length(label1),length(label2)) . The result is a value in [0..1]. If 
the value exceeds a given threshold (0.6 by default) the equivalence relation is re-
turned, otherwise, Idk is produced.  

Edit Distance is  useful with some unknowns to WordNet labels. For example, it 
can easily match labels street1, street2, street3, street4 to street (edit distance measure 
is 0.86). In the case of matching proper with propel the edit distance similarity meas-
ure has 0.83 value, but equivalence is obviously the wrong output.  

Table 3. The relations produced by the edit distance matcher and its execution time 

Source label Target label Relation Time, ms 
street street1 = 0.019 
proper propel = 0.016 

owe woe Idk 0.007 

4.3 Text Corpus  

Corpus based matchers exploit natural language processing and sense disambiguation 
techniques [2, 3, 12, 16]. However, with the noticeable exception of [15], they have 
never been used in the schema matching/ontology alignment context.  

Corpus based matchers find occurrences of the first label in the second label im-
mediate vicinity (or text window, whose size typically varies from a few to several 
thousand characters ) in a corpus. Text Corpus has in input two labels and a text cor-
pus and produces a relation between the labels. If a sufficient number of labels co-



occurrences is found, then Text Corpus returns the equivalence relation. With these 
matchers the ma jor problem is the choice of the right corpus. For example, using the 
Genesis, from The King James Holy Bible as corpus we can infer (if we have the text 
window of size at least 3 words ahead) that darkness is related to night because of the 
following sentence.  
5: And God called the light Day, and the darkness he called Night. And the evening 
and the morning were the first day.  

But using the same example (and window size of 4 words ahead) we can infer that 
God is related to Day which is wrong. Table 7 illustrates the exa mple.  

At the moment we use a very simple version of this matcher, which calculates the 
label co-occurrences within a given text window in a given corpus. If these co-
occurrences exceed a given threshold (at the moment this value depends on the corpus 
size) the equivalence relation is produced. Otherwise, the matcher returns Idk . A pos-
sible solution for the “right” corpus selection strategy is to query Internet search en-
gines as sources of relevant corpuses [15].  

Table 7. The relations produced by the text corpus matcher and its execution time 

Source label Target label Relation Time, ms 
Night darkness = 0.008 
God Day = 0.008 
light first Idk 0.009 

5. Sense based matchers 

Sense based matchers take in input two WordNet senses and exploit the structural 
properties of WordNet hierarchies.  

WordNet [14] is a lexical database which is available online [20] and provides a 
large repository of English lexical items. WordNet contains synsets  (or senses), struc-
tures containing sets of terms with synonymous meanings. Each synset has a gloss 
that defines the concept that it represents. For example the words night, nighttime  and 
dark  constitute a single synset that has the following gloss: the time after sunset and 
before sunrise while it is dark outside. Synsets are connected to one another through 
explicit semantic relations. Some of these relations (hypernymy, hyponymy for nouns 
and hypernymy and troponymy for verbs) constitute kind-of and part-of (holonymy 
and meronymy for nouns) hierarchies. In example, tree is a kind of plant, tree is hy-
ponym of plant and plant is hypernym of tree. Analogously from trunk  is a part of 
tree we have that trunk  is meronym of tree  and tree is holonym of trunk .  

We translate the relations provided by WordNet to semantic relations according to 
the following rules: 
− A  B if A is a hyponym, meronym or troponym of B; 
− A  B if A is a hypernym or holonym of B; 
− A = B if they are connected by synonymy relation or they belong to one synset 

(night and nighttime  from abovementioned example); 
− A ⊥  B if they are connected by antonymy relation or they are the siblings in the 

part of hierarchy 



Further, we use the notion of extended gloss [3]. An extended gloss is a text corpus 
obtained by concatenating the glosses of synsets known to be related, via a WordNet 
hierarchy, with a given WordNet synset. For example, two extended glosses can be 
built for the concept tree. The first consists the glosses of the less general synsets 
(trunk, oak , etc). The second is obtained from the glosses of the more general synsets 
(plant, object, etc.). 

5.1 WordNet 

WordNet is an exact element level semantic matcher. It provides if it exists, a relation 
between two input senses and Idk  otherwise. For example, car, according to Word-
Net, is more general than minivan. Thus, we return  relation (See Table 8). On the 
other hand, red and pink  are not connected by any of WordNet relations and we return 
Idk . The results depend heavily on the content of WordNet. Our work with this 
matcher is basically a reimplementation of the work described in [4]. An interesting 
extension of this work is the possibility of extending WordNet with domain specific 
information.  

Table 8. The relations produced by WordNet matcher and its execution time 

Source label Target label Relation Time, ms 
car minivan  2,3 
car auto = 0.6 
tail dog  0.2 
red pink Idk 0.4 

5.2 Hierarchy distance 

Hierarchy based matchers measure the distance between two concepts in a given 
input hierarchy. Several semantic word relatedness measures have been proposed. 
See, for instance [1, 8, 17, 19]. At the moment we use a very simple hierarchy dis-
tance measure, which is a slight modification of the method used in [17]. In particular, 
Hierarchy distance returns the equivalence relation if the distance between two input 
senses in a WordNet hierarchy is less than a given threshold value and Idk  otherwise. 
The number of less general and more general arcs is also considered. In the case of 
equivalence they must be nearly of the same number. 

chromatic color

red pink...
 

Fig. 3. The immediate vicinity of red and pink concepts in WordNet is-a hierarchy 

Consider the example in Fig. 3.It can be noticed that, there is no direct relation be-
tween red and pink . However, the distance between these concepts is 2 (1 more gen-



eral link and 1 less general). Thus, we can infer that red and pink  are close in their 
meaning and return the equivalence relation. On the other hand, synsets of catalog 
and classification are not connected through a WordNet hierarchy (e.g., they have dif-
ferent top level ancestors). Thus, Idk  is returned. Table 9 illustrates these exa mples. 

Table 4. The relations produced by hierarchy distance matcher and its execution time 

Source label Target label Relation Time, ms 
red pink = 0.159 

catalog classification Idk 0.203 

This matcher has several modifications regarding the way the distance between the 
concepts is calculated. In the current implementation we use a simple hierarchy dis-
tance measure. We count the number of arcs in a is-a hierarchy and if this value is 
less than a given threshold the equivalence relation is returned. 

Hierarchy distance works relatively fast and provides a good approximation of the 
concepts similarity. The major drawback of this matcher is the strong dependence on 
the concepts vicinity structure in WordNet. The hierarchy based word relatedness 
measures from [19, 9, 1] can also be adapted to an matching application. 

6. Gloss based matchers  

Gloss based matchers, similarly to sense based matchers, have in input two WordNet 
senses and return the semantic relation holding between them. However, gloss based 
matchers differ in that they use the information contained in WordNet glosses. Many 
of them exploit techniques from natural language processing [2, 3, 12, 16]. 

The majority of gloss based matchers use corpus based and corpus comparison 
techniques. As a result , two questions arise: which corpuses should be compared and 
how comparison should be performed? Concerning the second problem, at the mo-
ment we use two methods.  

According to the first method, we calculate the number of occurrences of the same 
words in two corpuses. If the number exceeds a given threshold the relation is pro-
duced. We call this method syntactic corpus comparison . The second method is based 
on the calculation not only of the number of occurrences, but also of the number of 
synonyms, and more and less general words between corpuses. We call this method as 
semantic corpus comparison. Table 10 reports what is  compared and how comparison 
is performed in the gloss based matchers implemented so far. 

Table 10. Sense based matchers: what is compared and how comparison is performed 

Matcher name What is compared?  Comparison method 

WordNet gloss  labels and glos s syntactic 
WordNet extended gloss  labels and extended gloss  syntactic 

Gloss comparison gloss and gloss syntactic 
Extended gloss comparison gloss and extended gloss syntactic 
Semantic gloss comparison gloss and gloss semantic 

Extended semantic gloss comparison gloss and extended gloss semantic 



6.1 WordNet gloss 

WordNet gloss compares the labels of the first input sense with the WordNet gloss of 
the second. First, it extracts the labels of the first input sense from WordNet. Then, it 
computes the number of their occurrences in the second gloss. If this number exceeds 
a given threshold,  is  returned. Otherwise, Idk  is produced.  

The reason why the less general relation is returned comes from the lexical struc-
ture of the WordNet gloss. Very often the meaning of the index words is explained 
through a specification of the more general concept. In the following example, hound 
(any of several breeds of dog used for hunting typically having large drooping ears) 
hound  is described through the specification of the more general concept dog. In this 
example hound is a dog with special properties (large drooping ears, used for hunt-
ing). 

Counting the label occurrences in the gloss does not give a strong evidence of what 
relation holds between concepts. For example, WordNet gloss returns the less general 
relation for hound and ear in the abovementioned example, which is clearly wrong. 
Table 11 illustrates the example.  

Table 11. The relations produced by the WordNet gloss matcher and its execution time 

Source label Target label Relation Time, ms 
hound dog  0.031 
hound ear  0.014 
dog cat Idk 0.033 

This matcher implements the ideas developed in [12, 2]. The main difference is 
that the matcher returns a semantic relation rather than a numerical similarity coeffi-
cient.  

6.2 WordNet extended gloss 

WordNet extended gloss compares the labels of the first input sense with the extended 
gloss of the second. This extended gloss is obtained from the input sense descendants 
(ancestors) descriptions in the is-a (part-of) WordNet hierarchy. A given threshold 
determines the maximum allowed distance between these descriptions and the input 
sense in the WordNet hierarchy. By default, only direct descendants (ancestors) are 
considered.  

The idea of using extended gloss originates from [3]. Unlike [3], we do not calcu-
late the extended gloss overlaps measure, but count the number of first input sense la-
bels occurrences in the extended gloss of the second input sense. If this number ex-
ceeds a given threshold, a semantic relation is produced. Otherwise, Idk  is returned. 
The type of relation produced depends on the glosses we use to build the extended 
gloss. If the extended gloss is built from descendant (ancestor) glosses , then the  ( ) 
relation is produced.  

For example, the relation holding between the words dog and breed can be easily 
found by this matcher. These concepts are not related in WordNet, but the word breed 
occurs very often in the dog’s descendant glosses. Table 12 illustrates the example.  



Table 12. The relations produced by the WordNet extended gloss matcher and its execution 
time 

Source label Target label Relation Time, ms 
dog  breed  0.268 
dog cat Idk 4.3 

wheel machinery  2.6 

6.3 Gloss comparison 

Within Gloss comparison the number of the same words occurring in the two input 
glosses increases the similarity value. The equivalence relation is returned if the re-
sulting similarity value exceeds a given threshold. Idk  is produced otherwise. 

Let us try to find the relation holding, for example, between Afghan hound and 
Maltese dog using gloss comparison strategy. These two concepts are breeds of dog, 
but unfortunately WordNet does not have explicit relation between them. However, 
the glosses of both concepts are very similar. Let us compare: 

Maltese dog is a breed of toy dogs having a long straight silky white coat; and: 
Afghan hound is a tall graceful breed of hound with a long silky coat; native to the 
Near East. 

There are 4 shared words in both glosses (breed, long, silky, coat). Hence, the two 
concepts are taken to be equivalent. Table 13 illustrates the example.  

Table 13. The relations produced by the gloss comparison matcher and its execution time 

Source label Target label Relation Time, ms 
Afghan hound Maltese dog = 0,074 

dog cat Idk 0,019 

Several modifications of this matcher exist. One can assign a higher weight to the 
phrases or particular parts of speech than single words [16]. In the current implemen-
tation we have exploited the approach used in [16], but changed the output to be a 
semantic relation. 

6.4 Extended Gloss comparison 

Extended gloss comparison compares two extended glosses built from the input 
senses . Thus, if the first gloss has a lot of words in common with descendant glosses 
of the second then the first sense is more general than the second and vice versa. If the 
corpuses (extended glosses) formed from descendant (ancestor) glosses of both labels 
have a lot of words in common (this value is controlled by a given threshold) then the 
equivalence relation is returned.  

For example, dog and cat are not connected by any relation in WordNet. Compar-
ing the corpuses obtained from descendants glosses of both concepts we can find a lot 
of words in common (breed, coat, etc). Thus, we can infer that dog and cat are related 



(they are both pets), and return the equivalence relation. The relations produced by the 
matcher and its execution time are summarized in Table 14.  

Table 14.The relations produced by the extended gloss comparison matcher and its execution 
time 

Source label Target label Relation Time, ms 
dog cat = 4.3 

house animal Idk 79.8 

The idea of this matcher originates from the extended gloss overlaps measure, as 
described in [3]. Unlike [3], we do not calculate the extended gloss overlaps measure, 
but return semantic relations produced by the rules stated above. 

6.5 Semantic Gloss comparison 

Semantic Gloss comparison is based on a new method for determining semantic 
words relatedness. This method extends the work of [16]. The key idea is to maintain 
statistics not only for the same words in the input senses glosses (like in Gloss com-
parison) but also for words which are connected through is-a (part-of) relationships in 
WordNet. This can help finding the gloss relevance not only at the syntactic but also 
at the semantic level. In Semantic Gloss Comparison we consider synonyms, less 
general and more general concepts  which (hopefully) lead to better results.  

In the first step the glosses of both senses  are obtained. Then, they are compared by 
checking which relations hold in WordNet between the words of both glosses. If there 
is  a sufficient amount (in the current implementation this value is controlled by a 
threshold) of synonyms the equivalence relation is returned. In the case of a large 
amount of more (less) general words, the output is  ( ) correspondingly. Idk  is re-
turned if we have a nearly equal amount of more and less general words in the glosses 
or there are no relations between words in glosses . Table 15 contains the results pro-
duced by semantic gloss comparison matcher. 

Table 15.The relations produced by the semantic gloss comparison matcher and its execution 
time 

Source label Target label Relation Time, ms 
dog  breed  6.7 
cat dog Idk 10.9 

wheel machinery  1419 

7. Conclusion  

In this paper we have presented the library of element level semantic matchers im-
plemented within the S-Match system. We have implemented three kinds of matchers: 
string, sense and gloss based. 

A lot of work still needs to be done in order to identify their performance and how 
they can be successfully exploited in the many, very diverse, matching tasks.  
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Communicating References
(Very Preliminary Report)

R.Guha

IBM Research

1 Introduction and Framework

Information Theory [2] has focussed on the problem of a receiver reproducing a se-
quence of symbols sent by a transmitter. Often the transmitter intends these symbols
to refer to some entities. The problem of the receiver reproducing the intended refer-
ences of the symbols, or more generally, the meaning of the message, has been given
little attention.1 In this paper we propose a mathematical framework for addressing the
problem of communicating references.

We assume that there is an underlying world or structure that the messages per-
tain to. Parts of the structure are visible to the transmitter and receiver. Each message
describes a portion of this structure. We say that the transmitter has communicated
the meaning of a message when the receiver can identify the portion of the structure
described by it. This gets complicated when transmitter and receiver don’t share a vo-
cabulary and grammar. In this case, the transmitter and receiver can guess some or even
all of each others vocabularies by exploiting regularities in the structure. Our goal is to
establish the relationship between the properties of the structure and what the receiver
and transmitter need to a priori share to enable the communication of references.

The example in figure 1 illustrates our framework. There is an underlying predi-
cate logic structure that the message describes. Some of this structure is visible to the
transmitter and receiver. The transmitter and receiver each has a representation of the
portions of the structure visible to her/him, each her/his own vocabulary, which we will
assume are disjoint. In this example the transmitter intends the message (P1(A,D) ∧
P2(A,C)) to communicate a portion of this structure. The transmitter encodes the mes-
sage in her vocabulary. We consider the receiver to have understood the meaning if he
can identify the portion of the structure that the transmitter encoded in the message,
that is also visible to him. In other words, the receiver should be able to re-encode the
contents of the message in his own vocabulary, i.e., as (Q1(S, V ) ∧Q2(S, U)).

The meaning of the message is carried in part by the mapping of symbols to ob-
jects/relations and in part by the correspondence between grammatical relations be-
tween symbols in the message and relations between the denoted objects in the struc-
ture. We begin by assuming that the latter is simple (as it is in the case of predicate

1 In fact, in [4] Shannon explicitly writes: “The fundamental problem of communication is that
of reproducing at one point either exactly or approximately a message selected at another point.
Frequently the messages have meaning; that is they refer to or are correlated according to some
system with certain physical or conceptual entities. These semantic aspects of communication
are irrelevant to the engineering problem.”
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Fig. 1. Framework for communicating references

logics) and a priori shared by the receiver and transmitter. So, for example, we will
assume that for both the transmitter and receiver, a string such asP1(A,D) will be in-
terpreted as representing that the objects denoted byA andD are in the relation denoted
by P1. On the other hand, we do not make this assumption about the symbols. That is,
the transmitter and receiver cannot be assumed to know all of the other’s symbol to
object/relation mappings. Therefore, to reconstruct the meaning of the message, the re-
ceiver has to construct a mapping between the symbols used by him and the transmitter.
The transmitter and receiver may however a priori have the mapping for the symbols
corresponding to some (possibly zero) of the objects. A symbol for which the trans-
mitter and receiver a priori have the mapping is called aShared Symbol. Though the
transmitter and receiver may begin by sharing only some (possibly zero) symbols, by
exploiting the messages and the underlying structure visible to both, they can bootstrap
to obtain the mapping for all of the symbols.

We restrict our attention to a limited class of messages. In particular, we only con-
sider declarative messages. Other speech acts such as questions and imperatives are
ignored. We also only look at messages that do not rely on any contextual constructs
(such as indexicals) to communicate their meaning.

A mathematical framework for studying the problem of communicating meaning
is likely to have many applications. For example, problems in data integration, such as
mapping between different data sources and problems in data privacy, such as hiding
the identity of an individual can be cast in this framework.

2 Approach

We will use the example in figure 2 to illustrate our approach. Here, both parties ob-
serve the same structure and the messages are restricted to ground atomic formulas.
Using standard predicate logic prefix notation (which is shared), the transmitter sends
the messageP1(A,D)∧P2(A,C). Given the underlying structure, since there are only



2 objects in the structure that have 2 arcs with different labels going out, this message
can be interpreted by the receiver only asQ1(S, V )∧Q2(S, U) orQ2(S, V )∧Q1(S, U)
or Q1(T, U)∧Q2(T, V ) or Q2(T,U)∧Q1(T, V ). The shape of the substructure com-
municated by the message rules out certain interpretations. However, without more in-
formation, it is not possible to resolve the ambiguity between these interpretations. To
resolve this ambiguity, the transmitter must provide the additional information that dis-
ambiguates between0/1, 2/3 andα/β. An examination of the structure reveals that
it is only necessary to provide the information that disambiguates between2 and3.
Once this is done, there is only one possible interpretation. The disambiguating prop-
erty of 3 is that it is the only object that has two arcs, one coming into it and one
leaving it, with the same label. That is,3 is the only objectO satisfying the description
(∃(p, y, z)(p(y,O), p(O, z))). By adding thisDisambiguating Description, in her own
vocabulary, the transmitter can unambiguously communicate her meaning. Since the
message already containsP1(A, D), she only needs to augment it withP1(D, E). In
general, our approach is to augment messages with disambiguating descriptions so as
to make them unambiguous.
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Now consider the objects5 and 6. There is nothing in the structure that disam-
biguates between them. To disambiguate between these two, the receiver needs to a pri-
ori know the transmitter’s symbol for either5 or 6. In other words, eitherF or G needs
to be a shared symbol. We would have a similar problem disambiguating between0 and
1 if we imposed the constraint that disambiguating description could contain at most 1
literal.

In this example, we used ground atomic formulas involving an object to disam-
biguate it from others. Richer languages (such as those that allow quantification and



counting) allow for other kinds of descriptions. For example, to disambiguate between
β andα, we could exploit the fact that they occur different number of times in the
overall structure. More generally, descriptions of objects can include relations to other
objects, statistical properties of the object/relation, etc. In this paper, we restrict our
attention to descriptions using ground atomic formulae.

The structure used in the this example was very small. In practice, we are interested
in very large structures. In any large enough structure, there will likely be objects that
are structurally indistinguishable. This is especially the case if we impose restrictions
on the size of the descriptions we can use. If we restrict the description to be of size

M , there are at mostO(2(M
2 )) distinct structural shapes of that size. If the size of the

structure is larger than this, or if the structure does not contain a large enough variety
of shapes, there will be structural isomorphisms. In such cases, where the shape of the
substructure around an object by itself does not provide a unique reference mechanism,
we rely on a combination of shapes and shared symbols to create the mappings.

To summarize, the shared structure and shared symbols impose constraints on the
interpretation of a symbol in the message. When these constraints are strong enough to
uniquely identify a particular object, they enable the transmitter to communicate a ref-
erence to the object. The transmitter can augment messages by adding disambiguating
descriptions of the objects mentioned in the message so as to ensure proper interpreta-
tion of the message.

3 Parameterizations of the Framework

The framework be parameterized along various dimensions.

1. Overlap in the subsets of the underlying structure as observed by the transmitter
and receiver: In the simplest case, they both observe the same subset. In the most
complex case, the subsets they observe have no overlap, but contain the ‘same’ re-
lations (i.e., different subsets of the same set of tuples). Most cases are in between,
where the transmitter and receiver have some overlap. These are also the most in-
teresting cases since it allows the transmitter to tell the receiver something he didn’t
know and relate it to things he already knows.

2. The transmitter’s knowledge of the what the receiver can see: In the simplest case,
the transmitter precisely which subset of the structure the receiver can see. At the
other extreme, the transmitter has no knowledge about the receiver. In the middle
we have cases where the transmitter has some, often statistical, model of what the
receiver can observe.

3. Differences in the transmitter’s and receiver’s observation of the underlying struc-
ture: In the simple case, both correctly observe the structure. In the more general
case, there are differences between the observations. E.g., consider an object in the
structure that is a person with weight as one his attributes. The transmitter and re-
ceiver might have different values for his weight. If the transmitter uses his weight
as part of a disambiguating description for him, the receiver might not recognize
him or worse, mistake him for someone else.



4. (Non)-isomorphism of the representations used by the transmitter and receiver: In
the simple case, we assume that both use representations that are isomorphic to
the underlying structure. That is, the relation between the vocabulary used by the
transmitter/receiver and the underlying structure is the inverse of the definition of
satisfaction as conventionally defined in predicate logic. The more general case
allows for the transmitter and receiver to have different representations of the same
underlying structure.
In other words, the grammars used by the transmitter and receiver could be much
more complex than that of predicate logic and also different from each other. This
is the case with natural languages, database schemas, etc.

5. The language used for the messages: In the simple case, the messages are just con-
junctions of ground atomic formulas, i.e., we disallow quantifiers, negations and
disjunctions. More complex cases allow some or all of these.

6. Class of structures: Though the framework discussed in this paper applies generally
to all predicate logic structures and its derivatives (such as trees and XML), in
this paper, we restrict our attention to finite directed labelled graphs, i.e., finite
structures with no functions and only binary relations. Further, in most of this paper,
unless the extension to multiple relations is not straightforward, we will assume that
there is only a single relation.

7. Memory: If the transmitter and receiver can incrementally bootstrap from some to
more shared symbols over a sequence of messages, fewer shared symbols may be
required. However, this does impose additional computational resources. Arbitrary
amounts of memory is essentially equivalent to arbitrarily long descriptions. In
practice, allowing limited amounts of memory is useful.

8. Feedback: If the receiver can provide the transmitter feedback, they can exchange a
set of back and forth messages to resolve ambiguities, thereby opening the potential
for meaning negotiation. This is especially helpful if the receiver and transmitter
observe different subsets of the structure.

The simplest model, which we used to illustrate our approach, assumes that the
transmitter and receiver both correctly observe the same subset of the underlying struc-
ture, know this, use isomorphic representations, restrict messages to conjunctions of
ground atomic formulas and don’t have memory of previous messages. Most of this
paper is restricted to this case.

4 Goals

Our goal is to reliably communicate references at the lowest possible cost. The biggest
cost is associated with setting up the mappings for shared symbols. Ideally, we would
like to have as few shared symbols as possible. If we allow for longer descriptions (i.e.,
higherM ), we are likely to encounter a greater variety of shapes in the structure and
might require fewer shared constants. However, longer descriptions also require more
computational resources to generate and decode. Given a structureS and a maximum
description lengthM , we want to compute the minimal set of symbols that needs to be
shared in order to uniquely identify, with disambiguating descriptions of size less than
M , all the non-shared objects and relations in the structure.



The number shared symbols required is a function of the shape of the structure
and the size limitM on descriptions. There are structures that don’t require any shared
symbols — structures in which every object has a description that is structurally distinct
from all other descriptions. These however can only be small. In the best case, if a
structure withN objects hasSM different shapes withM objects each, we will need
only N/(MSM ) shared symbols. This is rarely achieved. At the other extreme, there
are structures (such as cliques) where every description is structurally the same as every
other description, for which every object needs to be shared.

Often, the structure has objects such as the integers or strings, which have natu-
ral/canonical representations that can be assumed to be shared. Given such a set of
shared symbols, we are interested in determining the fraction of objects that can be
mapped. We are interested in this question in the context of large (though finite) struc-
tures, where the transmitter sends a large number of messages to the receiver.

Fig. 3 provides a way of visualizing the problem of determining the minimum set of
shared symbols. Given a set ofD descriptions overN symbols, imagine if we replaced
every symbol occurrance with a blank. Most of the descriptions will look isomorphic
under these conditions, with the only differences coming from the shape. That is, there
is a many to one mapping between theD descriptions to each of the isomorphism
classes obtained by blanking the symbols. Now imagine randomly picking a symbol
and unblanking all occurances of the symbol. This corresponds to sharing that sym-
bol. Some of the isomorphism classes will split up to give more isomorphism classes.
As more symbols are randomly chosen and shared, the number of distinct looking de-
scriptions (or isomorphism classes) will increase. At some point one or more of these
isomorphism classes will contain only one element, i.e., it will be unambiguous. Then,
we reach a critical point at which each of the symbols that is not shared has a unambigu-
ous description. As the number of symbols grows further, the number of ambiguous de-
scriptions drops and finally, as it approaches approachesN , the number of isomorphism
classes becomes equal to D. The sequence in which the symbols are shared determines
the path taken from A to B. We want to find the sequence that reaches the critical point
fastest.

We can approach this questions from combinatorial perspective or from a statistical
perspective. In the combinatorial setting, we are interested in computing the minimum
number of shared symbols required for a particular structure. The combinatorial ap-
proach is less applicable as we move away from the simplest model. For such cases,
we use an approach where we characterize the structure statistically and relate it to the
size of descriptions, number of unambiguous descriptions, number of shared symbols,
etc. There is a related class of problems, namely that of generating and decoding dis-
ambiguating descriptions. Since these reduce to well known, traditional database query
answering problems, we don’t discuss them in this paper.

5 Complexity of MS and DISTINCT DESCRIPTION

The MSS problem is that of determining the minimum number of shared symbols. The
DISTINCT DESCRIPTIONS problem is that of identifying the minimum number of
shared symbols so that every description is distinct from every other description. When
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this is true, every object also has a unambiguous description, but since there can be
many more descriptions than objects, a solution to the DISTINCT DESCRIPTIONS
problem may require many more shared symbols than one for the MSS problem. We
state some preliminary complexity results for the DISTINCT DESCRIPTION and MSS
problems here.

Both DISTINCT DESCRIPTIONS and MSS are NP-Hard in the case whereM is
not a fixed parameter. We can show this by reducing the Feature Selection Problem [1]
to DISTINCT DESCRIPTIONS in the special case where the structure is an unlabelled
directed bipartite graph.

In the case whereM is a fixed parameter, DISTINCT DESCRIPTIONS can be re-
duced to set cover with the size constraintM on each subset and therefore is at worst
APX-Complete. An approach to MSS, which works when the smallest number of shared
symbols also obtains the smallest (or close to smallest) number of unambiguous de-
scriptions, is to first construct an integer program to compute the minimum number
of unambiguous descriptions required and from the results of this program, construct
another integer program that gives us the minimum number of shared symbols that dis-
ambiguates these descriptions.

6 Knowledge about the structure

The combinatorial approach is adequate when the simple model applies. In more com-
plex cases, such as when the transmitter and receiver observe different but overlapping



parts of the structure, or when there may be errors in the observation, the combinatorial
approach does not apply. In such cases, even though the transmitter and receiver cannot
observe the entire structure, they might have some knowledge about the structure that
enables them to communicate references.

For example, consider a structure about a set of students that specifies each stu-
dent’s first name, university and parents. It is very rare that two siblings to have the
same first name. So, even if the transmitter and receiver don’t see the entire structure,
a description of the form ‘Child ofC1 with the first nameC2’ is likely to provide an
unambiguous description. Even though the transmitter cannot verify that this is an un-
ambiguous description, by using the knowledge that two siblings rarely have the same
first name, she can guess that this is an unambiguous description. In this case, the trans-
mitter and receiver have access to a portion of the structure and to the knowledge about
the overall structure. We assume that in addition to the shared symbols, they also share
this knowledge.

There are two ways of encoding this knowledge about the structure: axiomatic and
statistical. In the axiomatic approach, we use a set of axioms to express the knowledge
about the structure. Given a set of axioms∆ about a structure, a descriptionβ(x) is
unambiguous iff∆ |= (∀(x, y)β(x) ∧ β(y) → (x = y).

In the statistical characterization of the structure,β is considered unambiguous iff
the probability of two objects being the same, conditioned on their both satisfyingβ,
is sufficiently close to 1. In the next section, we present a statistical characterization of
structures.

6.1 Partial Observation and Observation Differences

We require longer descriptions (or more shared symbols) when the transmitter and re-
ceiver cannot observe the entire structure or when there are differences in their obser-
vations.

When the transmitter picks a description to refer to an object, she needs to ensure
that it is very unlikely that the receiver can see some different object that also satisfies
this description. So, the transmitter needs to not only ensure that the description is
unambiguous in the portion of the structure she can see, but also that it is very likely
to be unambiguous in the overall underlying structure. Similarly, when the receiver
dereferences the description, he uses the knowledge to ensure that it is very unlikely
that the transmitter was referring to some other object satisfying the description. We
need longer descriptions and more shared symbols when the receiver and transmitter
observe only parts of the structure.

In the earlier example of students, consider the case where a very small number
siblings have the same first name. If the complete structure were visible to both, the
transmitter can use just the parent and first name for all but these few cases and use
longer descriptions for these few cases. However, if they can’t observe the structure,
they don’t know which students correspond to the rare case and have to use longer
descriptions all the time.

Similarly, in the case where the transmitter and receiver observe certain certain
parts of the structure differently, we longer descriptions. For example, consider the case
where for a small number of students, the transmitter and receiver have different values



for the first name and/or university. Even in such cases, if this fraction of students is
small enough and there are alternative unambiguous descriptions, by combining some
of these alternative descriptions, the transmitter can construct a robust unambiguous
description that correctly refers even in the presence of such differences.

7 Statistical Formulation

We first provide a general treatment for an arbitrary sample space of structures and then
consider a special but common case where all the structures in the sample space exhibit
certain common features.

7.1 General Formulation

ThereO(2N ) possible structures involvingN objects. The statistical characterization
assigns each of these structures a probability of being the real underlying structure that
the transmitter and receiver are observing. Given a set ofK shared symbols, in each
of these structures we will have a set (possibly empty) of unambiguous descriptions.
The probabilityPDi of a descriptionDi being unambiguous is the sum of probabilities
of all the structures in which it is unambiguous. The expected number of unambiguous
descriptions (EUD) is the sum ofPDi over all descriptions. Similarly, the probability
(PSi) of an unshared symbolSi being communicable is the sum of probabilities of the
structures in which there is an unambiguous description containingSi. The expected
number of symbols that can be communicated is the sum ofPSi over all the unshared
symbols.

The general case does not make any assumptions about the distribution. So, for
example, the distribution could assign non-zero probabilities to a set of structures that
are very dissimilar from each other. We are interested in the case where there is some
known regularity in the underlying structure. In the example of the previous section, we
are likely to find parents with one, two, three or four children, less likely to find parents
with ten children and extremely unlikely to find parents with 20 children. Indeed, it is
this regularity that is exploited by the transmitter and receiver to estimate the number of
objects satisfying a description. The distribution is supposed to capture this regularity.
Structures that exhibit this regularity should be assigned higher probabilities than those
that don’t. To do this we use a statistical model that operates at a finer granularity than
the overall structure. In the next section, we present our statistical model of structures.

7.2 Ergodic Random Structures

Starting with Erdos and Renyi there has been considerable work on various models of
random graphs [3]. The two basic models areG(p,N) in which we have a graph withN
nodes where the probability of finding an arc between any two nodes isp andG(m,N)
in which we have a set of equiprobable graphs withN nodes andm arcs. More recently
many researchers have considered random graph models corresponding to a particular
degree distribution. We generalize this to define our statistical model of structures.



The concept of the degree of a node can be extended to a directed labelled graph
by associating in and out degrees with each arc label. The degree of a node is a very
local description of the neighbourhood of a node. We can further generalize the no-
tion of degree distribution to M-neighbourhood distribution. Let the different possible
shapes of structures of radiusM with less thanNmax nodes be(SM1, SM2, ..., SMl).
Given a random node, let the probability of the M-neighbourhood of the node being
SMi be PMi. WhenM = 1, this reduces to the degree distribution of the structure.
The M-neighborhood of a node is just the set of descriptions of lengthM that the node
appears in. The joint M-neighbourhood of 2,3,... nodes is the set of descriptions of size
M containing the 2,3,... nodes. As with simple M-neighbourhoods, we can characterize
a structure by providing a distribution over joint M-neighbourhoods. Of particular inter-
est is joint M-neighbourhood of M nodes. This gives us a precise characterization of the
full set of descriptions. If the simple M-neighbourhoods of different nodes are indepen-
dent of each other, the probabilities associated with the various joint neighbourhoods
can be derived from the simple neighbourhood probabilities without any additional in-
formation. We will make this assumption in the rest of this paper. Let the number of
descriptions in the neighbourhoodSMi beCMi. A node with the neighbourhoodSMi

appears inCMi descriptions.
Traditional information theory largely restricts its attention to ergodic sequences.

An ergodic sequence is one where the emperical distribution of the symbols in the se-
quence tends to its expected value as the sequence grows arbitrarily large. Informally,
ergodic sequences are those for which there is some granularity above which they are
uniform everywhere. By analogy, we define M-ergodic structures as those whose em-
perical distribution over M-neighbourhoods approaches its expected value as the struc-
ture grows arbitrarily large. This has the interesting consequence that the number of
different types of neighbourhoods of size M cannot grow as the size of the structure
grows. Further this restricts the number of nodes that can have very large in or out de-
grees of any node in the structure. In this paper, we restrict our attention to ergodic
structures.

An important consequence of the ergodic assumption is that the laws of large num-
bers can be used. In particular, given a sufficiently large structure withN nodes with
the neighbourhood distribution(PM1, PM2, ..., PMl), we can expectNPM1 nodes with
the neighbourhoodSM1, NPM2 nodes with the neighbourhoodSM2 and so on. Since
a node with the neighbourhoodSMi appears inCMi descriptions, the total number of
descriptions isND =

∑l
i=0 NPMiCMi/M . In other words, the probability of find-

ing a nodej which has the neighbourhoodSMi in a randomly chosen description is
Pj = CMi/ND. We will refer to this as the probability of the node/symbol.

7.3 Types of Errors

There are two types of errors that might occur when the transmitter and receiver don’t
both correctly observe the same structure. Detectable errors are those where the receiver
can detect that there is a problem. These arise when the receiver detects more or less
than one object satisfying the description. If the transmitter and receiver don’t both
observe enough of the structure, we can have a situation where the receiver cannot
resolve the description to any object. In other cases, there may be multiple objects



satisfying the description. Undetectable errors are harmless since they don’t lead to
miscommunicated references.

Undetectable errors are those where the receiver resolves the description to a differ-
ent object than the one that was intended by the transmitter. There will almost always
be some fraction of communications that have undetectable errors. By using longer de-
scriptions (more shared symbols), we can reduce the likelihood of error. The number of
shared symbols is a function of the tolerable error which we denote byεD.

Given a certain number of shared symbols and fixed size of description per object,
the likelihood of errors can be reduced by constructing longer descriptions that commu-
nicate references for multiple objects. In the limit,εD can be made arbitrarily small for
a fixed overhead in size of descriptions (number of shared symbols). We do not discuss
this approach here.

7.4 Computing the Shared Symbols

We now compute the expected number of required shared symbols for the three cases:
when the transmitter and receiver both observe the same portion of the structure, when
they observe different but overlapping parts of the structure and when there are obser-
vation differences. As mentioned earlier, we need longer descriptions and more shared
symbols in the case where the transmitter and receiver cannot observe the entire struc-
ture or when there are observation differences.

Given a set ofG < M shared symbols with probabilitiesP1, P2, ..., PG, the prob-
ability of having an unambiguous description containing theseG (and no other) shared
symbols isP1,2,...G = P (1−P )ND−1 whereP = (ΠG

i=1Pi)×ΠK
j=G+1(1−Pj)× G!

M ! .
If the entire structure is observable, the transmitter can emperically verify whether a

given description is unambiguous and hence the expected number of unambiguous de-
scriptions withG shared symbols each (call thisUDG) for a set ofK shared symbols is
the sum ofP1,2,...,G over all

(
K
G

)
combinations of symbols. If the entire structure is not

observable, the transmitter can use a particular description, whose probability of being
unabiguous isP1,2,...G only if P1,2,...G > 1−εD whereεD is the allowable error. In this
case, the expected number of unambiguous descriptions for a set ofK shared symbols
is the sum of(P1,2,...,G if P1,2,...,G > 1 − ε; 0 otherwise) over all

(
K
G

)
combi-

nations of shared symbols. In the case where there may be observation differences, an
unambiguous description is usable if all portions of it are observed identically by the
transmitter and receiver. So, the probability of having an unambiguous description con-
taining theseG (and no other) shared symbols isP1,2,...G = P (1−P )ND−1×PC1,2,...G

wherePC1,2,...G is the probability of the description being observed identically.
The number of unshared symbols occurrances in theseUDG unambiguous descrip-

tions isUDG×(M−G). The total number of unshared symbol occurrances is obtained
by summing over the different values ofG, i.e.,NUSP =

∑M−1
G=1 UDG × (M − G).

Any unshared symbol that occurs in one of theseNUSP positions can be communi-
cated using one of the unambiguous descriptions it occurs in. The expected number of
distinct unshared symbols that occur in theseNUSP positions isNUS =

∑N
i=K+1 1−

(1−(Pi/M))NUSP . WhenNUS = N−K, all the unshared symbols have unambiguous
descriptions. So, given an M-neighbourhood distribution we can compute the number
of unshared symbols that can be communicated using a given set ofK shared symbols.



8 Related Work and Conclusion

There has been substantial work in many communities in related areas such as data
base schema mapping, privacy and object tracking. It is beyond the scope of this paper
to provide surveys of the extant work in those areas. However, it does seem that this
work is the first to combine predicate logic models and information theoretic concepts
to provide a first principles framework for this problem. The preliminary work reported
in this paper are of course just the first tentative steps in the direction of what we hope
will be a theory of communicating meaning.
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Abstract. This paper discusses the results of experiments in automatic
ontological reconciliation using AReXS, an implementation of the Example-
Based Frame Mapping algorithm. Modifications and extensions to the
base algorithm are discussed in the context of comparing heterogeneous
data from multiple on-line information sources. Consideration is given
to the types of data encountered and their impact on the task of recon-
ciling meaning. Other less automatic approaches to meaning negotiation
are discussed and an argument is made for combining automatic and
manual reconciliation techniques.

1 Introduction

AReXS (Automatic Reconciliation of XML Structures) is an application that
reconciles heterogeneous data sources presented in XML documents. It aligns
data sources according to their implicit ontological structure. It is able to rec-
oncile differences of expression and representation across XML documents from
heterogeneous sources without any predefined knowledge or human interven-
tion [6, 4]. It achieves this by identifying XML elements whose meanings are
similar enough to be considered equivalent. AReXS uses Example-Based Frame
Mapping (EBFM) [5] and requires no knowledge or experience of the domain in
which it works - the algorithm is completely domain independent. By requiring
no domain knowledge, AReXS is suitable for application to any field; its suc-
cess relies on its ability to identify and resolve the differences in representation
that result from sourcing data from a heterogeneous environment. The AReXS
implementation of the EBFM algorithm is described in more detail in [7].

AReXS works by analysing two XML structures and identifying matching
elements, generating a map of equivalence between concepts represented in the
two documents. It is important to note that no formal representation of such
concepts is attempted - rather, it is assumed that elements represent concepts,
and that the equivalence of two elements can be deduced based on similarities
between instances of both elements. As a metaphor, AReXS works in much the
same way that two people who do not share a common language might teach each
other by pointing at objects and saying the names that each person’s language
gives to that object.



Identification of conceptual equivalence is based on a consideration of lexi-
cographical similarity between both the names and the contents of XML tags
in each document. Matches are then assessed to deduce structural similarities
between documents from different sources. By repeating this search for semiotic
correspondence across other pairs of elements generated from the contents of the
XML documents under consideration, AReXS is able to build a local context for
data and then use this context to reconcile the ontological differences between
XML documents.

2 Data collection and preparation

In order to explore the possibilities for automatic reconciliation of data of a type
commonly encountered on the Internet, the domain of second-hand car advertise-
ments was chosen for a series of experiments. Classified advertisements are one
of the more popular and successful use that people have found for the Internet
so far, probably due to the fact that they leverage the Internet’s strengths, being
convenient communication and information retrieval, while avoiding it’s weak-
nesses by conducting actual transactions off-line - although auction sites are also
popular on the Internet, for high-value items such as cars, classified advertise-
ment sites tend to act more like match-makers than brokers, bringing together
interested sellers and buyers who then meet and make their own arrangements.
Five popular web sites were chosen:

– Autotrader (www.autotrader.com.au)
– Autoweb (www.autoweb.com.au)
– Carsales (www.carsales.com.au)
– Drive (www.drive.com.au)
– Ebay (www.ebay.com.au)

Fig. 1. Search interface for Autotrader



The search function of each site, an example of which is shown in Figure 1,
was used to collect 100 current entries, creating a database of 500 car descrip-
tions. The web sites typically presented the car descriptions in the form of tables,
like that shown in Figure 2. This data was then parsed by custom written in-
formation agents to create pseudo-XML documents (it was not necessary to
conform strictly to the XML standard for our purposes). The descriptions of
cars were thereby transformed into documents of the form:

<Autotrader>
<car>

<make model>Toyota Corolla SECA</make model>
<yr>1993</yr>
<kms>140,000</kms>
<price>$9,995</price>
<state>WA</state>
<media>?</media>

<dealer></dealer>
</car>

</Autotrader>

It is important to note that no two documents shared the same XML schema
- the XML documents created naturally reflected the same variety of fields and
names as the original web sites. As a contrasting example, another document
appeared thus:

<Ebay>

<vehicle>
<bids>19</bids>
<car>1993 XG LONGREACH UTE</car>
<price>AU $2,600.00</price>
<time left>$7d 03h 10m</time left>

</vehicle>
</Ebay>

Variations in field names, missing fields and extraneous data were not the
only differences among the information sources sampled. The data presented by
the classified advertisement web sites was not always even in a tabular form
- Figures 3, 4 and 5 show different styles of presentation. Regardless, the use
of task-oriented information agents to extract the required data from the web
pages made collecting the data into a consistent form quite simple. Attempting
to create a single information agent to parse all five web sites would have taken
significantly longer than this more direct approach. When creating the XML
documents to be processed by AReXS, whereever possible the markup tag names
were taken directly from the original source data.



Fig. 2. Car descriptions presented by Autotrader

Fig. 3. Car descriptions presented by Ebay



Fig. 4. Car descriptions presented by Carsales

Fig. 5. Car descriptions presented by Autoweb



3 Reconciliation

Each of the five sets of car descriptions were paired and given to AReXS to
reconcile, producing a collection of mappings between fields based on any evi-
dence that AReXS could find to claim conceptual correspondences between the
sets. For example, the data from Autotrader was compared with with that from
Autoweb:

Source Autotrader.xml Source Autoweb.xml

<make model>Subaru Liberty GX</make model> <year>1989</year>
<yr>1993</yr> <description>FORD FALCON</description>

<kms></kms> <price>$5,990</price>
<price>$9,990</price> <body type>WAGON</body type>
<state>VIC</state> <colour>YELLOW</colour>
<dealer>Eastern Vehicle</dealer> <location>OAKLEIGH, VIC</location>

The original form of the data for these two web sites can be seen in Figures 2
and 5. These two representations are strictly tabular and it is very easy to read
a schema or ontology for the data directly from the column headings. Other web
sites did not present such a straight forward format, notably those in Figures 4
and 3.

For a person, a quick glance at the sample records from Autotrader and
Autoweb is enough to identify two direct field matches, yr with year and price

with price. Relying solely on the field names, make model might not be expected
to encode the same meaning as description, but the sample contents of these
two fields suggest that there may in fact be a correlation. AReXS proposed the
following mapping between these two data sources:

Slot 0 [year ] ↔ Slot 1 [yr ] : 0.99965
Slot 1 [description] ↔ Slot 0 [make model ] : 0.99996
Slot 2 [price] ↔ Slot 2 [kms ] : 0.81160
Slot 2 [price] ↔ Slot 3 [price] : 0.99962
Slot 3 [body type] ↔ Slot 0 [make model ] : 0.41018
Slot 5 [location] ↔ Slot 0 [make model ] : 0.02155

Comparing the automated results with our expectations, the correlation be-
tween year and yr has been convincingly detected, as has that between price

and price. Further, as predicted based on the field content, a strong correspon-
dence has also been identified between description and make model. These are
the three strong content-based concept matches. However, a number of other
weaker correspondences are suggested, and these are just as interesting as the
strong matches. Based on the example data, there is a moderate correlation be-
tween price values and kms values. This is understandable, as AReXS used the
Character-Based Best Match string comparison algorithm [10], which focuses on
pairs of characters within the strings being compared. Since both price and kms

are actually numbers, there is naturally a high coincidental correspondence, as



numbers have a small alphabet and so exhibit much less variation than alphanu-
meric strings. The CBBM algorithm was further confused by the fact that for
second-hand cars, the distance travelled will generally be in the order of 100,000
kilometres and the asked sale price will be in the order of 10,000 dollars, thus
there is almost no difference in the lengths of the strings that represent these
numbers. It seems very likely that the only reason that the correspondence be-
tween price and kms was not stronger is the ‘$’ dollar sign present in the price

fields.

AReXS also reported a weak correspondence between body type and make model.
Examining the sample date reveals that the people who entered the data oc-
casionally include words such as ‘sedan’ or ‘wagon’ in the make model field,
which seems natural enough. This highlights the fact that even in natural lan-
guage communication between people, ontological differences arise - some car
owners obviously believe that the concept of a car’s make and model includes
its body type, whereas others believe that that information belongs elsewhere.
Some probably would have included it in a separate field if one had been of-
fered, but lacking such a field decided to attach the information to the most
appropriate available field. We also believe that the lexicographic nature of the
CBBM comparison algorithm contributed to the weak correspondence between
body type and make model. These fields contain natural language words which
inherently contain common substrings - for example, the words ‘rather’, ‘catcher’
and ‘therapy’ would be considered quite similar by the CBBM algorithm, for the
purely coincidental reason that the substrings ‘at’ and ‘ther’ happen to occur
frequently in English, although there is no semantic reason. Similarly, we also
explain the slight correspondence between location and make model as merely
the result of linguistic coincidence.

In many cases, the unexpected results were as interesting as the expected
ones, and revealed potential methods for improving the AReXS functionality.
For example, both the Autotrader site and the Drive site included in their car
descriptions fields labelled colour. Typical contents of these fields were white,
yellow and so on. Intuitively, these fields should have been among the easiest for
AReXS to match, and yet when comparing 100 records from each site AReXS
was only confident enough to rate them with a correspondence of 0.71911. It
seems likely that a string comparison algorithm working on a word basis rather
than a character-pair basis as the CBBM algorithm does would be more appro-
priate for such data, yet it is not clear how an information agent should make
a decision like this. Perhaps colour should be regarded as a basic concept that
all information agents should know (general knowledge, in knowledge classifica-
tion scheme implemented in CASA), or at least ones dealing with cars (domain
knowledge, as per CASA). Similarly, although prices and numbers look similar,
they generally shouldn’t be considered for conceptual equivalence just because
they both consist mainly of digits. AReXS copes quite well with them, but tends
to allow too much correspondence between them - some basic knowledge about
types of data would surely improve its results.



4 Modifications to the AReXS algorithm

Two noteworthy modifications were made to the AReXS implementation of the
EBFM algorithm, after running the initial experiments. The first of these was
to remove uniqueness screening for fields in the input XML documents (referred
to as slots and frames respectively by [5]). The EBFM algorithm screens input
data records according to their uniqueness, that is, how different they are to
all other input data. This was found to significantly reduce the ability identify
semantic matches, as even what appeared to be strong correspondences were
heavily penalised. In effect, fields such as vehicle prices had very little chance of
being successfully reconciled because there was relatively little variance in the
actual prices. We felt that similarity within a field in a single information source
shouldn’t reduce the value of matches between fields from different sources, and
when we removed this restriction we found the results to be more in line with
our expectations, and thus much more useful.

The second modification that we made was similar. We made the reward
for matching contents of fields independent of the uniqueness of the match.
The original EBFM algorithm devalues matches if they are common, whereas
we found that this reduced the effectiveness of the reconciliation process. An
example of the effect of removing this restriction was the following improvement
in reconciling two information sources:

Reward tied to uniqueness of match:

Slot 0 [make model ]↔ Slot 1 [description] : 0.57109
Slot 3 [price] ↔ Slot 2 [price] : 0.07830

Reward tied only to similarity of contents:

Slot 0 [make model ]↔ Slot 1 [description] : 0.99997
Slot 0 [make model ]↔ Slot 3 [body type] : 0.41019
Slot 0 [make model ]↔ Slot 5 [location] : 0.02156
Slot 1 [yr ] ↔ Slot 0 [year ] : 0.99965
Slot 2 [kms ] ↔ Slot 2 [price] : 0.81161
Slot 3 [price] ↔ Slot 2 [price] : 0.99962

Certainly the number of false positive results has been increased, but they
are well below the cut-off level at which a correspondence would be considered
to be a semantic match (0.9 or greater seems to be a reasonable limit). The
only real concern is the moderate correspondence between kms and price, but
even this is not rated highly enough that presents a risk of being confused with
other stronger matches. More importantly, the confidence of the matches between
make model and description and price and price has increased dramatically, and
a further very strong correspondence has been identified between yr and year,
bringing the overall result much closer to what we had expected based on our
own understanding of the sample data.



5 Conclusions and future directions

Generally, it is our opinion that the techniques for enabling semantic inter-
operability used in AReXS complement well other techniques such as explicit
ontology-based approaches. Combining a variety of techniques should lead to a
synergy that provides even better results. As identified earlier, seeding AReXS’s
reconciliation attempt with small domain- or task-specific ontologies should en-
hance its results. Other domain or general knowledge such as types of data would
allow AReXS to explore the most likely matches first, increasing its efficiency
greatly. Although we have not as yet conducted a comprehensive analysis, exper-
iments with smaller sample sets (50, 25 and 10 examples per information source)
have produced less consistent results as individual variations in the sample data
have greater impact on the reconciliation process. We intend to look further for
a correlation between the sample size and the accuracy of AReXS’ results. Also,
some data are clearly more easily reconciled than others; what is not yet clear
and deserves further attention is how to identify how useful given data will be
prior to reconciling.

It seems intuitive that, for example, the uninformed reconciliation done by
AReXS could be significantly enhanced by using the knowledge contained in
any supplied ontology, schema or DTD as an advantageous starting point for
the reconciliation effort. Thesaurus projects such as WordNet [2] can provide
ready-made synonym tables, enabling the space of possible concept matches
that must be searched to be greatly reduced, or at least for the most interest-
ing and profitable areas to be searched first. Basic grammatical or formatting
knowledge could be similarly employed, as could lists or ontologies of manufac-
turers and products. Similarly, the instance-based approach employed by AReXS
could augment current approaches to merging and reconciling structured ontolo-
gies, particularly if instances or exemplars are include along with concepts, as
is the case in the popular ontology editing tool Protégé [3], or as a support-
ing method for semi-automated reconciliation solutions such as PROMPT [9] or
Chimaera [8]. Finally, general knowledge databases such as Cyc [1] should allow
smarter elimination of inappropriate matches. We intend to investigate these
methods further in the future.
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Abstract. Most existing ontology mapping tools do not provide ex-
act mappings. Rather, there is usually some degree of uncertainty. We
describe a framework to improve existing ontology mappings using a
Bayesian Network. Omen, an Ontology Mapping ENhancer uses a set
of meta-rules that capture the influence of the ontology structure and
the semantics of ontology relations and matches nodes that are neigh-
bors of already matched nodes in the two ontologies. We have imple-
mented a protype ontology matcher that can enhance existing matches
between ontology concepts. Preliminary experiments demonstrate that
Omen successfully identifies and enhances ontology mappings.

1 Introduction

Information sources, even those from the same domain, are heterogeneous in na-
ture. The semantics of the information in one source differs from that in another.
In order to enable interoperation among heterogeneous information sources or to
compose information from multiple sources, we often need to establish mappings
between database schemas or between ontologies. These mappings capture the
semantic correspondence between concepts in schemas or ontologies.

In recent years, researchers have developed a number of tools for finding these
mappings in a semi-automated fashion (see Section 7 for a brief overview). In
addition, there are interactive tools that enable experts to specify the mappings
themselves. However, in most cases, the mappings produced are imprecise. For
instance, automatic ontology-mapping tools can rank possible matches, with the
ones that are more likely to be correct getting higher rankings. Most automatic
ontology-mapping tools use heuristics or machine-learning techniques, which are
imprecise by their very nature. Even experts sometimes could be unsure about
the exact match between concepts and typically assign some certainty rating to
a match. Once a particular set of mappings is established (by an expert or a
tool), we can analyze the structure of ontologies in the neighborhood of these
mappings to produce additional mappings.

Our main premise in this work is the following: if we know a mapping be-
tween two concepts from the source ontologies (i.e., they match), we can use the
mapping to infer mappings between related concepts. For example, if two prop-
erties and their domains match, then we can infer (with some certainty) that
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their ranges may be related as well. We build a Bayesian Net with the concept
mappings. The Bayesian Net uses a set of meta-rules based on the semantics
of the ontology relations that expresses how each mapping affects other related
mappings. We can use existing automatic and semi-automatic tools to come up
with initial probability distributions for mappings. Next, we use this probability
distribution to infer probability distributions for other mappings.

We have implemented a tool called Omen (Ontology Mapping ENhancer).
Omen uses a Bayesian Net and enhances existing ontology mappings by deriving
missed matches and invalidating existing false matches. Our preliminary results
show that by using Omen we can enhance the quality of existing mappings
between concepts across ontologies.

The primary contributions of this paper are as follows:

1. We introduce a probabilistic method of enhancing existing ontology map-
pings by using a Bayesian Net to represent the influences between potential
concept mappings across ontologies.

2. In Omen, we provide an implemented framework where domain knowledge
of mapping influences can be input easily using simple meta-rules.

3. We demonstrate the effectiveness of Omen in our preliminary experiments.

To the best of our knowledge, no existing work has extensively used a proba-
bilistic representation of ontology mapping rules and probabilistic inference to
improve the quality of existing ontology mappings.

2 Knowledge Model

We assume a simple ontology model (similar to RDF Schema). We use the fol-
lowing components to express ontologies:

Classes Classes are concepts in a domain, organized in a subclass–superclass
hierarchy with multiple inheritance.

Properties Properties describe attributes of classes and relationships between
classes. Properties have one or more domains, which are classes to which
the property can be applied; and one or more ranges, which restrict the
classes for the values of property.

We use the following notation conventions through the rest of this paper:

– all concepts from O have no prime (’); all concepts from O′ have a prime (’);
– upper-case C with or without a subscript is a class;
– lower-case q with or without a subscript is a property;
– P (C1 θ C2, x) indicates that the probability of the match (C1 θ C2) is x.

3 Construction of the Bayesian Net

We now discuss how the Bayesian Net is constructed.
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m(C3, C3')

m(C1, C1')

m(C2, C2')

C3

C1 C1'

C2'C2

C3'

Fig. 1. Subgraphs representing some concepts in ontologies O and O′ (small circles)
and relations between them (thin arrows). The large gray ovals and solid arrows rep-
resent a snippet of the BN graph with nodes corresponding to matches and arrows
corresponding to influences in the BN graph.

3.1 The BN-Graph

Nodes in the BN-graph represent individual pairs of matches. Consider Figure 1.
This figure represents some classes in ontology O in the left-hand tree and some
classes in ontology O′ in the right-hand tree. The thin arrows in the figure are
relationships between classes in the ontology, such as subclass–superclass rela-
tionships. The gray nodes and arrows represent the BN graph superimposed on
the graphs representing ontologies. Nodes in the BN graph are matches between
pairs of classes or properties from different ontologies. Arrows in the BN graph
(the solid gray arrows in Figure 1) represent the influences between the nodes
in the BN graph. The Conditional Probability Tables (CPTs) represent how a
probability distribution in one node in the BN graphs affects the probability
distribution in another node downstream from it. For example, in Figure 1, the
mapping between concepts C1 and C ′

1 affects the mapping between concepts C2

and C ′
2, which in turn affects the mapping between C3 and C ′

3

A Scalable Selection of Nodes If we create a node for all possible pairings of
concepts in two ontologies, the number of nodes in the BN-graph grows quadrat-
ically with respect to the number of nodes in the source ontologies. For example,
if the sizes of the ontologies are 100 nodes each, the BN-graph will have 10,000
nodes. However, most of these nodes will express matches that are extremely
unlikely to hold, because an evidence node will not influence a node that is dis-
tant from an evidence node significantly. Therefore, for performance, reasons, it
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makes sense to prune the BN-graph. We generate all possible nodes in the BN-
graph that are at a maximum distance of k from an evidence node. The value
of k is tuneable by the expert running the system, but empirically, we found
a small value like k = 1 or k = 2 suffices. Larger values of k make very little
difference to the result but increase the size of the Bayesian Net significantly.

Anther factor that effects the size of the BN-graph is the number of parents
(i.e., nodes that influence the match) that each node has. For example, if a
concept C has 5 parents, and C ′ has 8 parents, the node representing a match
between C and C ′ would have 40 parent nodes in the BN-graph. As we discuss
in the next section, the size of a CPT is exponential with respect to the number
of parents of a node. Therefore, generating the CPT would cost 240 units of
computation. Even if the computation is very small, this number is exceedingly
large and very soon makes the Bayesian Net unweildy. Thus, we restrict the
maximum number of parent nodes for a single node to 10. We choose these 10
parents by selecting the top 5 parents with the maximum a priori probability
and the top 5 parents with the minimum a priori probability.

If the Bayesian Net is constructed by adding edges such that matching an-
cestor nodes in an ontology influence the children nodes, we refer to this method
as the “down-flow” method. A method where the Bayesian Net edges are con-
structe such that matching descendant nodes influence their ancestors, we call
the method a “top-down” method. In case the ontologies contain cycles and this
introduces cycles in the BN-graph, the algorithm breaks cycles in the BN-graph
by rejecting the edges from the parents whose matching information is minimum
(confidence score near 0.5).

3.2 Evidence and CPTs

In order to run a Bayesian Net we need to provide it with two types of infor-
mation: (1) evidence (obtained from the initial probabilities) describing what
we already know with high confidence, and (2) Conditional Probability Tables,
describing how the parent nodes influence the children in the BN-graph.

The input to the Omen algorithm consists not only of the two source on-
tologies to be matched, but also, of the initial probability distributions on the
“root” nodes (nodes with no parents) in the BN graph. Note that our definition
of mapping allows for inputs that are themselves imprecise and contain some
probability values. For instance, if there is an ontology matcher that produces a
set of pairs of matches ordered according to the algorithm’s certainty about the
match we can translate that into specific values for each m(Cn, C ′

k) where the
probability value for “=” is less than 1 and diminishes as we go further down in
the ranked list of the external matcher’s result.

The final missing piece are the CPTs. The CPTs describe how a match
between two classes affects other matches (these are the solid gray arrows in
Figure 1). For example, a match between two classes from the source ontologies
affects the match between their superclasses. Or a match between properties
affects the match between their domains. These rules depend on the knowledge
model and semantics of the relationships (such as subclass or domain) defined
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in the knowledge model. Therefore, we have developed a set of generic meta-
rules that enable us to generate CPTs for each particular pair of ontologies
automatically. In fact, our implementation is parameterized with respect to the
meta-rules, and we can add or remove meta-rules to evaluate which ones work
best for a particular knowledge model.

We present some of the meta-rules that we used in the next Section.
The following summarizes the Omen algorithm:

– Input: source ontologies O and O′, initial probability distribution for matches
– Steps:

1. If initial probability of a match is above a given threshold, create a node
representing the match and mark it as evidence node.

2. Create nodes in the BN graph representing each pair of concepts (C,C ′)
, such that C ∈ O and C ′ ∈ O′ as a node in the graph and the nodes are
within a distance k of an evidence node

3. Create edges between the added nodes
4. Use the meta-rules to generate CPTs for the BN
5. Run the BN

– Output: a new set of matches

In the next section we discuss how Step 1 above can be modified to prune
out unnecessary nodes.

4 Meta-rules for Generating New Probability
Distributions

In this section, we show examples of meta-rules that are used to match the
ontologies and discuss how the algorithm generates new probability distributions
depending upon the existing ones.

4.1 Examples of Meta-rules

The following is one of the basic meta-rules we used in our implementation: if
two concepts C1 and C ′

1 match, and there is a relationship q between C1 and
C2 in O and a matching relationship q′ between C ′

1 and C ′
2 in O′, then we

can increase the probability of match between C2 and C ′
2. Informally, if two

nodes in an ontology graph match and so do two arrows coming out of these
nodes, then the probability that nodes at the other end of the arrows match as
well is increased. In the formal rule below we generalize this meta-rule to any
relationship θ between C1 and C ′

1, not just match.

P (C1 θ C ′
1, x)∧P (q = q′, 1)∧ q(C1, C2)∧ q′(C ′

1, C
′
2) ⇒ P (C2 θ C ′

2,min(1, x+ δ)
(1)
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where δ is an expert-provided constant less than 1. We use a similar meta-rule
for the case where relationships q and q′ do not match (i.e., for arbitrary pair of
outgoing edges), but subtract delta from x in the consequent.

While not in our initial implementation, other meta-rules rely more heavily
on the semantics of the components in the ontology language. Below are some
informal examples of such rules.

Mappings between properties and ranges of properties: If two properties match,
and each of them has a single range, we can increase the probability of match
between the classes representing the range. Similarly if two properties q and q′

match and the range of q is a union of classes C1 and C2, and the range of q′ is
a class C ′, then the tool can increase the probability that C1 is a specialization
of C ′ and C2 is a specialization of C ′.

Mappings between superclasses and all but one sibling: In this case, we say that
the existing matches between the superclasses and the matched siblings result
in the remaining siblings matching with high probability.

We experimented with three different ways of generating the CPTs for the
nodes in a BN graph:

1. Fixed Influence Method (FI): The meta-rules state that the probability of
the children matching depends upon whether the parents match and is given
by a set of constants. An example of such a rule is:

P [Cp = C ′
p, x] ∧ x > tmax ∧ q(Cp, Cc) ∧ q(C ′

p, C
′
c) ⇒ P [Cc = C ′

c, 0.9] (2)

where tmax is an expert-defined threshold value. There are similar rules for
the other cases.

2. Initial Probability Method (AP): The meta-rules state that the probability
distribution of a child node is affected depending upon the probability dis-
tribution of the parent node by a set of constants. An example of this class
of meta-rules is:

P (C1 θ C ′
1, x)∧P (q = q′, 1)∧q(C2, C1)∧q′(C ′

2, C
′
1)∧P [C2 θC ′

2, y]∧(y > tmax)
⇒ P (C1 θ C ′

1,min(1, (x + δ))

where tmax and δ are expert-provided constants less than 1.
3. Parent Probability Method (PP): The meta-rules state that the probability

distribution of the child node is derived from the probability distribution of
the parent node using a set of constants. Rule 1 is an example of a meta-rule
used in this method.

The algorithm must combine probabilitic influences of different rules and
determine the probability distribution of a mappings. For example, consider a
pair of classes, C and C ′ (Figure 2). In the example in the figure, the following
mappings can affect the probability that they match (depending on a specific
set of meta-rules used):
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C

C0

C1

Cd'

C'

C0'

C1'

subclass subclass
q subclass

subclass

q'

Fig. 2. The probability distribution for the mapping between C and C′ is affected by
the mappings between their superclasses, siblings, and domains of the properties q and
q′ for which C and C′ are ranges.

– A mapping between superclasses of C and C ′

– Mappings between the siblings of C and C ′

– A mapping between properties q and q′ (P (q = q′, 1)) for which C and C ′

are ranges respectively, and mappings between domains of q and q′ (P (Cd =
C ′

d, z)).

In this work, we combine probabilitistic influences as follows. If a child in the
Bayesian Net (not the ontologies) has two parents, we combine the conditional
probability distributions of the child on each parent using the assumption that
the two parents are independent. That is,

P [C|A,B] = P [C|A]× P [C|B] (3)

In cases, where the match of two parents influence each other, this assump-
tion is not true. However, empirically, even with this simplifying assumption we
have obtained encouraging results. A more sophisticated method of combining
influences is left for future work.

5 Experimentation and Results

Omen uses BNJ, Version 3.0 pre-Alpha 3 [1] as its probabilistic inference engine.
We used two ontologies obtained from the Knowledge Representation and

Reasoning group at the Vrije University.3 The ontologies are expressed in RDF
using RDF-Schema. They contain concepts related to university departments
and students, staff and faculty of the departments.

3 http://wbkr.cs.vu.nl/
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For our experiments, we extracted portions of the ontologies manually to
make sure that they have at least some overlap. Because matching predicates
is beyond the scope of this tool, we matched predicates across the ontologies
by manual examination. When we decided that two predicates represented the
same relationship, the names of one predicate was replaced by the names of the
matching predicate in the other.

If the generated Bayesian Net contained a cycle, we manually weeded out
one edge choosing one at random from those edges that are between nodes that
are farthest from the root.

For this preliminiary experimentation, instead of using several values as cited
in Section 2 that a node in the Bayesian Net can have, we just assigned two values
“true” and “false” to the nodes. A value of “true” represents that the concepts
represented by the node match and vice-versa.

We generated initial probability distribution for matches using a simple script
using string-edit distance. Recall that in practice these probability distributions
can come from any other tool. To generate probability distributions for the
experiment, we manually identified i) the nodes across the ontolgies that the
matched and ii) the nodes that surely did not match. The matching nodes were
assigned a random probability between 0.7 to 0.9 and the nodes that did not
match assigned a random number between 0.1 to 0.4 with the rest of the nodes
lying in between 0.4 to 0.7.

We fixed the threshold values to 0.85 and 0.15. That is, if the probability of
a match is determined by our methods or by the previous method to be greater
than 0.85, then we determine that the concepts match and if the probability is
less than 0.15, then we declare that the concepts do not match. Such matches
and mismatches are used as evidence to the Bayesian NetḞurthermore, the same
threshold value is used to determine a match from the posterier probability
generated by Omen. In some cases, the threshold was taken to be too stringent
and resulted in lower recall. As future work, we intend to look into dynamically
selecting proper thresholds by clustering.

We experimented with two sets of ontology graphs. In the first set, both
graphs had 11 nodes each and in the second case both had 19 nodes. The pre-
liminary results that we obtained are given in the two tables below:

Table 1. Summary of results for the smaller ontologies

Case No. CPT-Method Precision Recall F-measure

1 FI 0.75 0.375 0.5
AP 1.0 0.5 0.67

2 FI 1.0 0.5 0.67
AP 1.0 0.875 0.933

3 AP 1.0 0.75 0.85
4 AP 1.0 0.125 0.22
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Fig. 3. Results for the ontologies of size 19 nodes

Table 1 lists the results for the case where the source ontologies were of size 11
nodes each. In this case, we specified three matching nodes as positive evidence
and four pairs of nodes that do not match as negative evidence. The precision,
recall and f-measure are calculated in the usual Information Retrieval (IR) sense
using both the positive match and the negative match results together. In case
1, the evidence was introduced at random points. In case 2, the evidence was
introduced at or very near the leaf nodes. The results show that introducing the
evidence at or near the leaf nodes increased the performance of the algorithm.
Case 3 is very similar to Case 2, but with false evidence introduced. Case 4 shows
the effect of introducing drastic errors in the initial probabilities. Since the CPTs
in the AP method depend directly on the quality of the initial probabilities, when
we assigned the initial probabilities at random intentionally, the quality of the
results deteroriate.

Overall, we see that the AP method outperforms the FI method in both
cases. We also see that by giving only 3 matches out of 11, we could generate
upto 7 of the missing matches. This implies that the method can be very useful
even when the results of the previous matcher is not very good as not as it is
totally random.

We show the results for the case where the source ontologies contained 19
nodes each in Figure 3. The figure shows 7 different test cases for the three
different CPT-generating methods. The FI method is shown first, followed by
the AP method, followed by the PP method for each test case.

The evidence provided in the cases above were as follows: For case 1, we
provided positive evidence of 4 matches at or near the leaf nodes. For cases 2,
3, and 4, we provided positive evidence of 5 matches and negative evidence of 4
matches. For cases 5, 6, and 7 we provided positive evidence of 6 matches and
negative evidence of 4 matches. In cases 2, and 3 the evidence was also provided
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at or near the leaf nodes. In cases 4, and 5, the evidence was provided at or near
the root nodes. In cases 6 and 7, the evidence was provided at randomly selected
nodes. In cases 3, 5, and 7, wrong evidence was introduced.

Not surprisingly, we see that both the AP and the PP methods outperforms
the FI method of constructing CPTs and provide good precision and recall val-
ues. The AP method slightly outperforms the PP method in general. However,
the PP method is more stable, that is, it recovers from a few wrong evidences
better than the AP method. In this case, the place where the evidence was
introduced did not matter much for the AP and PP methods.

6 Future Work

In the future, we intend to perform experiments to determine whether a system
based on up-flow rules outperform one based on down-flow rules and to identify
the scenarios when one outperforms the other. Furthermore, we will extend our
algorithm to perform multiple iterations on the data. For example, we can employ
alternate iterations using down-flow and up-flow rules for a fixed number of
iterations or until the results converge. Designing better CPTs using more of
the semantics of the ontology relationships, and emperically evaluating them
and experimenting with large ontologies and coupling our matcher with various
external matchers are charted for as future work.

7 Related Work

Two research directions are related to our work: automatic or semi-automatic
discovery of ontology mappings and the use of uncertainty in knowledge-based
systems.

7.1 Automatic ontology mapping

Over the past decade, researchers have actively worked on developing methods
for discovering mappings between ontologies or database schemas. These method
employ a slew of different techniques. For example, Similarity Flooding [8] and
AnchorPrompt [10] algorithms compare graphs representing the ontologies or
schemas, looking for similarities in the graph structure. GLUE [3] is an exam-
ple of a system that employs machine-learning techniques to find mappings.
GLUE uses multiple learners exploiting information in concept instances and
taxonomic structure of ontologies. GLUE uses a probabilistic model to combine
results of different learners. Hovy [5] describes a set of heuristics that researcher-
sat ISI/USC used for semi-automatic alignment of domain ontologiesto a large
central ontology. Their techniques are based mainly onlinguistic analysis of con-
cept names and natural-languagedefinitions of concepts. A number of researchers
propose similarity metrics between concepts in different ontologies based on their
relations to other concepts. For example, a similarity metric between concepts in
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OWL ontologies developed by Euzenat and Volchev [4] is a weighted combina-
tion of similarities of various features in OWL concept definitions: their labels,
domains and ranges of properties, restrictions on properties (such as cardinality
restrictions), types of concepts, subclasses and superclasses, and so on. Finally,
approaches such as ONION [9] and Prompt [11] use a combination of interactive
specifications of mappings and heuristics to propose potential mappings.

The approach that we describe in this paper is complementary to the tech-
niques for automatic or semi-automatic ontology mapping. Many of the methods
above produced pairs of matching terms with some degree of certainty. We can
use these results as input to our network and run our algorithm to improve the
matches produced by others or to suggest additional matches. In other words,
our work complements and extends the work by other researchers in this area.

7.2 Probabilistic knowledge-base systems

Several researchers have explored the benefits of bringing together Nayes Nets
an knowledge-based systems and ontologies. For instance, Koller and Pfeffer
[7] developed a “probabilistic frame-based system,” which allows annotation of
frames in a knowledge base with a probability model. This probability model is
a Bayesian Net representing a distribution over the possible values of slots in a
frame. In another example, Koller and colleagues [6] have proposed probabilistic
extensions to description logics based on Bayesean Networks.

In the context of the Semantic Web, Ding and Peng [2] have proposed prob-
abilistic extensions for OWL. In this model, the OWL language is extended to
allow probabilistic specification of class descriptions. The authors then build a
Bayesean Network based on this specification, which models whether or not an
individual matches a class description and hence belongs to a particular class in
the ontology.

Researchers in machine learning have employed probabilistic techniques to
find ontology mappings. For example, the GLUE system mentioned earlier [3],
uses a Bayes classifier as part of its integrated approach. Similarly, Prasad and
colleagues [12] use a Bayesean approach to find mappings between classes based
on text documents classified as exemplars of these classes. These approaches,
however, consider instances of classes in their analysis and not relations between
classes, as we do. As with other approaches to ontology mapping, our work can
be viewed as complementary to the work done by others.

8 Conclusion

We have outlined the design and implementation of Omen, an ontology match
enhancer tool, that improves existing ontology matches based on a probabilistic
inference. This tool is dependent upon a set of meta-rules which express the
influences of matching nodes on the existence of other matches across concepts
in source ontologies that are located in the proximity of the matching nodes. We
described how we implemented a simple first version of the matching tool and
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discussed our preliminary results. We have also outlined several improvements
that can be made to the tool and identified several open questions that if resolved
can make the performance of the tool even better.
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Abstract. Semantic Interoperability is a crucial issue in the Semantic Web con-
text: web services and portals, providing real-time access to widely distributed 
information sources, need to overcome problems due to heterogeneities in the 
use of distinct locales, languages and idioms. Though standardization efforts for 
semantic content representation are converging toward some concrete stan-
dards, still a lot of work is required to achieve real interoperability over knowl-
edge content as managed by communities of autonomous and distributed indi-
viduals. An unavoidable trade-off between coverage of heterogeneous 
information sources and achievement of common semantics for accessing their 
content emerges. In this framework, we have carried out our research to de-
velop an extensible language (XeOML) for describing mappings between do-
main ontologies, in which knowledge representation formalisms and similarity 
measures can be dynamically added according to community needs and intent. 

1 Introduction 

The goal of granting semantic accessibility to the web content pursued by the Se-
mantic Web [6] can be achieved through ontologies, as they play a crucial role in sup-
porting the exchange of data, in providing a formal vocabulary for the information 
and in unifying different views of a domain in a safe cognitive approach [9]. 

Despite all the active researches on ontology reuse, the inherently decentralized na-
ture of the WWW pushes for a multitude of autonomously conceived choices, where 
different communities adopt their locally developed ontologies to represent their own 
knowledge. Different solutions to the knowledge sharing issue have been proposed 
and experimented: each of them is related to a different framework, thus suggesting a 
coarse classification  with respect to the constraints they impose on the way knowl-
edge must be represented and structured. Many existing information systems ex-
ploited both as research results (TSIMMIS [1], Information Manifold [2], Infomaster 
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[3], MOMIS [7]) or industrial solutions (Xyleme1) proposed centralized systems of 
mediation between users and distributed data sources, which exploit mappings be-
tween a single mediated schema and the local schemas. Other approaches (such as 
Mafra [8]) followed a more flexible solution based on distributed mediation systems. 
These systems generally include static representations of the relationships that bind 
different and distributed knowledge resources, or in some cases  rely on the behavior 
of underlying communities of software agents [9,10,12] to dynamically negotiate the 
meaning of both concepts and relations from the different ontologies. 

We will not analyze here the pros and cons of such approaches, being out of the 
scope of this work; by looking at the scenarios depicted above, we will highlight that, 
whichever the situation to be considered, either sharing knowledge between myriads 
of (couples of) independent ontologies or linking every local ontology to a centralized 
one, a key issue for the completion of real knowledge interoperability is represented 
by the definition of appropriate mappings between ontologies. We will focus on such 
a vital problem for any application scenario. 

We refer to the ontology mediation activity as the process of reconciling differ-
ences among different information sources (and their schemas), to achieve interopera-
bility between several applications and their underlying annotated data. This activity 
includes “discovery” of ontology mappings, that is, of declarative specifications of the 
semantic overlap between two (or more) ontologies. The mappings can broadly vary 
depending on the tasks they will support: different scenarios could require either in-
jective (specifying how to go from a source to a target ontology) or bijective (stating 
equivalences among concepts and relationships in both ontologies) correspondences, 
different accuracy in establishing semantic similarities, and different levels of cover-
age of the mapped information sources. These differences are often underestimated in 
literature where most researches are devoted to define languages that completely state 
correspondences between entities, mixing together declarative and operational aspects 
of this task. 

We argue instead that several factors interact in real world scenarios: complex 
mappings and reasoning capabilities are both necessary for comparing and combining 
ontologies and for integrating the data they describe. A big effort has been devoted in 
defining knowledge representation languages powerful enough to express the differ-
ent views of a domain. OWL [14] has recently been accepted as a W3C recommenda-
tion for the representation of ontologies on the Web, and this represents an important 
step towards the realization of the Semantic Web vision. Far beyond the standardiza-
tion of knowledge representation however, still remains the problem of reaching se-
mantic consensus at content level. In the context of an open environment, what really 
happens is that many different heterogeneous ontologies with overlapping domains 
exist and may be shared by several partners of the communication. 

To cope with such heterogeneity there is a need for tools and languages to formally 
and explicitly specify ontology mappings in order to achieve the desired interoperabil-
ity. As pointed out in [15], OWL offers limited support for these mappings through 
the import statement that is used to import an ontology into another one: after import-
ing, relationships among concepts in the different ontologies can be specified through 
equivalence and subsumption axioms. 
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However, the mechanisms provided by OWL can reveal unsatisfactory for map-
ping specification even in the general case. OWL promotes a tight coupling between 
ontologies, as it makes dependent the importing ontology on the imported one. In a 
dynamic scenario, where ontologies should be updated to reflect changes in the do-
main, this kind of dependence does not allow for a flexible knowledge organization, 
and can result in a severe loss of consistency that usually is very difficult to be 
amended. Moreover, in [15] is also argued an epistemological inadequacy of OWL as 
a mapping language, because Description Logic constructs in OWL are useful for de-
scribing merged ontologies while general ontological mappings are not supported. 

In [11] a significant extension to the OWL model has been proposed in the form of 
C-OWL, a language which allows for the representation of “contextual ontologies”, 
intended as OWL ontologies embedded in a space of other OWL ontologies and re-
lated to them via context mappings [5]. Inside that work, five bridging rules, which 
account for four levels of similarity (identity, generalization/specification, compatibil-
ity and orthogonality) are defined to map concepts between different ontologies. The 
above rules do not take into account, however, of the really complex relationships 
which may hold between ontological entities of different types or even involving 
complex structures of entities from any of the mapped resources. A trade-off between 
generality and adaptivity of the proposed mapping model on the one side, and accu-
rateness and completeness towards every possible contingency is however hard to 
balance. To this end, a deeper introspection inside the knowledge representation mod-
els which are mostly adopted nowadays and the factorization and formalization of the 
recurring constructs is throughout necessary, in order to obtain a language which can 
be tuned to different situations, still maintaining the integrity of its underlying fabric. 

In the remainder of this paper, we present a novel mapping specification language, 
XeOML, that bases on a layered approach to define a well formed declarative repre-
sentation of complex structural correspondences between the entities involved in a 
mapping process. Formal semantics of the core layer of the language is intentionally 
omitted, as we aim to keep it separated from the more structural aspects of the prob-
lem. The syntax of the language has in fact been chosen to make possible an incre-
mental specification of most accurate correspondences, in order to leave such details 
to the specific situations arising in application dependant contexts (where the actual 
reasoning capabilities and the expressiveness of the formalisms used to represent the 
knowledge become clear, making easier to define more effective ways to deal with 
such aspects). 

2 XeOML: An XML-based extensible Ontology Mapping 
Language 

XeOML is an extensible language for describing ontology mappings, developed at 
the University of Roma Tor Vergata and adopted by first for the ontology mapping 
task inside the European project Moses2. As its acronym suggests, it is based on XML 
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lingual Q/A system (based on ontological knowledge) accessing to different university web 
sites. 



syntax, taking advantage from its expressive power to offer a core language character-
ized by easy machine-readability and high extensibility. 

XeOML is defined by an XML schema3, AbstractMapping, which provides infor-
mation for describing mappings between ontologies, detailing the structure of a map-
ping document and defining the set of elements that populate an ontology.  

 

XeOML Abstract Mapping Schema

XeOML Mappings Definition Extension XeOML Ontology Elements Definition Extension
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Fig. 1 An overview of the Abstract Mapping Schema and its Extensions 

 
The AbstractMapping schema (Fig. 1) thus defines a core language for ontology 

mapping representation, voluntarily ignoring details on different levels of mapping re-
lationships which may be considered among ontology elements and on the semantics 
associated to them: what is clearly asserted and organized in this schema, is the decla-
ration and classification of typical mapping patterns that may involve complex struc-
tures of entities from the ontologies to be mapped. More semantically declarative in-
formation may thus be plugged to the main schema in the form of XML Schema 
extensions, which reflect different perspectives and approaches to the mapping proc-
ess and/or heterogeneous knowledge representation styles; the core schema, together 
with its extensions, forms a complete mapping document definition.  
The two extensions which need to be provided are:  
•     an Ontology Elements Definition schema extension, which accounts for specifica-

tion of ontological elements according to a given representation language 
•     a Mappings Definition schema extension, where ad-hoc descriptions of the level of 

mappings that may be considered and agreed inside a particular framework may be 
specified.  

                                                           
3 XeOML Abstract Mapping Schema and its extensions are freely available for download at: 
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Thanks to this approach, the agents that want to exchange knowledge inside a dis-
tributed framework may rely on the same basic functionalities for interpreting the 
core language (thus favoring reuse of existent technologies) and need only to be 
“tuned” to the extensions adopted inside their community, in order to capture and ex-
ploit the committed semantics for both recognizing and ranking ontology mappings.  

In Fig. 1 a partial overview of the XeOML Abstract Mapping Schema is given, re-
porting only the XML element types which are defined as abstract, thus needing to be 
implemented in the two schema extensions. 

In the next paragraphs, a brief description of the structure of a mapping document, 
as implied by the AbstractMapping schema, will be given. 

Mapping Terminology 

As an ontology mapping language, XeOML foresees the presence of two target on-
tologies that need to be mapped. In the rest of the paper we will address these two on-
tologies as Left Ontology and Right Ontology (LO and RO, respectively). The Ab-
stractMapping schema defines an ontology as composed of four different ontological 
entities: instances, classes, properties and associations; these elements reflect most of 
the more common ontological definitions, like those proposed by OWL [14], OKBC 
[4] or Topic Maps [13]. The syntax definitions for these four elements will be de-
scribed in the Ontology Elements Definition schema, according to the model adopted 
to represent the knowledge content. 

Two types of mappings are defined inside the AbstractMapping schema: 
•     Simple Mappings (or, simply, mappings), i.e. one-to-one relations between ontol-

ogy elements of the same type. 
•     Complex Mappings, i.e. mappings involving even more than one element from one 

or both the ontologies; different ontology element types may be correlated into het-
erogeneous combinations, depending on the specific mapping relation. 
We will use the term Mapper, indistinctly referring either to an automatic process 

for both producing ontology mappings or managing a meaning negotiation activity, or 
to a human annotator who will produce a manual mapping between the two ontologies 

Mapping Structure 

The structure of the mapping task is very complex in its nature. To obtain a uni-
form management of mappings between elements from the two ontologies, every on-
tology element from both LO and RO must always be included in a (simple) mapping, 
as this kind of mapping can be characterized by one the following: 
•     a one-to-one correspondence between two ontology elements 
•     a single element from one of the two ontologies and a reference to a complex map, 

meaning that the given element is involved in that complex mapping 
An automatic process willing to know how an ontology element is mapped, only 

needs to inspect (in a uniform way) simple mappings, and, where necessary, be redi-
rected towards a complex map; see Ex. 1 where the participation of the “Professor” 
Class from LO in a complex map is reported.  



 
 
<mapping xsi:type="absm:ClassMap" ID="c2"> 
 <MapRank xsi:type="map:ClassMapType">ExtensionalEquivalence</MapRank> 
 <LeftMapped> 
  <Class xsi:type="oed:OWLClass" ID="Professor"/> 

 </LeftMapped> 
 <RightMapped> 
  <participationInMapping xlink:href="#cc1"/> 
 </RightMapped> 

</mapping> 
 

Ex. 1 a class participating in a complex map
 
Notice the element inside the LeftMapped tag: it is a class as defined in OWL, be-

cause the Ontology Elements Definition schema extensions which implements OWL 
definitions has been adopted to represent this class in the example. 

The Abstract Mapping Schema defines an abstract ComplexMapType (so that even 
this aspect can be extended to meet specific requirements) and its subclasses with 
some concrete types for diverse kind of Complex Mappings. We analyze here some of 
these types: 

 
AttributeAggregationMap: it represents a map between one attribute from one of the 
two ontologies and more than one attribute from the other ontology.  
 

 
<complex_mapping xsi:type="absm:AttributeAggregationMap" ID="cc2"> 
 <MapRank xsi:type="map:AttributeMapType">RangeEquivalence</MapRank> 
 <MappingFuctional xsi:type="map:AttrAggMapType">StringConcat</MapRank> 

 <LeftMapped xsi:type="oed:OWLDatatypeProperty" ID="name"/> 
 <RightMappedAggregation> 
  <Attribute xsi:type="oed:OWLDatatypeProperty" ID="name"> 
   <label xml:lang="en">first name</label> 
  </Attribute> 
  <Attribute xsi:type="oed:OWLDatatypeProperty" ID="surname"> 
   <label xml:lang="en">last name</label> 
  </Attribute> 
 </RightMappedAggregation> 

</complex_mapping> 
 

Ex. 2 aggregation of attribute values
 

An example of this map is given in Ex. 2, reporting string concatenation of more 
attributes into one, e.g. attribute name from a LO is mapped to the concatenation of 
name and surname from RO. Other cases could include attributes from one ontology 
whose ranges correspond to the union of the ranges of different attributes from the 
other. All these cases should be shown in the Mapping Definition extension and ex-
plicit semantics for handling them should be captured by agents responsible for ontol-
ogy mediation activity. 

 



ClassAggregationMap: in Ex. 3 two classes coming from LO, “man” and “woman” 
are mapped to the class “human” from RO. This assertion implies that the classes 
“man” and “woman” can be considered as complete partitions of the class “human”. 
ClassAggregation Complex Mappings should deal with this sort of relationship.  
 

 
< complex_mapping xsi:type="absm:ClassAggregationMap" ID="cc1"> 
 <MapRank xsi:type="map:ClassMapType">ExtensionalEquivalence</MapRank> 

 <LeftMappedAggregation> 
  <Class xsi:type="oed:OWLClass" ID="woman"/> 
  <Class xsi:type="oed:OWLClass" ID="man"/> 
 </LeftMappedAggregation>       
 <RightMapped xsi:type="oed:OWLClass" ID="human"/> 

</complex_mapping> 
 

Ex. 3 aggregation of Classes
 
Istance-ClassMap: very often, depending on the conceptualization of the world and 
on the objectives that lies behind the development of an ontology, the same concepts 
appears either in the form of a class or of an instance. Theorically, a class is a “set of 
instances” and could never be compared to an instance, as clearly motivated in [14]. 
On the other hand, this is not in line with several typical ontology modeling ap-
proaches where a concept is conceived as an instance or a class depending either on 
the given level of abstraction or on the task the ontology is thought for.  
 

 
<complex_mapping xsi:type="absm:ClassWRestr-ClassMap" ID="crc1"> 
 <MapRank xsi:type="map:ClassMapType">ExtensionalEquivalence</MapRank> 

 <LeftMappedClass xsi:type="oed:OWLClass" ID="automobile_rossa"> 
  <label xml:lang="en">red car</label> 
 </LeftMappedClass> 
 <RightMappedClassWithRestrictions> 
  <Class xsi:type="oed:OWLClass" ID="car"/> 
  <AttributeRestriction> 
   <Attribute xsi:type="oed:OWLDatatypeProperty" ID="color"/> 
   <Restriction>red</Restriction> 
  </AttributeRestriction> 
 </RightMappedClassWithRestrictions> 

</complex_mapping> 
 

Ex. 4 A class mapped to another class with a value restriction on one of its attributes 
 
ClassWithRestrictions-Class and ClassWithRestrictions-Instance: these two kind of 
mappings deal with conceptual equivalences between classes (instances) and parti-
tions of classes which depend on restrictions over the range of one or more of their at-
tributes. In Ex. 4, the class “red_car” is extensionally equivalent (in the sense of: 
share the same instances) to the class car with a restriction on the range of its “color” 
attribute set to “red”. 



3 Extending the XeOML Schema: a case study 

We hereafter describe, as an example of possible extensions, two schemas for the 
XeOML language, providing respectively: 
•     definitions for  OWL ontology elements 
•     enumerated descriptions of possible distinct levels of conceptual similarity, classi-

fied depending on mapping type (i.e., the type of elements involved in a mapping) 

OntologyElementsDefinition Schema: implementation for OWL 

As a first possible extension to the XeOML language, we provided implementa-
tions for all of the XeOML abstract Ontology Elements in the form of OWL data 
types. All defined elements contain an ID attribute for specifying the ID of the con-
cept from the ontologies, and an optional number of labels to represent these concepts 
in different languages, as defined for almost all OWL categories. We stress here that 
it has not always been a straight 1-1 mapping between XeOML abstract types and 
elements from the implemented model: in the OWL case,  both OWL DataType prop-
erties and OWL Object properties have been mapped as XeOML Attribute types.  

On the contrary, being Associations not explicated in OWL, they are represented in 
XeOML by normal OWL Classes (many knowledge representation languages do not 
allow for associations, being them mimed by classes, with attributes acting as roles of 
the association: this way of modeling is typically indicated as Association Classing). 

The idea behind the extensible definitions of element types to different representa-
tion formalisms, is that a mediation activity involving two agents, requires them to be  
only proficient about the knowledge model adopted to express their underlying onto-
logical resource while not necessarily being able to understand the model owned by 
the interlocutor. This way every agent could fully exploit the detailed semantics of its 
knowledge model, and leave as meaningless strings the concepts expressed for the 
other ontology in the mapping document, as they need only to be used as a transaction 
mechanism inside the mediation activity. The choice of allowing for detailed and lan-
guage dependent descriptions of the ontological elements instead of neutral IDs 
(which could be of help in retrieving the same information from the source ontolo-
gies), may be questionable. However, although it is introducing redundancy inside the 
mapping document, it is indeed true that an agent exploiting this so-defined IDs 
would need the capability of matching them with elements from the source ontology 
(this may not be always trivial). Moreover, there could be many reasons to introduce 
more information in the ontology elements definition schema, which could be useful 
for making fast inference over large data from the mapping document as a whole, 
without the need for explicit reference to the source ontologies. 

MappingsDefinition Schema 

The Abstract Mapping Schema declares four types of mappings, related to the four 
basic ontology elements types: InstanceMapType, ClassMapType, AttributeMapType 
and AssociationMapType. A MappingsDefinition Schema Implementation should of-



fer enumerated restrictions to these types, assigning specialized semantics to the level 
of similarity between elements of  the mapped ontologies. We have produced a De-
fault MappingDefinition Schema extension, providing a few examples of possible 
level of mappings which could be reported in a mapping document. The intent of 
these mapping types is to specify at what extent the knowledge data (classes, attrib-
utes and instances) that is available in an ontology can be augmented with the foreign 
data contained in other ones. 

 
DefaultInstanceMapType is a restriction of the generic InstanceMapType and foresees 
the following levels of similarity between ontology instances:  
1. Equivalence: two instances are equivalent if they refer to the same object of the 

world. For example “President of USA Bush” and “George W. Bush” are, apart 
from their different surface forms, probably referring to the same person, in-
tended as a unique individual (in the hypothesis we are not speaking of another 
person with the same name as the U.S. President!). 

2. Similarity: the two instances represent very similar concepts, though cannot be 
considered, under all aspects,  as totally overlapping. 

 
DefaultClassMapType is a restriction of the generic ClassMapType and foresees four 
levels of similarity between ontology instances:  
1. ExtensionalEquivalence: it is hard to tell if two concepts are totally equivalent; 

many a knowledge theory should even confute the notion of equivalence between 
concepts coming from two different agents (either automatic agents accessing on-
tologies  to convey the meaning of their knowledge, or humans involving in dis-
course). Nevertheless, there are objects and individuals in the world which may 
be considered unique and to which unambiguously refer. If we consider the ex-
tension of a class as the list of objects/instances referred by it, then we may say 
that two classes share a Extensional Equivalence if they describe the same in-
stances of the world. What can be inferred from such a mapping type is that, 
given two classes A and B, extensionally equivalent, every instance of A may be 
considered an instance of B too, and vice versa. In some cases, these instances 
may result to be super specified or under specified, depending on the intensional 
similarity of the two classes: if A has some attributes which have no equivalent in 
B, instances of B would be under specified wrt these characteristics; this is in-
deed a partial lack of knowledge that cannot be filled otherwise. 

2. IntensionalSimilarity:  this level of class-similarity holds when it is not sure  two 
given classes share exactly the same instances, but indeed they share deep inten-
sional similarity, expressed through different aspects (terminological affinity, 
structural similarity, common instances and so on…). This kind of similarity does 
not guarantee any strong semantic implication, though could be useful in some 
contexts: a query to a QA system could benefit of “similar” matches, as the re-
trieved information may then judged by the human receiving the answer. 

3. SuperClass-Of (SubClass-Of): it holds when the class from LO represents a more 
general (specific) concept than the one from RO. The term SuperClass-Of (Sub-
Class-Of) indicates that the class from LO could be ideally considered as a Su-
perClass (SubClass) of the one from RO, should the two ontologies be merged. 
The semantics follows as for ExtensionalEquivalence: If a class A is SuperClass 



of a class B, it is possible to consider each instance of B as an instance of A, 
though, in this case, the converse is not true. 

 
DefaultAttributeMapType: it restricts the abstract AttributeMapType with the similar-
ity cases between ontology attributes defined below: 
1. RangeEquivalence: should the range of two considered attributes (in their origi-

nal definition, not considering restrictions applied to them when they are attached 
to different classes) be covering elements which are themselves mapped as 
equivalent, then a RangeEquivalence is considered for them. 

2. RangeSimilarity: should the range of two considered attributes (in their original 
definition, not considering restrictions applied to them when they are attached to 
different classes) be covering elements which are themselves mapped as similar, 
then a RangeSimilarity holds between them. 

3. RangeTypeMismatch: should the range of two considered attributes (in their 
original definition, not considering restrictions applied to them when they are at-
tached to different classes) be covering elements which present a mapping mis-
match of any kind, then a RangeTypeMismatch holds between them. 

4. RoleInversionRangeTypeMismatch, RoleInversionRangeSimilarity, RoleInver-
sionRangeEquivalence: these three types of matching are under all aspects 
equivalent to the (corresponding) first three ones, with the exception that Range 
and Domain and inverted. A match of this kind should be reported if a direct 
match (i.e. a match from one attribute to another attribute with proper Domain 
and Range equivalences) is not available for the desired attribute. 

In this schema, we limited specification of attribute similarities only to range simi-
larity, as diverse knowledge representation languages do not allow for explicit speci-
fication of attributes’ domain. Association similarity levels are still under study. 

Manual Mappings between Federated Ontologies: some considerations 

Mapping procedure, as it has been previously described in details, may be carried 
on also by humans. Mappings should be defined at the best of Mapper’s knowledge; 
this implies that humans producing a map should base on their personal knowledge 
and perspective of the world, together with observations on structural similarities be-
tween the two given ontologies. An Automatic Mapper could instead exploit some ex-
ternal linguistic/ontological resources to obtain a wider knowledge in judging map-
pings between the domain ontologies. 
The two main considerations to be clearly assumed when producing a map are: 

1. avoid complex mappings wherever simple mappings are available  
2. avoid “low-rank” mapping types when “high-rank” mappings are available  

Regarding the first assertion., it is important to clarify that, while complex map-
pings are a valuable mean to represent complex conceptual anchors between elements 
from different ontologies, they should only be used to fill “holes” in the mapping 
document that could never be bridged otherwise. 

The same considerations hold for the second statement, as it is best to map a 
class/instance/attribute/association with its best matching counterpart and omit the 
(many) other degraded mappings that may involve the given ontology element. So, 
for example, if a given class CL from LO is extensionally equivalent (the highest rank 



of available class mappings) to a class CR fro RO, CL and CR must be mapped using 
the proper map type without caring about other classes from RO that may be “more or 
less” similar to CL; for the same reason, if an attribute AL from LO is in RangeEquiva-
lence with an attribute AR from RO and if there exists an attribute IR in RO which is 
the inverse role of AR, there is no need of stating the RoleInversionRangeEquivalence 
between AL and IR: such a strategy is necessary to prevent an exponential growth in 
the range of possible relations that should be instantiated for every given ontological 
entity. If an element has no direct counterpart, it is up to the mediating agents to 
choose the best strategy for navigating their own ontologies and look for conceptual 
correspondences with the other ones: this is a fundamental difference wrt MAFRA 
[8], where a mapping ontology is built to bridge every (mappable) element from the 
two ontologies, or C-OWL [11], where the provided examples show complete map-
pings using the given primitives. Our future research work will go in the direction of 
formalizing conditions for completeness and compactness of a mapping document, to 
enhance the quality of automatically inferred mappings.  

4 Conclusions 

Ontologies are very often considered as a mean to conceptualize and express (by 
means of  concepts and relationships) all of the knowledge relevant to a given do-
main, thus supporting automatic reasoning. 

Nowadays, although still retaining their original role, Semantic Web has pushed 
forward the idea of ontologies as a mean for enabling knowledge sharing and reuse. 
Semantic Interoperability is thus a crucial issue in scenarios where different and dis-
tributed resources need to be reconciled, overcoming heterogeneities rising from dis-
tinct locales, languages, and, at a deeper analysis, different ways of structuring and 
organizing the information knowledge. 

Following this trend, we are now facing a growing need for tools, languages and 
formalisms that should support the sharing of domain knowledge in a wide variety of 
different situations. XeOML, with its layered approach, tries to suggest a new direc-
tion for the representation of mappings between ontologies. This language presents a 
simple unifying view over the kind of elements that should be considered as relevant 
in every ontological framework, along with a classification of the diverse relation-
ships that may occur between them in unforeseen mapping scenarios. Several exten-
sions can be specified over the core language, providing local and more specific de-
scriptions of the mapped ontological elements and detailing with the desired accuracy 
the relationships they are involved in. 

With approaches like that, the unavoidable trade-off laying between coverage of 
heterogeneous information sources and preservation of common semantics to access 
the related content can thus be coped with: under a social perspective, communities 
which aim to reach knowledge sharing and services interoperability, can rely on a 
well assessed formalism for mapping their knowledge, only needing to commit to the 
agreed semantics for qualifying and ranking knowledge mappings (XeOML Mapping 
Rank Language Extension); at the same time, if we consider the technological aspect 
of the approach, the distributed agents which are meant to exchange knowledge may 
rely on the same basic functionalities for interpreting the core language and need only 



to be “tuned” to the community, in order to capture and exploit the committed seman-
tics for recognizing and ranking ontology mappings. 
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Abstract. In this paper, two kinds of vocabulary consent relations are proposed 
as a mechanism for the partial reuse and integration of ontologies, and then a 
formal semantics of consent relationships is given to support such a mechanism. 
Particularly, some semantic conditions are proposed to guarantee the expected 
consequences of vocabulary consent relationships. The issue about reasoning 
with the given semantic framework is also briefly discussed.  

1  Introduction 

Web ontology languages play a crucial role in the emerging Semantic Web [1], as 
they provide mechanisms to represent and reason with term vocabularies and the 
relationships between entities in these vocabularies. Among them, the OWL Web 
Ontology Language [2] and RDF Schema [3, 4] are two promising ones. OWL 
provides more expressive power than RDF Schema, while RDF Schema defines basic 
ontological modeling primitives on top of RDF [5]. To make the Semantic Web 
vision become reality, we are challenged by the URI meaning issues arising from 
integrating and reusing ontologies distributed on the Web. As we know, URI 
references (or names) are used to denote some resources, and the characteristics of 
the denoted resources are depicted by the ontology using the URI references. In the 
situation where different ontologies use one URI reference, some problems occur. For 
example, should the meaning of a URI reference be global or local? Does the use of a 
URI reference from an existing ontology in current ontology constitute some kind of 
an assent to the meaning specified by the original ontology? Can one ontology reuses 
or shares some part of another ontology?  

As we know, a URI reference (or a name in short) alone is meaningless for 
machine without context, while the meaning of a set of related names comes mainly 
from the relations among them gained from some context. In the case of a single 
ontology, the meaning of the names used in the ontology comes from the axioms and 
facts asserted by the ontology, and usually, can be given in terms of the possible 
interpretations prescribed in an agreed-up formalism, such as RDF Semantics [4], 
OWL Semantics and Abstract Syntax [2], etc. In the case of distributed ontologies, 
OWL has a mechanism to import an OWL ontology into another OWL ontology, 
more concretely, an owl:imports statement refers another OWL ontology containing 
the descriptions of the resources denoted by some names, whose meaning is 
considered to be a part of the meaning of the importing ontology. However, the 
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import mechanism does not deal with the situations where the partial reuse is needed 
or where some different but compatible perspectives do exist. Recently, Paolo 
Bouquet et al. [6] gave an extension to OWL with context, named with C-OWL 
(Context OWL), which is based on local models semantics [7, 8] and distributed 
description logics [9]. C-OWL uses explicit mappings (bridge rules) as the context. 
However, the vocabularies of local ontologies in C-OWL are supposed to be pair-
wise disjointed, and the globalization can only be obtained by using explicit 
mappings.  

In this paper, two kinds of vocabulary consent relations are proposed as a 
mechanism for partial reuse and integration of ontologies on the Web, and then a 
formal semantics of vocabulary consent relationships is presented to support such a 
mechanism. In particularly, some semantic constraints are given to guarantee the 
expected consequences of these relationships. The rest of this paper is organized as 
follows: Some notations for distributed ontologies used in this paper as well as the 
possible interpretations of distributed ontologies are introduced in section 2. The 
concept of vocabulary consent relationships and their semantic conditions are 
formally given in section 3, and the issue of reasoning with consent relationships is 
also discussed in that section. Finally, section 4 gives some comparison of the 
presented approach with other related approached, and sketches out some future 
works. 

2  Distributed Ontologies 

To simplify the presentation of our formalism, we mainly discuss OWL Lite 
ontologies distributed on the Web. Datatypes, values as well as datatype properties 
are ignored for simplicity. The OWL Lite abstract syntax and the corresponding 
Description Logic syntax are used interchangeably throughout this paper, as shown in 
Figure 1 and Figure 2, which are the OWL Lite fragments of the ones in [10]. The 
specific meaning given to OWL Lite atomic classes and restriction classes is shown 
in the last column of Figure 1, where ∆ι is the domain of individuals in an 
interpretation. As usual, the meaning of assertions (axioms and facts) is given in 
terms of constraints on possible interpretations, as shown in the last column of Figure 
2. 

The terminologies for relations are given here. Let ℜ1 be a relation from U1 to U2 
(a subset of U1×U2), ℜ2 be a relation from U2 to U3, and S be a subset of U1. We have 
the following definitions. 

ℜ1(S) ≜ {y | ∃x. x∈S and <x, y>∈ℜ1}; 
ℜ1-1 ≜ {<y, x> | <x, y>∈ℜ1}; 
ℜ2 ° ℜ1 ≜ {<x, z> | ∃y. <x, y>∈ℜ1 and <y, z>∈ℜ2}; 
IU1 ≜ {<x, x> |  x∈U1 }. 

Obviously, ℜ1 is transitive iff ℜ1° ℜ1 ⊆ ℜ1; symmetric iff ℜ1=ℜ1-1; functional (i.e. a 
partial function) iff ℜ1°ℜ1-1 ⊆ IU2; reverse functional (i.e.one-to-one) iff ℜ1-1

° ℜ1 ⊆ IU1; 
onto iff IU2 ⊆ ℜ1° ℜ1-1; etc. 
 



No. Abstract Syntax DL Syntax Semantics 
 Concept Formation   

CF1 A  (URI reference)  A Aι ⊆∆ι 
CF2 owl:Thing ⊤ (owl:Thing)ι=∆ι 
CF3 owl:Nothing ⊥ (owl:Nothing)ι={} 
CF4 restriction(R someValuesFrom(A)) ∃R.A {x∈∆ι|∃y.<x,y>∈Rι∧ y∈Aι} 
CF5 restriction(R allValuesFrom(A)) ∀R.A {x∈∆ι|∀y.<x,y>∈Rι→y∈Aι} 
CF6 restriction(R minCardinality(0)) ≥0 R (i.e.⊤) ∆ι 
CF7 restriction(R minCardinality(1)) ≥1 R (i.e. ∃R.⊤) {x∈∆ι|∃y.<x, y>∈Rι} 
CF8 restriction(R maxCardinality(0)) ≤0 R (i.e. ∀R.⊥) {x∈∆ι|!(∃y.<x, y>∈Rι)} 
CF9 restriction(R maxCardinality(1)) ≤1 R {x∈∆ι|∀y.∀z. 

<x,y>∈Rι∧<x,z>∈Rι→y=z} 
 Property Formation   

PF1 R (URI reference) R Rι ⊆∆ι × ∆ι 

  R- (R-)ι = (Rι)-1 

 Individual Formation   
IF1 o  (URI reference) o oι∈∆ι 

Fig. 1. OWL Lite Concepts, Properties and Individuals. 

No. Abstract Syntax DL Syntax Semantics 
AF1 Class(A partial C1 ...Cn) A⊑C1⊓...⊓Cn Aι⊆C1

ι∩…∩Cn
ι 

AF2 Class(A complete C1 ...Cn) A=C1⊓...⊓Cn Aι=C1
ι∩…∩Cn

ι 
AF3 EquivalentClasses(A1 ...An) A1= …=An A1

ι= … =An
ι 

AF4 SubPropertyOf(R1 R2) R1⊑ R2 R1
ι ⊆ R2

ι 
AF5 EquivalentProperties(R1 ...Rn) R1= …=Rn R1

ι= … =Rn
ι 

ObjectProperty(R super(R1)...super(Rn) R⊑ Ri Rι ⊆ Ri
ι 

domain(A1) ...domain(Am) ∃R.⊤⊑ Ai Rι ⊆ Ai
ι × ∆ι 

range(A1) ...range(Ak) ⊤⊑∀R.Ai Rι ⊆ ∆ι × Ai
ι 

[inverseOf(R0)] R=(R0
−) Rι =((R0)ι) -1 

[Symmetric]  R=(R−) Rι =(Rι) -1 

[Functional] ⊤⊑ ≤1R Rι is functional 

[InverseFunctional] ⊤⊑ ≤1(R−) Rι is reverse functional 

AF6 

 

[Transitive]) Tr(R) Rι is transitive 

AF7 SameIndividual(o1 ... on) o1= …= on o1
ι= … =on

ι 
Individual(o type(C1) ...type(Cn) Ci(o) oι∈Ci

ι AF8 
 value(R1 o1)...value(Rn on)) Ri(o, oi) <oι, oi

ι>∈Ri
ι 

AF9 DifferentIndividuals(o1 ... on) oi ≠ oj, i≠j oi
ι
 ≠ oj

ι i≠j 

Fig. 2. OWL Lite Assertions (Axioms and Facts) 



Some other terminologies are as follows: The vocabulary of an ontology is the set 
of names (URI references) that occur in the ontology as individuals, classes and 
properties, except for the ones of built-in. We use ∑ to denote a distributed 
ontology, i.e. a set of ontologies {Oi}i∈I ,  where I is a set of indexes (for the sake 
of convenience, we will also use ∑ to denote a set of ontologies with some 
identified context in other places). We use V(Oi) to denote the vocabulary of Oi, 
and use VI(Oi), VC(Oi) and VP(Oi) to denote the individual, class, and property 
vocabulary of Oi, respectively. Following the notion of distributed description logics 
[9], the formal semantics of distributed ontologies is defined in terms of its possible 
interpretations. 

Definition 1. (Interpretations of distributed ontologies) Let ∑={Oi}i∈I be a set of 
ontologies. A possible interpretation of ∑, denoted by ι, is composed of a pair 
<{ιi}i∈I,{rij}i,j∈I> such that 
1. ιi is an OWL Lite interpretation of Oi (satisfying all of the axioms in Oi) with a 

local domain ∆ιi.  
2. rij is a domain relation from i to j, i.e. a subset of ∆ιi × ∆ιj. (For every i∈I, rii is 

always assumed to be the identity relation on ∆ιi.) 
 
Notice that the domain relation rij is a relation from ∆ιi to ∆ιj, it’s not necessarily to 

be a function from ∆ιi to ∆ιj, i.e. there may be no corresponding element in ∆ιj for 
some elements in ∆ιi via rij (e.g. something observed by agent i is neglected by agent j) 
and there may be more than one corresponding elements in ∆ιj for one element in ∆ι

                                                          

i 
via rij (e.g. one thing observed by agent i is perceived as many things by agent j due to 
different properties concerned).   

Example 1. Consider a set of two ontologies {O1, O2} as the following (using DL 
syntax to present axioms, where A, B, and C stands for class names): 

O1: A ⊑ B; B ⊑ C     

O2: C ⊑ D; D ⊑ A 

How to interpret the integration of the above two ontologies? We know that A is a 
sub-class of C from perspective of O1 (i.e. Aι1⊆Cι1) and C is a sub-class of A from 
perspective of O2 (i.e. Cι2⊆Aι2). There are many possibilities for other implicit 
information, and more context information should be given to gain a more clear 
understanding.  

Example 2. Consider an ontology about people1, called example, it consists of at least 
following assertions: 

Person ⊑ Animal;     (A1) 

Driver = Person ⊓ ∃drives. Vehicle;  (A2) 

 
1 http://owl.man.ac.uk/2003/why/latest/ontology.rdf 



Man =Male ⊓ Adult ⊓ Person;   (A3) 

Driver ⊑ Adult;     (A4) 

…… 

Suppose some application developers want to reuse the above ontology when they 
design their application-specific ontology, called myOntology. However, they do not 
like some vocabulary of this ontology, e.g. Adult, and somewhat consent to some 
other vocabulary, e.g. Man and Animal, and do consent to some other vocabulary, e.g. 
Person, Driver, Vehicle and drives. In this case, the import mechanism provided by 
OWL is clearly not applicable. The vocabulary consent relationship presented in next 
section will give a formalism to address this kind of situation.  

Before presenting the formalism, we need to define the requirements on the 
expected consequences of consent relations. In this paper, two kinds of consent 
relations are identified, namely weak consent and consent relations, and the expected 
consequences of these relationships are roughly identified as follows. 

(1) Most of the simple OWL Lite assertions with the concerned vocabulary keep 
true via weak consent relation. For example, in example ontology, a man must 
be an animal, i.e. Man ⊑ Animal, this is an implicit assertion derived from 
(A1) and (A3). If myOntology weakly consents to example with the 
vocabulary Man and Animal, then Man ⊑ Animal should keeps true in 
myOntology.  

(2) Most of the OWL Lite assertions with the concerned vocabulary keep true via 
consent relation. For example, If myOntology consents to example with the 
vocabulary Person, Driver, Vehicle and drives, then (A2), which is explicitly 
asserted in example, should keeps true in myOntology.  

The identified requirements listed above are primary and somewhat rough. This 
paper doesn’t try to nail down the commonly agreed requirements on the consent 
relations, because it needs the Semantic Web community to do so. Instead, this paper 
proposes two kinds of vocabulary consent relations as a mechanism for partial reuse 
and integration of ontologies, and presents a formalism to support such a mechanism, 
especially, some semantic constraints are given to guarantee the expected 
consequences of these relationships. Whenever some kinds of consent relations and 
their expected consequences of these relationships are identified by the Semantic 
Web community, the presented approach can be used to formalize these commonly 
agreed consent relations. 

3   Consent Relationship 

In this section, consent relationships are proposed as key component of context for 
distributed ontologies, and the formal semantics of consent relationships is presented, 
and the reasoning along with consent relationships is also discussed.  



Definition 2 (Consent relation). Let ∑={Oi}i∈I  be a set of local ontologies. 
Syntactically, a consent relation on {Oi}i∈I is an indexed family of sets {ℭij}i,j∈I, 
usually denote by ℭ≡{ℭij}i,j∈I, where ℭij is a subset of V(Oi)∩V(Oj). We say Oj 
consents to Oi with ν so long as ν∈ℭij, and Oj consents to Oi so long as V(Oi)=ℭij. 
The syntax form of a weak consent relation is defined analogously, denoted by 
ℭw≡{ℭijw}i,j∈I. 

From now on, we use ∑=({Oi}i∈I, ℭw, ℭ) to denote a set of local ontologies with 
consent relations (a weak consent relation ℭw and a consent relation ℭ). It’s not hard 
to extend OWL Syntax to represent consent relations, but the details about the syntax 
of such an extension are beyond the scope of this paper. The semantics of consent 
relationships is given in terms of constraints (i.e. semantic conditions) on possible 
interpretations of the distributed ontology concerned. 

Definition 3 (Semantic condition for consent relationship). Let ∑=({Oi}i∈I, ℭw, ℭ) 
be a distributed ontology with consent relations. A possible interpretation of ∑, 
<{ιi}i∈I,{rij}i,j∈I>, is an interpretation of {Oi}i∈I satisfying the following semantic 
conditions for consent relations. 

(1). If A∈ℭwij∩VC(∑), then (SCC-C1) holds;  
Aιj = rij(Aιi)    (SCC-C1) 

(1’). If A∈ℭij∩VC(∑), then (SCC-C1) and (SCC-C2) holds; 
rij-

1(rij(Aιi)) ⊆ Aιi   (SCC-C2) 

(2). If R∈ℭwij∩VP(∑), then (SCC-P1) holds;  
Rιj = rij ° Rιi ° rij-

1   (SCC-P1) 

(2’). If R∈ℭij∩VP(∑), then (SCC-P1), (SCC-P2)  and (SCC-P3) holds; 
Rιj ° rij  ⊆  rij ° Rιi   (SCC-P2) 
Rιi ° rij-

1 ⊆ rij-
1 ° Rιj  (SCC-P3) 

(3). If o∈ℭwij∩VI(∑), then (SCC-I1) holds; 
{oιj} = rij({oιi})    (SCC-I1) 

(3’). If o∈ℭij∩VI(∑), then (SCC-I1) and (SCC-I2) holds. 
rij-

1(rij({oιi})) = {oιi}  (SCC-I2) 

Note. The conditions (SCC-C1), (SCC-P1) and (SCC-I1) are given to ensure the 
expected consequence of weak consent relationship (as roughly described at the end 
of section 2), while the more conditions (SCC-C2), (SCC-P2), (SCC-P3) and 
(SCC-I2) are given to ensure the expected consequence of consent relationship. 
When one consent relationship is to be used, the corresponding conditions need to be 
checked, which may involve meaning coordination and negotiation. For example, 
suppose myOntology is prepared to partially reuse the example ontology and consent 
to it with the vocabulary drives (a property). Before doing so, the ontology designer 
need to check whether or not for every possible interpretation of the example 
ontology and his/her intended interpretation of myOntology, there exists a domain 



relation rij such that the conditions (SCC-P1), (SCC-P2) and (SCC-P3) hold for rij 
and R (here R is drives). 

Example 3. (Revisit example 1) If we further identify the context that O2 weakly 
consents to O1 with class vocabulary A and C, i.e. {A, C}=ℭw12, then the following 
constraints hold. 

    Aι2 = r12(Aι1)   by A∈ℭw12 and (SCC-C1)  
⊆ r12(Cι1)               (Due to the fact Aι1⊆ Cι1)  
= Cι2                                  by C∈ℭw12 and (SCC-C1) 

Together with Cι2⊆Aι2, we derive Cι2= Aι2, i.e. A is equivalent to C in O2. It is 
worthy of noticing that this example allows O2 not consent O1 with class B (O2 may 
not agree with what O1 says about class B). In fact, this case illustrates a scenario of 
partial reuse of vocabulary by using weak consent relationship. This is different 
from the owl:import mechanism, where the importing ontology must agree with 
all of the what the imported ontology says. This example also motivates us to think 
about the entailment relation between distributed assertions.  

Definition 4. (Entailment between distributed assertions) Let ∑=({Oi}i∈I, ℭw, ℭ) 
a distributed ontology. We say Oi1: assertion1, …, Oin: assertionn entail Oj: assertionj, 
written by  

Oi1: assertion1, …, Oin: assertionn  ⊨Σ Oj: assertionj , 

iff for each intepretation  <{ιi}i∈I,{rij}i,j∈I> of ∑, if ιi1 satisfies assertion1, …, and ιin 
satisfies assertionn, then ιj must satisfy assertionj.  

Notice that we usually consider whether or not an assertion (explicitly asserted or 
implicitly deduced) in a reused ontology keeps true in the ontology reusing 
vocabulary. 

Proposition 1. Let ∑=({Oi}i∈I, ℭw) be a distributed ontology with a weak consent 
relation, and {υ1, υ2, o1, o2}∈ℭwij. Then every form of assertions in the following is 
true in Oj under a given interpretation of ∑ if it is true in Oi under the given 
interpretation of ∑. 

(1). υ1⊑υ2, where both of υ1 and υ2 are either class names or property names. 
(2). υ1(o1), where υ1 is a class name while o1 is an individual name. 
(3). o1=o2, where both of o1 and o2 are individual names. 
(4). υ1(o1, o2), where υ1 is a property name while both of o1 and o2 are individual 

names. 
(5). υ1= υ2

−, where both of υ1 and υ2 are property names. 

Proof. We just give the proof of (1) in the case of property. Let <{ιi}i∈I,{rij}i,j∈I>, be 
an interpretation of ∑. We have 

υ1
ιj = rij ° υ1

ιi ° rij
-1 ⊆ rij ° υ2

ιi ° rij
-1=υ2

ιj 



So, υ1⊑υ2 is also true in Oj.  
The proof for others is similar to the above.      � 

Corollary 1. Every form of assertions in the following keeps true from Oi to Oj 
whenever the involved names belong to ℭwij, under the distributed interpretations 
satisfying semantic condition for weak consent relation. 

(1). (AF3), (AF4), (AF5) and (AF7); 
(2). (AF1) and (AF8) with Ci restricted to atomic concepts; 
(3). (AF6) without [Functional], [InverseFunctional] and [Transitive]. 

Notice that the assertions can be explicitly asserted axioms and facts in Oi or 
implicit assertions (derived within Oi), e.g. Man ⊑ Animal is an implicit assertion 
derived from (A1) and (A3) in the example ontology. On the other hand, the 
assertions taking form of (AF2) doesn’t keep true in general due to the fact that 
rij(C1

ιi)∩rij(C2
ιi) and rij(C1

ιi∩C2
ιi) are not necessary to be equal, even when C1 and C2 

are atomic concepts, while (AF9) doesn’t keep true in general due to the fact that rij is 
not necessary to be one-to-one.  

Roughly speaking, most of the simple assertions of OWL Lite (including all of the 
ones borrowed from RDF Schema) keep true via the weak consent relation. It will be 
proved that almost all assertion of OWL Lite keeps true via consent relation. 

Lemma 1. Let ℜ be a relation from U1 to U2, and Si (i=1…n) be subsets of U1. If for 
i=1…n, ℜ-1(ℜ(Si)) ⊆ Si holds, then ℜ(S1∩…∩S2) =ℜ(S1)∩…∩ℜ(Sn). (The proof is 
omitted due to the space limitation) 

Proposition 2. Let ∑=({Oi}i∈I, ℭ) be a distributed ontology with consent relation, if 
{R, A, A1, …, An, o1, o2}∈ℭij, and <{ιi}i∈I,{rij}i,j∈I> be an interpretation of ∑, then,  

(1). rij((∃R.A)ιi) =(∃R.A)ιj 
(2). rij((∀R.A)ιi) = rij(⊤ιi)∩(∀R.A)ιj  
(3). rij((A1⊓ ... ⊓An)ιi) = (A1⊓ ... ⊓An)ιj 
(4). Rιj is transitive if Rιi is transitive. (i.e. Rιj ° Rιj ⊆ Rιj so long as Rιi ° Rιi ⊆ Rιi) 
(5). Rιj is functional if both of Rιi and rij are functional 
(6). o1

ιj ≠ o2
ιj if o1

ιi
 ≠ o2

ιi. 

Proof.  (1). Suppose y∈rij((∃R.A)ιi), then there exists an x∈(∃R.A)ιi such that <x, 
y>∈ rij. According to the interpretation of (∃R.A)ιi, there exists an x1∈Aιi such that <x, 
x1>∈Rιi. So we have <y, x1>∈Rιi ° rij-

1. By (SCC-P3), we have <y, x1> ∈ rij-
1 ° Rιj, i.e. 

there exists y1∈∆ιj such that <y, y1>∈Rιj and <y1, x1> ∈rij-
1. Since <x1, y1> ∈rij and 

x1∈Aιi, we have y1∈rij(Aιi)=Aιj (by (SCC-C1)), and then y∈(∃R.A)ιj. Therefore, 
rij((∃R.A)ιi) ⊆ (∃R.A)ιj.  

As for the reverse direction, suppose y∈(∃R.A)ιj, then there exists a y1∈Aιj such 
that <y,y1>∈Rιj. By (SCC-P1), there exist x and x1 such that <x, y>∈rij, <x, x1>∈Rιi, 



and <x1,y1>∈rij. By (SCC-C1, C2) and the facts that <x1, y1>∈rij and y1∈Aιj, we have 
x1∈Aιi, and then x∈(∃R.A)ιi. It leads to y∈rij((∃R.A)ιi). Thus, (∃R.A)ιj⊆ rij((∃R.A)ιi).  

We omit the proof of (2) − (6) due to the space limitation.   � 

Proposition 3. Let ∑=({Oi}i∈I, ℭ) be a distributed ontology with consent relation, if 
{R, A}∈ℭij, and <{ιi}i∈I,{rij}i,j∈I> be an interpretation of ∑, then the following holds. 

(1). rij(Cιi) =Cιj and rij
-1(rij(Cιi)) ⊆ Cιi for C taking the form of A, ∃R.A, ⊥, ∃R.⊤. 

(2). rij(Cιi) = rij(⊤ιi)∩Cιj and rij
-1(rij(Cιi)) ⊆Cιi for C taking the form of ∀R.A, ⊤, 

∀R.⊥. 
(3). Suppose C takes the form of ≤1 R, i.e. restriction(R maxCardinality(1)).  If rij is 

functional, then rij(Cιi)⊆Cιj. If rij is one-to-one, then rij
-1(Cιj) ⊆Cιi and 

rij(⊤ιi)∩Cιj⊆ rij(Cιi). (Namely, (2) also holds for C taking the form of ≤1 R when 
rij is required to be one-to-one and functional). 

(The proof is similar to the proposition 2, and is omitted due to the space limitation.) 

Corollary 2. Every form of OWL Lite assertions, except for the following forms of 
assertions, keeps true from Oi to Oj whenever the involved names belong to ℭij, under 
the distributed interpretations satisfying semantic condition for consent relation.  

(1). ObjectProperty(R Functional) or ObjectProperty(R InverseFunctional); 
(2). Assertions involving maxCardinality=1 (or cardinality=1); 
(3). Class(A complete C1...Cn) with each Ci being a value restriction (n≥2).  

Proof. In the case of an assertion with one of the forms (AF3), (AF4), (AF5) and 
(AF7), it comes from proposition 1 and corollary 1. We just need to give the proof of 
following forms (Notice that Ci doesn’t take the form of CF9, i.e. ≤1 R): 

(AF1). Class(A partial C1 ...Cn)                                      A⊑ C1⊓... ⊓Cn 
(AF2). Class(A complete C1...Cn) except each Ci is value restriction  A= C1⊓... ⊓Cn 
(AF6). ObjectProperty(R Transitive)                          Tr(R) 
(AF8). Individual(o type(C1) ...type(Cn))                        Ci(o) 
(AF9). DifferentIndividuals(o1 ... on)                        oi ≠ oj, i≠j 

In the case of (AF1), we just need to illustrate the case C1. Suppose A⊑ C1 is true 
in Oi under <{ιi}i∈I,{rij}i,j∈I> satisfying semantic condition for consent relation. We 
have Aιi ⊆ C1

ιi, and then rij(Aιi) ⊆ rij(C1
ιi) ⊆C1

ιj(By Proposition 3). So Aιj= rij(Aιi) ⊆ 
C1

ιj. It means A⊑ C1 is also true in Oj under <{ιi}i∈I,{rij}i,j∈I>. 
In the case of (AF2), we suppose C1 is an atomic concept or an existential 

qualification without the loss of the generality. So we have C1
ιj=rij(C1

ιi)⊆rij(⊤ιi). 
Therefore 

(C1⊓... ⊓Cn) ιj = C1
ιj∩C2

ιj∩…∩Cn
ιj  

= C1
ιj∩(rij(⊤ιi)∩C2

ιj))∩…∩(rij(⊤ιi)∩Cn
ιj) 

= rij(C1
ιi)∩rij(C2

ιi)∩…∩rij(Cn
ιi) (By Proposition 3) 



= rij(C1
ιi∩C2

ιi∩…∩Cn
ιi))  (By lemma 1, Proposition 3) 

= rij( (C1⊓... ⊓Cn) ιi) = rij(Aιi) =Aιj 

It leads to the conclusion. If each Ci is a value restriction, then we couldn’t get the 
above result in general, due to the fact (C1⊓... ⊓Cn) ιj may exceed rij(⊤ιi). 

As for (AF6), it comes from (4) of Proposition 2. As for (AF8), it comes from (1) 
and (2) of Proposition 2. As for (AF9), it comes from (6) of Proposition 2.            � 

Notice that, by the (3) of proposition 3, if rij is required to be one-to-one and 
functional, then every OWL Lite assertion keeps true via consent relation with only 
one exception, which occurs only when a complete class axiom Class(A complete 
C1...Cn) (n≥2) does have each Ci taking the form of value restriction (∀R.A and 
∀R.⊥) or maxCardinality=1 (≤1 R). The existence of such an exception ascribe to 
the possibility of that rij(⊤ιi)⊊⊤ιj. (The universe or thinking space of  agent j is 
strictly larger than the one of agent i.) When rij(⊤ιi)⊊⊤ιj, in the case of C taking one 
form of ∀R.A, ∀R.⊥, and ≤1 R, C ιj may contain some element exceeding the scope 
of rij(⊤ιi) due to the fact that the interpretations of these concept constructs do not 
assume the existence of the property value. It leads to that rij(Cιi)⊊ C ιj. So, this 
exception, the case (3) of Corollary 2, is technically apprehensible.  

Example 4. (Revisit example 2) Suppose myOntology consents to example with the 
vocabulary Person, Driver, Vehicle and drives, and weakly consents to example with 
Man and Animal. The simple assertion Man ⊑ Animal (taking the form AF1 as in 
Fig.2 with an atomic class as super-class) is derived from (A1) and (A3) in the 
example ontology, and then it is true in myOntology by Corollary 1. The complex 
assertion (A2) Driver = Person ⊓ ∃drives. Vehicle (taking the form AF2 as in Fig 2.) 
is asserted in the example ontology, and then it is true in myOntology by Corollary 2.  

In the case that Oj consents to Oi (as a whole), it implicitly requires that 
V(Oi)⊆V(Oj). This case is close to the case that Oj owl:imports Oi, but with some 
difference as indicated in Corollary 2. If we introduce a new kind of consent 
relationship at ontology level (not at vocabulary level), called complete consent, with 
additional semantic condition that the corresponding domain relation be one-to-one 
and functional, then the complete consent relation is closely similar to owl:imports 
mechanism with only one difference as indicated in the case (3) of Corollary 2, which 
is technically apprehensible. Generally speaking, consent relationship (as well as 
weak consent relationship) is at vocabulary level, and it facilitates the meaning 
sharing of logically relevant part of ontology by specifying with which names an 
ontology (target ontology) consents to another one (source ontology). Here, the 
logically relevant part of an ontology means some forms of explicit and implicit 
assertions in the ontology which involve no other names than the ones specified. In 
other words, the meaning of relevant names is inherited from source ontology into the 
target ontology. As to the owl:imports mechanism, it’s at ontology level, and its 
ability of combining models is restricted to the import of complete model of source 
ontology. 



By Corollary 1 and Corollary 2, we can roughly say, most of the simple OWL Lite 
assertions (including all of the ones borrowed from RDF Schema) keep true via weak 
consent relation, while every OWL Lite assertion, except those indicated in Corollary 
2, keeps true via consent relation. From viewpoint of semantics and reasoning, the 
consent relations should have some transitivity. If Oj consents to Ok with a set of 
vocabulary and Ok consents to Oi with the same set of vocabulary, then Oj would 
consents to Oi with the same set of vocabulary. However, if Oj consents to Ok with υ1 
and υ2 while Ok consents to Oi with υ2 and υ3, then machines may not obtain any 
meaningful result directly from Oi to Oj in general due to the fact that Oj consents to 
Oi with only one name can not bring any useful thing with reasoning.  

Based on above properties observed, we can conduct distributed reasoning along 
with consent relations. Roughly speaking, If Oj consents to Oik (k=1,…n) with 
vocabulary set Vk and there are some explicit or implicit assertions (involving no 
other vocabulary than the ones in Vk) in Oik, then we can conclude that these 
assertions are also true in Oj. Certainly, the reasoning should be goal oriented, and 
more research should be taken to make it practical. In addition, various consent 
relations among distributed ontologies can be identified and established according to 
the corresponding semantic conditions. Certainly, some techniques, such as multi-
agent and context capturing, should be incorporated in order to identify consent 
relations among ontologies distributed on the Web. 

4   Conclusion 

In this paper, vocabulary consent relations have been proposed as a mechanism for 
partial reuse and integration of ontologies, and the formalism for such a mechanism 
has been given to underpin the idea of vocabulary consent relations. As compared to 
the import mechanism built in OWL, consent relation (as well as weak consent 
relation) supports the partial reuse at vocabulary level, and it provides a mechanism to 
inherit the meaning of relevant vocabularies from source ontology into target 
ontology. The presented approach is fine-grained and flexible, while the owl:import 
mechanism is at ontology level, and its ability of combining models is restricted to the 
import of complete model of source ontology. As compared to the C-OWL, our 
approach uses vocabulary consent relationships as context for possible interpretations 
of ontologies, while C-OWL uses bridge rules as context [6]. Both of them are based 
on the local models semantics [7, 8] and distributed description logics [9].  

In addition, some semantic conditions (in definition 3) are given to ensure the 
expected consequences of consent relationships. On one hand, when one consent 
relationship is to be used, the corresponding conditions need to be checked, which 
may involve meaning coordination and negotiation. On the other hand, these semantic 
conditions can help agents to conduct distributed reasoning along with consent 
relations. Furthermore, the semantic conditions proposed in this paper can help 
people (and then agents) identify some consent relations among ontologies to be 
integrated. At least, these semantic conditions can be used as criteria for vocabulary 
reuse as well as vocabulary mapping. 



The research work given in this paper is primary in some aspects. As pointed out at 
the end of section 2, the requirement on vocabulary consent relations needs to be 
elicited, and the expected consequence of different kind of consent relations needs 
further exploration. In addition, the research work needs to be extended to cope with 
OWL DL constructs. Other interesting research related to this paper includes context 
capturing and distributed reasoning among multiple agents with their own ontologies.  
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Abstract. We address the mathematical foundations of the ontology coordina-
tion problem and investigate to which extend the Barwise-Seligman theory of
information flow may provide a faithful theoretical description of the problem.
We give a formalisation of the coordination of populated ontologies based on in-
stance exchange that captures progressive partial semantic integration. We also
discuss the insights that the Barwise-Seligman theory provides to the general on-
tology coordination problem.

1 Introduction

For two systems to interoperate, exchanging syntax is insufficient, because systems
also need to agree upon the meaning of the communicated syntactic constructs. Sep-
arate applications, though, are most often engineered assuming different, sometimes
even incompatible, conceptualisations. Ontologies have been advocated as a solution
to this semantic heterogeneity: separate applications would need to match their own
conceptualisations against a common ontology of the application domain, so that all
communication is done according to the constraints derived from the ontology.

Although the use of ontologies may indeed favour semantic interoperability, it relies
on the existence of agreed domain ontologies in the first place. Furthermore, these on-
tologies will have to be as complete and as stable for a domain as possible, because dif-
ferent versions only introduce more semantic heterogeneity. Thus, semantic-integration
approaches based ona priori common domain ontologies may be useful for clearly
delimited and stable domains, but they are untenable and even undesirable in highly
distributed and dynamic environments such as the Web. In such an environment, it is
more realistic to progressively achieve certain levels of semantic interoperability by
coordinating and negotiating the meaning attached to syntactic constructs on the fly.
Although we are skeptical thatmeaningas such can ever be coordinated or negotiated
in a way such that all systems share the understanding of a communicated concept, we
do argue that communication between separate systems will hardly ever be achieved if
we lack the necessary commodity for meaning to be coordinated and negotiated in the
first place: information.



This puts us within the philosophical tradition put forth by Dretske [3], which sees
information as prior to meaning, namely as an interpretation-independent objective
commodity that can be studied by its own right. Consequently, we believe that any satis-
factory formalisation of semantic interoperability needs to be built upon a mathematical
theory capable of describing under which circumstances information flow occurs. We
shall use Barwise and Seligman’s channel theory for this purpose [1]. It constitutes a
general mathematical theory that aims at describing the information flow in any kind of
distributed system.

In our previous work we have been starting from the Barwise-Seligman theory of
information flow in order to formalise and automate semantic interoperability [5, 6].
In this paper we investigate the ways in which the Barwise-Seligman theory applies
to the problem of ontology coordination. We do not present a fully-fledged theory for
ontology coordination, nor do we provide an ontology coordination methodology or
procedure. Instead, our aim here is to explore if the insights about information and its
flow provided by the Barwise-Seligman theory translate to the ontology coordination
problem.

2 Ontology Coordination

Before applying all the channel-theoretic machinery to the ontology coordination prob-
lem, we first need to delimit the problem and state the assumptions upon which we build
the theoretical framework.

We assume a scenario in which two agentsA1 andA2 want to interoperate, but in
which each agentAi has its knowledge represented according to its own conceptualisa-
tion, which we assume to be explicitly specified according to its own ontologyOi. By
this we mean a concept ofO1 will always be considered semantically distincta priori
from any concept ofO2, even if they happen to be syntactically equal, unless there is
sufficient semantic evidence that it means the same toA1 as it does toA2. Further-
more, we assume that the agent’s ontologies are not open to other agents for inspection,
so that semantic heterogeneity can not be solved by “looking into each agents’ head.”
Hence, an agent may learn about the ontology of another agent only through interac-
tion. Thus, following an approach similar to that of Wang and Gasser described in [10],
if A1 wants to explainA2 the meaning of a concept, it can use an instance classified
under this concept as a representation of it.

Take, for example, the issues one has to take into account when attempting to align
the English conceptsriver andstream of O1 with the French concepts offleuve and
rivi ère ofO2. According to Sowa,

In English, size is the feature that distinguishesriver from stream; in French,
a fleuve is a river that flows into the sea, and arivière is either a river or a
stream that runs into another river. [9]

Given these distinct conceptualisations,A1 may explain toA2 what a river is by inform-
ing A2 that Ohio is a river. In principle, agents may handle different instance sets asA1

may be situated in the context of the North-American geography (Mississippi, Ohio,
Captina) whileA2 may be situated in the context of the French geography (Rhône,



Sâone, Roubion). But for any successful explanation of foreign concepts by exchang-
ing information about instances, one needs to assume thatA2 will be able to identify
instances ofA1 (e.g., Ohio) as belonging to the samedomain of discourseD as its
own instances (Rĥone, Sâone, Roubion)—which, for this particular scenario, consists
of all water-flowing entities—and that it will be able to classify any new elements ofD
according to its own ontology.

In fact, by lacking anya priori domain ontology about water-flowing entities, it is
hard to see how agentsA1 andA2 could coordinate their respective ontologiesO1 and
O2 in another way. It is the assumption thatA1’s andA2’s instances belong to a com-
mon domain of discourse which makes our approach to ontology coordination possible.
Ontology coordination is then the progressive sharing of instances of this domain of
discourse and the subsequent communication about how they are classified according
to each ontology.

3 Channel-Theoretic Preliminaries

We introduce briefly the main channel-theoretic constructs needed for our foundation
for ontology coordination. As we proceed, we shall hint at the intuitions lying behind
them, but for a proper in-depth understanding of the theory we refer the interested reader
to [1]. In the remainder of the paper we use the prefix ‘IF’ (information flow) in front of
some of the channel-theoretic terminology to distinguish it from their usual meaning.

3.1 IF Classification, Infomorphism, and Channel

In channel theory, each component (or context) of a distributed system is modelled by
means of anIF classification. The system itself is described by the way IF classifications
are connected with each other throughinfomorphisms.

Definition 1. An IF classificationA = 〈tok(A), typ(A), |=A〉, consists of a set of
tokenstok(A), a set of typestyp(A) and aclassification relation|=A⊆ tok(A) ×
typ(A) that classifies tokens to types.

Definition 2. An infomorphismf = 〈f ,̂ f 〉̌ : A → B from IF classificationsA to B
is a contravariant pair of functionsfˆ : typ(A)→ typ(B) andfˇ : tok(B)→ tok(A)
satisfying the following fundamental property, for each typeα ∈ typ(A) and token
b ∈ tok(B):

α

|=A �
�

� fˆ // f (̂α)

f (̌b) b
�

fˇ
oo

|=B

�
�

f (̌b) |=A α iff b |=B f (̂α)

Definition 3. Adistributed IF systemA consists of an indexed familycla(A) = {Ai}i∈I

of IF classifications together with a setinf (A) of infomorphisms all having both do-
main and codomain incla(A).



The basic construct of channel theory is that of anIF channelbetween two IF clas-
sifications. It models the information flow between components:

Definition 4. An IF channelconsists of two IF classificationsA1 and A2 connected
through a core IF classificationC via two infomorphismsf1 andf2:
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3.2 IF Theory and Logic

Channel theory is based on the understanding that the flow of information is a result
from the regularities of a distributed system. These regularities are implicit in the rep-
resentation of the system as a distributed IF system of connected IF classifications, but
we can make them explicit in a logical fashion by means of IF theories and IF logics:

Definition 5. An IF theoryT = 〈typ(T ),`〉 consists of a settyp(T ) of types, and a
binary relation` between subsets oftyp(T ). Pairs 〈Γ,∆〉 of subsets oftyp(T ) are
called sequents. If Γ ` ∆, for Γ,∆ ⊆ typ(T ), then the sequentΓ ` ∆ is called a
constraint. T is regularif for all α ∈ typ(T ) and all setsΓ, Γ ′,∆,∆′, Σ′, Σ0, Σ1 of
types:

1. Identity:α ` α
2. Weakening:If Γ ` ∆, thenΓ, Γ ′ ` ∆, ∆′

3. Global Cut:If Γ, Σ0 ` ∆, Σ1 for each partition〈Σ0, Σ1〉 of Σ′, thenΓ ` ∆.3

Definition 6. An IF logicL = 〈tok(L), typ(L), |=L,`L, NL〉 consists of an IF classifi-
cationcla(L) = 〈tok(L), typ(L), |=L〉, a regular IF theoryth(L) = 〈typ(L),`L〉 and
a subset ofNL ⊆ tok(L) of normal tokens, which satisfy all the constraints ofth(L);
a tokena ∈ tok(L) satisfies a constraintΓ ` ∆ of th(L) if, whena is of all types inΓ ,
a is of some type in∆. An IF logicL is soundif NL = tok(L).

Regularity arises from the observation that, given any classification of tokens to
types, the set of all sequents that are satisfied by all tokens always fulfill Identity, Weak-
ening, and Global Cut.

Every classification determines anatural IF logic, which captures the regularities
of the classification in a logical fashion.

Definition 7. Thenatural IF logicis the IF logicLog(C) generated from an IF classi-
ficationC, and has as classificationC, as regular theory the theory whose constraints
are the sequents satisfied by all tokens, and whose tokens are all normal.

3 A partition ofΣ′ is a pair〈Σ0, Σ1〉 of subsets ofΣ′, such thatΣ0∪Σ1 = Σ′ andΣ0∩Σ1 = ∅;
Σ0 andΣ1 may themselves be empty (hence it is actually a quasi-partition).



3.3 Distributed IF Logic

The key channel-theoretic construct we shall use in order model the semantic interoper-
ability between agents with different ontologies is that of adistributed IF logic, which
is the logic that represents the flow of information occurring in a distributed system.
Semantic interoperability between agentsA1 andA2 is then described by the IF theory
of the distributed IF logic of IF channel

C

A1

f1 66mmmmmm
A2

f2hhQQQQQQ

representing the information flow betweenA1 andA2, and which describes how the
different types fromA1 andA2 are logically related to each other, both respecting the
local IF classification systems of each agent and interrelating types whenever there is a
similar semantic pattern (i.e., a similar way communities classify related tokens). The
distributed IF logic is defined bymovingan IF logic on the coreC of the channel to the
sum of componentsA1 + A2.

Definition 8. Given an infomorphismf : A→ B and an IF logicL onB, theinverse
imagef−1[L] of L underf is the IF logic onA, whose theory is such thatΓ ` ∆ is a
constraint ofth(f−1[L]) iff f [̂Γ ] ` f [̂∆] is a constraint ofth(L), and whose normal
tokens areNf−1[L] = {a ∈ tok(A) | a = f (̌b) for someb ∈ NL}. If fˇ is surjective
on tokens andL is sound, thenf−1[L] is sound.

Definition 9. Given an IF channelC = {f1,2 : A1,2 → C} and an IF logicL on
its core C, the distributed IF logicDLogC(L) is the inverse image ofL under the
sum infomorphismsf1 + f2 : A1 + A2 → C. This sum is defined as follows:A1 +
A2 has as set of tokens the Cartesian product oftok(A1) and tok(A2) and as set
of types the disjoint union oftyp(A1) and typ(A2), such that forα ∈ typ(A1) and
β ∈ typ(A2), 〈a, b〉 |=A1+A2 α iff a |=A1 α, and〈a, b〉 |=A1+A2 β iff b |=A2 β. Given
two infomorphismsf1,2 : A1,2 → C, the sumf1 + f2 : A1 + A2 → C is defined by
(f1 + f2)̂ (α) = fi(α) if α ∈ Ai and(f1 + f2)̌ (c) = 〈f 1̌(c), f 2̌(c)〉, for c ∈ tok(C).

3.4 Ontologies in Channel Theory

For the purposes of ontology coordination described in this paper, we adopt a defini-
tion of ontology that includes some of its core components:Concepts, organised in an
is-a hierarchy, and notions ofdisjointnessof two concepts—when no instance can be
considered of both concepts—andcoverageof two concepts—when all instances are
covered by two concepts.4 Disjointness and coverage are typically specified by means
of ontological axioms. In this paper we take these kind of axioms into account includ-
ing disjointness and coverage into the hierarchy of concepts by means of two binary
relations ‘⊥’ and ‘|’, respectively. In [5] we included alsorelationsover concepts in our
core treatment of ontologies. We have left them out here for the ease of presentation.

4 Both disjointness and coverage can easily be extended to more than two concepts.



Definition 10. Anontologyis a tupleO = (C,6,⊥, |) where

1. C is a finite set of concept symbols;
2. 6 is a reflexive, transitive and anti-symmetric relation onC (a partial order);
3. ⊥ is a symmetric and irreflexive relation onC (disjointness);
4. | is a symmetric relation onC (coverage); and

When an ontologyO = (C,6,⊥, |) is used in some particular application domain,
we need to populate it with instances. First, we will have to classify objects of a set
X according to the concept symbols inC by defining a binary classification relation
|=C. This determines an IF classificationC = (X, C, |=C), whereX = tok(C) and
C = typ(C). The classification relation|=C will have to be defined in such a way that
the partial order6, the disjointness⊥, and the coverage| are respected:

Definition 11. A populated ontologyis a tupleÕ = (C,6,⊥, |) such thatC = (X, C,
|=C) is an IF classification, andO = (C,6,⊥, |) is an ontology, and for allx ∈ X
andc, d ∈ C,

1. if x |=C c andc 6 d, thenx |=C d;
2. if x |=C c andc ⊥ d, thenx 6|=C d;
3. if c | d, thenx |=C c or x |=C d.

Our approach to ontology coordination uses the fact that, in the context of channel
theory, a populated ontologỹO = (C,6,⊥, |)—with C = (X, C, |=C)—determines
a local logicL = (X, C, |=C,`) whose theory(C,`) is given by the smallest regular
consequence relation (i.e., the smallest relation closed under Identity, Weakening, and
Global Cut) such that, for allc, d ∈ C,

c ` d iff c 6 d c, d ` iff c ⊥ d ` c, d iff c | d

4 Progressive Semantic Integration

In order to formalise the semantic integration of a collection of agents via the precise
mathematical construct of an IF channel, in [6] we articulated the following four steps:

1. Modelling the populated ontologies of agents by means of IF classifications.
2. Defining an IF channel—its core and infomorphisms—connecting the agents’ IF

classifications.
3. Defining an IF logic on the core of the IF channel representing the information flow

between agents.
4. Distributing the IF logic to the sum of agent IF classifications to obtain the IF theory

that describes the desired semantic interoperability.

These steps need to be understood in the context of a theoretical exercise, and hence
will hardly be implemented directly as engineering steps in actual interoperability sce-
narios. In particular, the definition of an IF channel and an IF logic on the core of this
channel representing the information flow between agents (steps 2 and 3) requires a
global view of all involved parties, which we seldom will possess in general. On the
contrary, we started from the assumption that the agents’ ontologies are not open to
other agents for inspection, and that an agent learns about the ontology of another agent
only through interaction.



4.1 The Global Ontology

The four steps above determine what we will call theglobal ontologyof two semanti-
cally integrated agentsA1 andA2. It is the distributed logic of an IF channelC connect-
ing IF classificationsA1 andA2 modelling the agents’ populated ontologiesÕ1 and
Õ2 respectively:

C

A1

f1 66mmmmmm
A2

f2hhQQQQQQ

At the core of IF channelC, typ(C) coverstyp(A1) andtyp(A2), while the ele-
ments oftok(C) connect tokens fromtok(A1) with tokens fromtok(A2). By defining
an IF logic on the core of the channel and distributing it to the sum of IF classifications
A1 + A2 we get theglobal ontologythat captures the overall semantic integration of
the scenario.

Fig. 1.Aligning ontologies through a pair of maps

For example, an IF channel for the English-French river alignment scenario of Sec-
tion 2 is shown in Figure 1. At the core of this channel the connections〈Mississippi,
Rhône〉, 〈Ohio, Saône〉, and 〈Captina, Roubion〉 link particular instances of type
river or stream together with particular instances of typefleuve or rivière in such
a way that their resulting classification into the four conceptsriver, stream, fleuve,
andrivière, determines an IF theory about how these concepts are semantically related.
This theory is given by the distributed IF logic of the natural IF logic of the core classi-
fication:DLogC(Log(C)). It includes among its constraints:

` river, rivière fleuve ` river

stream ` rivière fleuve, stream `

i.e., thatriver | rivière, fleuve 6 river, stream 6 rivière, andfleuve ⊥ stream.
Other IF channels modelling a different semantic integration are possible in principle,
although we defined this one with the particular relationship in mind linking together



big rivers flowing into the sea (Mississippi and Rhône), rivers flowing into other rivers
(Ohio and Sâone), and streams flowing into other rivers (Captina and Roubion).

In ontology coordination scenarios we cannot assume that we will be able to define
a global IF channel that connectsA1 andA2 directly, capturing thus their semantic
integration. In the channel of Figure 1, for example, it is not clear from where we
would gain the additional understanding that allowed us to link tokens in the way we
did. Nor can we assume that we ever will be able to define such a channel completely,
linking all tokens and defining an IF theory on the union of all types. Therefore, the
global IF channel is not appropriate as a mathematical model for describing the process
of ontology coordination.

4.2 The Coordinated Channel

We shall model ontology coordination with acoordinated channelinstead, an IF chan-
nel that captures how̃O1 andÕ2 are progressively coordinated, and which captures the
semantic integration achieved through interaction betweenA1 andA2. As we have de-
scribed in Section 2, ifA1 wants to explainA2 the meaning of a concept, it can do so
using an instance classified under this concept as a representation of it.

The coordinated channel is a mathematical model of this coordination that captures
thedegree of participationof an agentAi at any stage of the coordination process. This
degree is determined both, at the type and at the token level, since

– an agentAi will have attempted to explain a subset of its concepts to other agents,
and

– other agents will have shared with agentAi some of its instances, incrementing in
this way the instance set managed originally by agentAi.

This degree of participation can easily be captured with an infomorphismgi : A′
i →

Ai, for which functionsĝ i and ǧ i are the inclusionstyp(A′
i) ⊆ typ(Ai) and

tok(Ai) ⊆ tok(A′
i), respectively. The coordination is then established not between

the original IF classificationsAi, but between thesubclassificationsA′
i that result from

the interaction carried out so far:

C′

A1 A′
1g1

oo

f1 66mmmmmm
A′

2

f2hhQQQQQQ
g2

// A2

In Section 2 we argued that although agents may handle different instance sets, any
successful explanation of foreign concepts by exchanging information about instances
will need to assume thatA2 is able to identify instances ofA1 as belonging to a theo-
retically domain of discourseD common to its own instances, and that it will be able to
classify, in theory, any element ofD according to its own ontology. We also assumed
disjoint sets of concepts among agents. These assumptions ultimately determine the co-
ordinated channelC′; this is mathematically captured by an IF classificationS with no
concepts,typ(S) = ∅, the domain of discourse as its instance set,tok(S) = D, and
empty classification relation.



The coordinated IF channel that captures the semantic integration achieved by the
agents is mathematically defined by taking the category-theoreticalcolimit (see, e.g.,
[7]) C′ = colim{A′

1 ← S→ A′
2} of the diagram linking the IF subclassifications that

model each agent’s participation through the assumptions of the scenario:

C′

A1 A′
1g1

oo

f1 66mmmmmm
S

hi

oo
h2

// A′
2

f2hhQQQQQQ
g2

// A2

4.3 Partial Semantic Integration

The diagram above is a general model of the coordinated channel between to agents, and
it faithfully captures the semantic integration between them, according to the Barwise-
Seligman theory of information flow. Initially, when the agents have not yet coordinated
themselves, the IF classifications modelling the agents’ participation have no concepts
since none of them have been communicated yet, and the instance set of the core of the
coordinated channel is empty (as no instances have been shared yet):

typ(A′
i) = ∅ typ(C′) = ∅

tok(A′
i) = tok(Ai) tok(C′) = ∅

After A1 told A2 that Ohio |= river andA2 told A1 that Ohio |= rivière, A1

participates in the coordinated channel with conceptriver andA2 participates in the co-
ordinated channel with conceptrivière. FurthermoreA2 will have extended its instance
set with the shared instanceOhio, resulting in the coordinated channel of Figure 2.

Fig. 2.Partially coordinated channel

Furthermore, afterA2 told A1 that Roubion |= rivière and A1 told A2 that
Roubion |= stream, new concepts participate in the ontology coordination, and new
instances are shared, resulting in the newly coordinated channel of Figure 3.



Fig. 3.Partially coordinated channel

At each stage a new coordinated channel arises. The distributed IF logic of the
natural logic determined by the core of each new channelcaptures the semantic inte-
gration achieved so far. For instance, for this last coordinated channel the theory of
the distributed IF logicDLogC′(Log((C′))) would include among its constraints:

` rivière ` river, stream river, stream `

4.4 Complete Semantic Integration

In the optimal limit case, all concepts would be eventually communicated and all in-
stances shared, which would yield a situation of complete semantic integration in which
the IF classifications modelling the agents’ participation in the coordination would in-
clude each agent’s concepts and would have the domain of discourse as their instance
set:

typ(A′
i) = typ(Ai) typ(C′) =

⋃
i

typ(Ai)

tok(A′
i) = D tok(C′) = D

This is an ideal scenario, in which agents would have exchanged their entire IF clas-
sification (all tokens, all types, and the entire classification relation). In our example,
complete semantic integration would have been achieved with the coordinated channel
shown in Figure 4. The distributed IF logic of this channel is equivalent to the global
ontology discussed above.

Because in practice complete semantic integration will seldom be achieved (e.g.,
because it would be computationally too expensive) the ontology coordination process
will usually yield only a partial semantic integration involving a fraction of communi-
cated types and shared instances. In these cases it is important to have a faithful formal-
isation of the resulting situation, which we believe is achieved with its modelling as a
coordinated IF channel.



Fig. 4.Completely coordinated channel

5 Concluding Discussion

Channel theory emphasises that, since information is carried by particular tokens, infor-
mation flow crucially involves both types and tokens. Barwise and Seligman realised the
fundamental duality between types and tokens, which is central to all channel-theoretic
constructions. Thus, although ontology coordination is usually thought of as a process
during which concepts of separate ontologies are being aligned at the type-level, the log-
ical relationship between concepts arises when tokens are being connected by means of
an IF channel. Knowing what these connections at the token-level are is therefore fun-
damental for determining the semantic integration of ontologies at the type-level.

In this paper, we have been formalising an ontology coordination approach in which
token connection is the result of instance passing between agents. But the general for-
malisation based on channel theory presented here provides a wide view about what
we can consider to be atokenand aconnection between tokens. This allows for ac-
commodating different understandings of semantics—depending on the particularities
of the interoperability scenario—whilst retaining the core aspect that will allow coor-
dination among agents: connections through their tokens. Schorlemmer showed in [8]
how the type-token duality helps to pin down some of the reasons why ontologies ap-
pear to be insufficient in certain interoperability scenarios for which a common verified
ontology is not enough for knowledge sharing [2]. Depending on the scenario being
analysed, the role of tokens is taken either by instances, model-theoretic structures, or
even proof-theoretic derivations. In [6], for example, we showed how the coordination
of various UK and US government ministries can be derived from a partial alignment of
ministerial responsibilities, which take the role of connected tokens for that particular
scenario.

An information-theoretic analysis of ontology coordination based on channel theory
highlights the fact that a coordination process can hardly be absolute. On the contrary,
not only is it relative to the respective ontologies being coordinated, but also

1. to the way ontologies are actually used in the context of specific application do-
mains (what we have been calling the populated ontologies);



2. to the way ontologies are characterised as IF logics: the particular understanding of
semantics of the interoperability scenario is relative to our choice of types and to-
kens and its classification relation; (this is closely related to what Farrugia calls the
logical setup, and which he claims needs to be established first before any meaning
negotiation between agents can start [4];)

3. to the way ontologies are linked together via connected tokens: as discussed in
[8] reliable semantic integration is only guaranteed on connected tokens, which
nicely includes into the framework the unavoidable imperfections of most ontology
coordination processes, unless complete semantic integration is achieved.

It would be interesting, for instance, to explore the channel-theoretical notion of
induced IF logicin the ontology coordination context. This logic characterises how an
agent extends its own ontology with the understanding it has gained of other agents’
ontologiesrelative to the coordinated channel. This logic is defined by moving the dis-
tributed IF logic of the coordinated channel to its restriction to one particular agent’s IF
classification. It turns out that the resulting induced IF logic is only sound and complete
when the infomorphisms constituting the coordinated channel are surjective on tokens
(see Definition 8). Such a particular case is when we achieve complete semantic inte-
gration, but it would be desirable to find conditions for ontology coordination processes
that, without obtaining complete semantic integration, lead to coordinated channels for
which sound and complete induced IF logics exist.
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Abstract. Schema/ontology matching is a critical problem in many ap-
plication domains, such as, Semantic Web, schema/ontology integration,
data warehouses, e-commerce, catalog matching, etc. Many diverse so-
lutions to the matching problem have been proposed so far. In this pa-
per we present a taxonomy of schema-based matching techniques that
builds on the previous work on classifying schema matching approaches.
Some innovations are in introducing new criteria which distinguish be-
tween matching techniques relying on diverse semantic clues. In partic-
ular, we distinguish between heuristic and formal techniques at schema-
level; and implicit and explicit techniques at element- and structure-level.
Based on the classification proposed we overview some of the recent
schema/ontology matching systems pointing which part of the solution
space they cover.

1 Introduction

Match is a critical operator in many well-known application domains, such as, Se-
mantic Web, schema/ontology integration, data warehouses, e-commerce, XML
message mapping, catalog matching, etc. Many solutions to the matching prob-
lem include identifying terms in one information source that ”match” terms in
another information source. The applications can be viewed as graph-like struc-
tures containing terms and their inter-relationships. These might be database
schemas, taxonomies, or ontologies, for example [14], etc. Match operator takes
two graph-like structures as input and produces a mapping between the nodes
of the graphs that correspond semantically to each other as output.

Many diverse solutions to the matching problem have been proposed so far,
for example [19, 15, 8, 21, 32, 1, 17, 23, 26, 20], etc. In this paper we focus only on
schema-based solutions, e.g., matching systems exploiting only intensional infor-
mation, not instance data. Although, there is a difference between schema and
ontology matching (alignment) problems (see next section for details), we believe
that techniques developed for each of them can be of a mutual benefit, therefore
we discuss schema and ontology matching referring as to the one problem.

With the emergence and proliferation of the Semantic Web, the semantics
captured in schemas/ontologies should be also handled at different levels of
details. Therefore, there is a need in distinguishing between schema/ontology
matching techniques relying on diverse semantic clues. In this paper we present



Fig. 1. Two XML schemas

a taxonomy of schema-based matching techniques that builds on the previous
work of E. Rahm and P. Bernstein on classifying schema matching approaches
[28]. Some innovations are in introducing new criteria which distinguish between
schema/ontology matching techniques relying on diverse semantic clues. In par-
ticular, we distinguish between heuristic and formal techniques at schema-level;
and implicit and explicit techniques at element- and structure-level.

The rest of the paper is organized as follows. Section 2 provides, via an exam-
ple, the basic motivations to the schema/ontology matching problem. Section 3
introduces the classification of schema-based approaches and discusses in details
possible alternatives. Section 4 overviews some of the recent schema/ontology
matching solutions in light of the classification proposed pointing which part of
the solution space they cover. Section 5 reports some conclusions.

2 The Matching Problem

2.1 Motivating Example

To motivate the matching problem, let us use two simple XML schemas that are
shown in Figure 1 and exemplify one of the possible situations which arise, for
example, when resolving a schema integration task.

Suppose an e-commerce company A1 needs to finalize a corporate acquisi-
tion of another company A2. To complete the acquisition we have to integrate
databases of the two companies. The documents of both companies are stored
according to XML schemas A1 and A2 respectively. Numbers in boxes are the
unique identifiers of the nodes (sometimes in the following we refer to nodes as
elements). A first step in integrating the schemas is to identify candidates to
be merged or to have taxonomic relationships under an integrated schema. This
step refers to a process of schema matching. For example, the nodes with labels
Office Products in A1 and in A2 are the candidates to be merged, while the
node with label Digital Cameras in A2 should be subsumed by the node with
label Photo and Cameras in A1.



2.2 Matching: Syntactic vs. Semantic

In this paper we discuss the problem of matching schemas and ontologies from
the generic perspective i.e., we analyze information which is exploited by match-
ing systems in order to produce mappings. In this respect, ontology matching
differs substantially from schema matching in the following two (among the oth-
ers, see [25]) areas:

• Database schemas often do not provide explicit semantics for their data. Se-
mantics is usually specified explicitly at design-time, and frequently is not
becoming a part of a database specification, therefore it is not available. On-
tologies are logical systems that themselves incorporate semantics (intuitive
or formal). For example, in the case of formal semantics we can interpret
ontology definitions as a set of logical axioms.

• Ontology data models are richer (the number of primitives is higher, and
they are more complex) then schema data models. For example, OWL [30]
allows defining inverse properties, transitive properties; disjoint classes, new
classes as unions or intersections of other classes, etc.

However, ontologies can be viewed as schemas for knowledge bases. Having
defined classes and slots in the ontology, we populate the knowledge base with
instance data [25]. Thus, techniques developed for each separate problem can
be of interest to each other. On the one side, schema matching is usually per-
formed with the help of heuristic techniques trying to guess semantics encoded
in the schemas. On the other side, ontology matching systems (primarily) try
to exploit knowledge explicitly encoded in the ontologies. In real-world appli-
cations, schemas/ontologies usually have both well defined and obscure labels
(terms), and contexts they occur, therefore, solutions from both problems would
be mutually beneficial.

Apart from the information that matching systems exploit, the other im-
portant dimension of schema/ontology matching is a form of the result they
produce. Based on these criteria, following the proposal first introduced in [11],
schema/ontology matching systems can be viewed as syntactic and semantic
matching systems. Syntactic matching approaches do not analyze term mean-
ing, and thus semantics, directly. In these approaches semantic correspondences
are determined using (i) syntactic similarity measures, usually in [0,1] range, for
example, with the help of similarity coefficients [19, 10] or confidence measures
[32]; and (ii) syntax driven techniques, for instance techniques, which consider
labels as strings, etc., see [21, 19, 15]. The first key distinction of the semantic
matching approaches is that mappings are calculated between schema/ontology
elements by computing semantic relations (for example, equivalent (=) or sub-
suming elements (�,�), etc., see for details [12]). The second key distinction is
that semantic relations are determined by analyzing meaning (concepts, not la-
bels as in syntactic matching) which is codified in the elements and the structure
of schemas/ontologies. These ideas are schematically represented in Figure 2.

Let us define the matching problem in terms of graphs [11]. A mapping el-
ement is a 4-tuple < IDij , n1i, n2j, R >, i=1,...,N1; j=1,...,N2; where IDij



Fig. 2. Matching: Syntactic vs. Semantic

is a unique identifier of the given mapping element; n1i is the i-th node of
the first graph, N1 is the number of nodes in the first graph; n2j is the j-
th node of the second graph, N2 is the number of nodes in the second graph;
and R specifies a similarity relation (a coefficient in [0,1] range or a semantic
relation) holding between the nodes n1i and n2j . For instance, based on linguis-
tic and structure analysis, the similarity coefficient between nodes with labels
Photo and Cameras in A1 and Cameras and Photo in A2 in Figure 1 could be
0.67. Thus, the corresponding mapping element is < ID54, n15, n24, 0.67 >. A
mapping is a set of mapping elements. Matching: given two graphs G1 and G2,
for any node n1i ∈ G1, find a similarity relation R holding with node n2j ∈G2.

3 Classification of schema-based matching approaches

At present, there exists a line of semi-automated schema/ontology matching sys-
tems, see for instance [19, 15, 8, 21, 32, 1, 17, 23, 26, 20], etc. Good surveys are pro-
vided in [28, 31, 16]. The classification of [28] distinguishes between individual im-
plementations of match and combinations of matchers. Individual matchers com-
prise instance-based and schema-based, element- and structure-level, linguistic-
and constrained-based matching techniques. Also cardinality and auxiliary in-
formation (e.g., dictionaries, global schemas, etc.) can be taken into account.
Individual matchers can be used in different ways: directly (hybrid matchers),
see [19, 1] or combining the results of independently executed matchers (compos-
ite matchers), see for instance [15, 8, 9].

We focus only on schema-based approaches, and therefore consider only
schema/ontology information, not instance data 1. There are two levels of gran-
ularity while performing schema-based matching: element-level and structure-
level. Element-level matching techniques compute mapping elements by ana-
lyzing individual labels/concepts at nodes; structure-level techniques compute
mapping elements by analyzing also subgraphs.

With the emergence and proliferation of the Semantic Web, the semantics
captured in schemas/ontologies should be also handled at different levels of
details. Therefore, there is a need in distinguishing between schema/ontology

1 Prominent solutions of instance-based schema/ontology matching as well as possible
extensions of the instance-based part of the classification of [28] can be found in [8]
and [17] correspondingly.



matching techniques relying on diverse semantic clues. We introduce for individ-
ual matchers the following classification cretiria:

• Heuristic vs formal. Matching techniques can have either heuristic or formal
ground. The key characteristic of the heuristic techniques is that they try to
guess relations which may hold between similar labels or graph structures.
The key characteristic of the formal techniques is that they have model-
theoretic semantics which is used to justify their results.

• Implicit vs explicit. These matching techniques rely either on implicitly or ex-
plicitly codified semantic information. Implicit techniques are syntax driven
techniques: examples are techniques, which consider labels as strings, or
analyze data types, or soundex of schema/ontology elements. Explicit tech-
niques exploit the semantics of labels. These techniques are based on the
use of tools, which explicitly codify semantic information, e.g., thesauruses,
ontologies, etc.

To make the distinctions between the categories proposed more clear, we
revised a schema-based part of the classification of matching techniques by E.
Rahm and P. Bernstein [28], see Figure 3. All the innovations are marked in
bold type. Let us discuss the main alternatives (also indicating in which match-
ing systems they were exploited) according to the above classification criteria in
more detail. We omit in our further discussions heuristic element-level implicit
techniques as well as heuristic structure-level implicit constrained-based tech-
niques because they appear in a revised classification without changes in respect
to the original publication. We also renamed linguistic techniques into string-
based techniques, to discard from this category thesaurus look-up methods (they
appear in the other category) and methods that perform morphological analysis
of strings, which we view only as a preprocessing part, for example, for matching
techniques based on lexicons, etc.

3.1 Heuristic techniques

Element-level explicit techniques

• Precompiled thesaurus and domain ontologies. A precompiled thesaurus usu-
ally stores domain knowledge as entries with synonym, hypernym and other
relations. For example, in Figure 1 elements NKN in A1 and Nikon in A2
are treated by a matcher as synonyms from the thesaurus look up: syn key -
”NKN:Nikon = syn”, see, for instance [19]. In some cases domain ontologies
(notice only those, which fall into this category, with intuitive semantics)
also can be used as a source of auxiliary information, see, for example [23].

• Lexicons. The approach is to use lexicons to obtain meaning of terms used
in schemas/ontologies. For example, WordNet [24] is an electronic lexical
database for English (and other languages), where various senses (possi-
ble meanings of a word or expression) of words are put together into sets
of synonyms. Relations between schema/ontology elements can be com-
puted in terms of bindings between WordNet senses, see, for instance [12,
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Fig. 3. A revised classification of schema-based matching approaches

4]. For example, in Figure 1 a matcher may learn from WordNet (with a
prior morphological preprocessing of labels performed) that ”Camera” in
A1 is a hypernym for ”Digital Camera” in A2, and, therefore conclude
that element Digital Cameras in A2 should be subsumed by the element
Photo and Cameras in A1.

Structure-level implicit techniques

• Name similarity (paths). These matchers build long labels by concatenating
all labels at nodes in a path to a single string. For example, in Figure 1 the
node with label Cases in A1 can be codified as Sale.Consumer Electronics.
Cell Phones.Accessories.Cases, while the node with label Cases in A2 can
be codified as Consumer Electronics.Sale.Cameras and Photos.Accessor−
ies.Cases. Then string-based techniques (e.g., affix, n-gram, edit distance,
etc.) can be used by a matcher to compute similarity between the two long
strings, see, for instance [15].

Structure-level explicit techniques

• Taxonomic structure. These matchers analyze and compare positions of terms
(labels) within taxonomies. For example, they take two paths with links
between classes defined by the hierarchical relations or by slots and their
domains and ranges, compare terms and their positions along these paths,
and identify similar terms, see, for instance [26]. The intuition behind tax-
onomic structure methods is that is-a links connect terms that are al-
ready similar (being a subset or superset of each other), therefore their
neighbors may be also somehow similar. For example, in Figure 1 given



that element Digital Cameras in A2 should be subsumed by the element
Photo and Cameras in A1, a matcher would suggest FJFLM in A1 and
FujiFilm in A2 as an appropriate match.

3.2 Formal techniques

Element-level explicit techniques

• OWL properties. OWL [30] is ontology web language with clear, model-
theoretic semantics, and hence methods exploiting its constructors are for-
mal element-level methods. For instance, sameClassAs constructor explicitly
states that one class is equivalent to the other, see for a particular imple-
mentation [9]. For example, in Figure 1 one of the possible OWL encodings
could specify semantics of the element Digital Cameras in A2 as follows:
Digital Cameras = Camera � DigitalPhoto Producer. An intuitive read-
ing of the above statement is that digital camera means the same thing as a
camera, which encodes and stores images digitally. Then, a matcher would
determine that the node 7 in A2 has to be subsumed by the node 5 in A1.
Possible extensions to the given category would also exploit other OWL con-
structors: class properties (e.g., enumeration, disjointness), object properties
(inverse-of, symmetric, transitive), etc.

Structure-level explicit techniques

• Propositional satisfiability (SAT). As from [11, 4] the approach is to translate
the matching problem, namely the two graphs (trees) and mapping queries
into a propositional formula and then to check it for its validity. By a map-
ping query we mean here the pair of nodes and a possible semantic relation
between them. Notice that SAT deciders are correct and complete decision
procedures for propositional satisfiability, and therefore will exhaustively
check for all possible mappings.

• Modal SAT. As from [29] the approach is to delimit propositional SAT which
allows handling only unary predicates (e.g., classes) by admitting binary
predicates (e.g., attributes). The key idea is to enhance propositional log-
ics with modal logic (or ALC description logics) operators. Therefore, the
matching problem is translated into a modal logic formula which is further
checked for its validity using sound and complete satisfiability search proce-
dures.

4 Prototype Matchers

We now look at some recent schema-based state of the art matching systems
in light of the classification presented in Figure 3. We also indicate how sys-
tems combine individual matchers in their implementations, e.g., in a hybrid or
composite manner.



Similarity Flooding (SF). The SF [21] approach as implemented in Rondo
[22] utilizes a hybrid matching algorithm based on the ideas of similarity propa-
gation. Schemas are presented as directed labeled graphs; the algorithm manip-
ulates them in an iterative fix-point computation to produce mapping between
the nodes of the input graphs. The technique starts from string-based compar-
ison (common prefixes, suffixes tests) of the vertice’s labels to obtain an initial
mapping which is refined within the fix-point computation. The basic concept
behind the SF algorithm is the similarity spreading from similar nodes to the
adjacent neighbors through propagation coefficients. From iteration to iteration
the spreading depth and a similarity measure are increasing till the fix-point is
reached. The result of this step is a refined mapping which is further filtered to
finalize the matching process.

Artemis. Artemis (Analysis of Requirements: Tool Environment for Multiple
Information Systems) [5] was designed as a module of MOMIS mediator system
[1] for creating global views. It performs affinity-based analysis and hierarchi-
cal clustering of source schemas elements. Affinity-based analysis represents the
matching step: in a hybrid manner it calculates the name, structural and global
affinity coefficients exploiting a common thesaurus. The common thesaurus is
built with the help of ODB-Tools, WordNet or manual input. It represents a set
of intensional and extensional relationships which depict intra- and inter-schema
knowledge about classes and attributes of the input schemas. Based on global
affinity coefficients, a hierarchical clustering technique categorizes classes into
groups at different levels of affinity. For each cluster it creates a set of global at-
tributes - global class. Logical correspondence between the attributes of a global
class and source schema’s attributes is determined through a mapping table.

Cupid. Cupid [19] implements a hybrid matching algorithm comprising lin-
guistic and structural schema matching techniques, and computes similarity co-
efficients with the assistance of a precompiled thesaurus. Input schemas are en-
coded as graphs. Nodes represent schema elements and are traversed in a com-
bined bottom-up and top-down manner. Matching algorithm consists of three
phases and operates only with tree-structures to which no-tree cases are reduced.
The first phase (linguistic matching) computes linguistic similarity coefficients
between schema element names (labels) based on morphological normalization,
categorization, string-based techniques (common prefixes, suffixes tests) and a
thesaurus look-up. The second phase (structural matching) computes structural
similarity coefficients weighted by leaves which measure the similarity between
contexts in which individual schema elements occur. The third phase (mapping
generation) computes weighted similarity coefficients and generates final map-
pings by choosing pairs of schema elements with weighted similarity coefficients
which are higher then a threshold. Referring to [19], Cupid performs somewhat
better overall, then the other hybrid matchers: Dike [27] and Artemis [5].

COMA. COMA (COmbination of MAtching algorithms) [15] is a composite
schema matching tool. It provides an extensible library of matching algorithms;
a framework for combining obtained results, and a platform for the evaluation
of the effectiveness of the different matchers. Matching library is extensible,



and as from [15] it contains 6 individual matchers, 5 hybrid matches, and one
reuse-oriented matcher. Most of them implement string-based techniques (af-
fix, n-gram, edit distance, etc.) as a background idea; others share techniques
with Cupid (thesaurus look-up, etc.); and reuse-oriented is a completely novel
matcher, which tries to reuse previously obtained results for entire new schemas
or for its fragments. Schemas are internally encoded as DAGs, where elements
are the paths. This fact aims at capturing contexts in which the elements occur.
Distinct features of the COMA tool in respect to Cupid, are a more flexible
architecture and a possibility of performing iterations in the matching process.
Based on the comparative evaluations conducted in [6], COMA dominates Au-
toplex[2] and Automatch [3]; LSD [7] and GLUE [8]; SF [21], and SemInt [18]
matching tools.

QOM. QQM (Quick Ontology Mapping) system [9] adopts the idea of com-
posite matching from COMA [15] to the ontology matching domain. The ap-
proach claims that the loss of quality in matching algorithms is marginal (to a
standard baseline), however improvement in efficiency can be tremendous. This
fact allows QOM producing mappings fast, even for large-size ontologies. Some
other innovations in respect to COMA, are in the set of individual matchers
based on rules, exploiting explicitly codified knowledge in ontologies, such as in-
formation about super- and sub-concepts, super- and sub-properties, etc. Rules
are introduced referring to layers of Tim Berners-Lee’s Semantic Web ”layer
cake”. At present the system supports 17 rules. Most of the novel individual
matchers reside on the description logics (for example, rule#5 (R5): if super-
concepts are the same, the actual concepts are similar to each other, etc.) and
restrictions (for example, R15: two entities are the same if they are binded by
sameClassAs OWL property) layers. QOM also exploits a set of instance-based
techniques, this topic is beyond scope of the paper.

Anchor-PROMPT. Anchor-PROMPT [26] (an extension of PROMPT, also
formerly known as SMART) is an ontology merging and alignment tool with
a sophisticated prompt mechanism for possible matching terms. The anchor-
PROMPT is a hybrid alignment algorithm which takes as input two ontologies,
(internally represented as graphs) and a set of anchors-pairs of related terms,
which are identified with the help of string-based techniques (edit-distance test),
or defined by a user, or another matcher computing linguistic similarity, for
example [20]. Then the algorithm refines them by analyzing the paths of the
input ontologies limited by the anchors in order to determine terms frequently
appearing in similar positions on similar paths. Finally, based on the frequencies
and a user feedback, the algorithm determines matching candidates. at

S-Match. S-Match [11, 12] is a schema-based schema/ontology matching sys-
tem implementing semantic matching approach. It takes two graph-like struc-
tures (e.g., database schemas or ontologies) as input and returns semantic re-
lations between the nodes of the graphs that correspond semantically to each
other as output. Possible semantic relations are: equivalence (=), more general
(�), less general (�), mismatch (⊥), and overlapping (�). The current version of
S-Match is a rationalized re-implementation of the CTXmatch system [4] with a



Fig. 4. Characteristics of state of the art matching approaches

few added functionalities. S-Match was designed and developed as a platform for
semantic matching, namely a highly modular system with the core of computing
semantic relations where single components can be plugged, unplugged or suit-
ably customized. It is a hybrid system performing composition of element level
techniques. At present, S-Match libraries contain 13 element-level matchers, see
[13], and 2 structure-level (JSAT and SAT4J) matchers.

Notice that from the discussed systems, only S-Match returns as output
semantic relations, while all the other systems return coefficients rating match
quality in [0,1] range. Although, almost all the matching systems analyze term
meaning, for example, with the help of a thesaurus, however when they produce
a mapping, they encode it in [0,1] range, therefore loosing some information.
For example, from a similarity coefficient with value of 0.7 we can not say if the
elements it binds are more or less general. We only may conclude that they are
similar, and the probability of their equality is 70%. Therefore, only the S-Match
system can be considered as a semantic matching system, all other systems, in
this sense, are syntactic systems.

Figure 4 briefly summarizes how the matching systems cover the solution
space in terms of the proposed classification. Numbers in brackets specify how
many matchers of a particular type a system supports. For example, S-Match
supports 5 string-based heuristic element-level implicit matchers (prefix, suffix,
edit distance, n-gram, and text corpus, see [13]). Figure 4 also testifies that
schema/ontology matching research was mainly focused on heuristic techniques
so far. Formal element-level and structure-level techniques have been exploited
only by two systems: QOM [9] and S-Match [12] correspondingly.



5 Conclusions

This paper presents the taxonomy of schema-based matching approaches, which
builds on the previous work by E. Rahm and P. Bernstein on classifying schema
matching approaches. We have introduced new criteria which distinguish be-
tween schema/ontology matching techniques relying on diverse semantic clues.
In particular, we distinguish between heuristic and formal techniques at schema-
level; and implicit and explicit techniques at element- and structure-level. We
reviewed some of the recent schema/ontology matchers in light of the classifi-
cation proposed pointing which part of the solution space they cover. Analysis
of state of the art systems discussed has shown, that most of them exploit only
heuristic techniques, and only a few utilize formal techniques. However, the cat-
egory of formal techniques was identified only recently as a part of the solution
space; its methods provide sound and complete results, and, hence it represents
a wide area for the future investigations.
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Abstract. This paper introduces a human-agent interaction framework
that allows human and computational mechanisms to interact in a seam-
less manner to collaboratively perform problem solving tasks in the Se-
mantic Web. The framework is based on a combination of services sup-
ported by intermediate domain ontologies and flexible mapping mecha-
nisms that map agent and human internal representations and external
communication protocols. The framework is based on a solid conceptual
foundation and can be extended to also incorporate other service-based
computational mechanisms such as web services. The central focus of
the framework is to encourage contribution by anyone or anything that
might possess useful information, knowledge or expertise for the success-
ful completion of collaborative problem solving tasks. Yet, the problem
solving participants are not required to go through a rigorous ontologi-
cal commitment or have a common communication protocol in order to
collaborate.

Key words:Human-Agent Interaction, Semantic Interoperability, Ontology
Mapping

1 Introduction

Some researchers have recognized the need for interaction between Semantic
Web agents and end-users and are proposing novel and unique approaches to
allow human users to interact with semantically annotated web resources. For
example, the CS AKTiveSpace system [1] allows users to “explore” information
about computer science research in the UK. The system is very sophisticated,
yet very elegant in the way it visually presents information to users by allowing
them to navigate pages annotated with about 10 million RDF triplets.

Another area of potential collaboration between humans and computational
mechanisms, is in the creation of the Semantic Web itself. A good example of this



is an approach proposed by the Mangrove system [2]. This system deals directly
with the problem of populating the Semantic Web with useful ontology-based
annotations by non-technical people. The approach is interesting because not
only does it facilitate annotation of HTML pages by “ordinary” people, but it
also allows the people to immediately benefit from the annotations. However, the
system doesn’t go far enough to promote a post-annotation, two-way interaction
mechanism in which both humans and computational mechanisms such as agents
collaborate in problem solving efforts. This paper proposes a framework that
addresses this particular issue by creating intermediate ontologies on the fly
that bridge the gap between human and agent internal representations.

The remainder of this paper is organized as follows. The next section de-
scribes the conceptual and philosophical motivation for making possible knowl-
edge sharing between humans and computational mechanism. Section 3 describes
the proposed framework for allowing human-agent interoperability in the Seman-
tic Web. Section 4 illustrates the most important parts of the framework through
a simple example. Section 5 presents some concluding remarks.

2 Knowledge Sharing Between Humans and Machines

Knowledge does not exist in an isolated form. It exists in an Economy of Knowl-
edge3. In early work on so-called expert systems [4], it was noted that knowledge
was not something that a particular individual had in a closed system, but in-
stead existed in a distributed manner among many individuals. The task of a
so-called “expert” was not only to retrieve pre-stored internal representations of
knowledge, but also to collaborate with other experts to create that knowledge
through practice. This paper expands this view to include other computational
mechanisms such as software agents and web services4 in the list of experts. In
addition, it proposes that by expanding this view, not only can people and ma-
chines collaborate in the context of explicit knowledge, but also to some degree
in the context of tacit knowledge.

According to Paul Romer [3] knowledge has become the third factor of pro-
duction in leading world economies, with labor and capital being the first two5.
If knowledge is a commodity, then it really doesn’t matter whether the producer
or consumer is a person or a machine. It could be refined, stored, retrieved,
shipped or even recycled by either a person or a machine. As in the industrial
revolution when machines played an important role in changing the balance of
power of the World’s economies, machines once more can play an important role
as they provide an efficient way to process knowledge for the benefit of human
kind. In this analogy, the Web currently represents the pre-industrial revolution

3 According to Paul Romer [3] knowledge has become the third factor of production
in leading world economies, with labor and capital being the first two.

4 Although the readily could support web services because the framework is built on
web service technology, we will focus on human and agent interoperability.

5 For the past two hundred years labor and capital were recognized by neo-classical
economists as the only two factors of production



phase when people were the central producers and consumers of knowledge with
all the limitations that that entails. The Semantic Web, however, promises to
bring us full throttle into the “Knowledge Revolution”, or the equivalent of the
Industrial Revolution, when machines make the production of knowledge as a
commodity more efficient for people, institutions and governments.

So why is this all so important? Because the ultimate goal of the Semantic
Web is to allow machines to find, share, combine and understand knowledge
in the Web way, i.e. without central authority, with few basic rules, in a scal-
able, adaptable, extensible manner capable of supporting both explicit and tacit
knowledge [5, 6].

Nevertheless, to truly take advantage of tacit knowledge available to humans
and the information in the Web, in combination with the explicit knowledge in
the Semantic Web, available to machines in the form of ontologically annotated
resources, we must devise mechanisms that allow humans to collaborate with
computational mechanisms in a symbiotic partnership.

3 Human-Agent Interoperability Framework

It is obvious from the discussion that there needs to be a transparent framework
that allows interaction between agents and agents and between humans and
agents. In order for the framework to be transparent we impose two constraints:
The framework should not require a strong ontological commitment nor should it
require a strong pre-agreement between agent and agents or agents and humans
on the communication format.

By “no strong ontological commitment” we mean that the agents and hu-
mans do not need to agree on a shared ontology and could have their own
internal representation (e.g., a local ontology), which does not need to be the
same shared representation. However, they need to be able to readily map their
internal representations to a mediating ontology. What makes this a weak onto-
logical commitment, as opposed to a strong one, is that the agents or humans
do not need to know a priori what the mediating representation (e.g., the global
ontology) is.

By “no pre-agreement on communication format” we mean that both the
agents and the humans do not need to compose messages in a way that is not
natural to the way they do things already. However, in order for this to be
possible there needs to be a mechanism that translates the messages between
agents and agents and humans an agents in a transparent manner by using the
mediating ontology during an initialization phase to understand their message
format.

Fulfilling these two requirements would allow for agent-agent and human-
agent interoperability on the fly. Here we not only attempt to allow agent-agent
interoperability in that manner, but also human-agent interoperability, which is
also necessary to bring about the Berners-Lee[7] original vision of the Semantic
Web. We do not claim that the framework presented in this paper meets these
two requirements in full, but that it does it well within its limitations.



One limitation of this framework is that it only allows for interoperability
of humans with computational mechanisms. In other words, the computational
mechanisms such as agents are the target of the interaction as opposed to direct
interaction of humans with the semantically annotated pages on the Semantic
Web, which is the approach of Shadbolt et al [1] and McDowell et al [2] in the
systems we described earlier. Interaction between humans and Semantic Web
based computational mechanisms, however, is very important and more natural
than direct interaction of humans with semantically annotated pages. This is
because the Semantic Web is originally intended for computational mechanisms
and not for humans. On the other hand, if humans can interact more readily
with those computational mechanisms, it should be possible for them to performs
tasks such as mining the web for tacit or explicit knowledge in the form of specific
answers to questions or solutions to real-world problems as opposed to finding
information that can be used to obtain that knowledge as is the case of today’s
Web. For instance, instead of finding multiple semantically annotated web sites
where one can book a flight, buy a book or configure and buy a computer,
through a “Semantic Web Explorer” such as the CS AKTiveSpace system, it
should be possible instead for users to interact with agents that can find those
sites and then perform those transactions directly on behalf of and through
interaction with the human user.

The framework described in this section meets these challenges head on and
consists of four main components: 1) a directory service that allows seamless reg-
istration and search of human and agents, 2) a message mapping infrastructure
that translates between internal representations of both agents and humans, 3)
a communication service that handles agent-agent and agent-human communi-
cation, and 4) a trust and security infrastructure in which the agent-agent and
user-agent interactions takes place.

3.1 Directory Services

The framework adapts the matchmaking algorithm based on OWL-S6 with
UDDI as proposed by Paolucci et al [9], to allow registration and search of
services provided not only by web services, but also to include services pro-
vided by agents and human users. However, since this architecture is fairly well-
understood on the context of web services, we will focus here on how to discover,
register and search services provided by human users and agents. For instance,
an agent whose task is to shop for products on the Internet can be registered
in the directory services and advertise that it is a shopping agent. A user who
interacts with the agent to buy a product, say a PC, is registered temporarily
in the directory as one who can disambiguate the request should the agent find
them ambiguous.

To allow agents and human users to interoperate on the fly with other agents
or human users, they first need to be registered in the UDDI directory. The
process is described as follows.

6 OWL-S evolved from DAML-S and is now the basis for SWSL, or the Semantic Web
Services Language[8].



Agent Registration: Al-Muhammed [10] presents an agent interoperation
method that does not require a shared ontology or pre-agreed message format
to allow communication between agents. This approach consists of defining local
ontologies for the agent based on an extended data extraction methodology that
constructs the local ontology from clues provided in the agent code and the code
comments. This methodology has worked fairly well in previous efforts to extract
data from structured information sources [11, 12] and to dynamically construct
ontologies from tables [13]. After the local ontology is constructed for each agent,
the task of making agents interoperable is then simplified to translating the local
ontologies to a domain-specific global ontology.

Conceptually, the approach of building local ontologies from agent code works
because agent code can also be considered to be a structured information source
and is treated in a similar way to other structured information sources such as
tables or lists. This approach has its limitations since it requires access to the
agent’s code, which is not always available. It also assumes that the code is well
formed, documented and written with meaningful names for class names, meth-
ods and variables, which is not always the case either. Nevertheless, experiments
showed that, if the assumptions hold true, this approach is viable. We use this
approach to first extract the agent’s ontology. Then we use the agent’s ontology
to discover the services and map them to OWL-S. Once the agent’s ontology and
the agent’s services have been discovered they are registered in the UDDI direc-
tory for other service requesters to see, including human users. This approach is
an extension of that developed by Al-Muhammed [10], but in his approach no
central service directory is proposed.

Rather than requiring agents to share ontologies, we provide our framework
with automated mapping to agent-independent, domain-specific ontologies such
as those readily available in the web in the form of DAML, DAML+OIL or
OWL. To accomplish this, we utilize the same mapping techniques described by
Al-Muhammed [10] to map the agent’s services to OWL-S and make them avail-
able through the UDDI directory in a similar way as that described by Paolucci
[9] for web services. When an agent makes a request in its native communication
language, for instance a Java method call, it is translated using the particular
domain ontology, say one written in DAML, and then a service matching the
request is found using OWL-S or SWSL service descriptions in the UDDI direc-
tory. If the service is that of another agent, then the request is translated to its
local ontology and a response is sent back to the requesting agent following the
same translation process.

In order to generate local ontologies for the agents, an Agent Ontology Ex-

traction Engine uses pre-configured recognizers modeled after data frames [14],
which are snippets of knowledge as to how to recognize instances of specific con-
cepts in an ontology. This process is illustrated in Figure 1. This agent ontology
includes the names of concepts the agent uses such as class name, parameter
names, variable names and the data types of the concepts. To compensate for
not having a shared ontology, the framework maps the the agent ontologies of all



Fig. 1. Agent registration using an intermediate domain ontology and general-purpose
concept recognizers.

registered agents to one of the various domain ontologies the framework main-
tains7. This process is described further in Section 3.2.

User Registration: User registration can occur in two different ways. A user
might choose to enter information in the UDDI directory and following the OWL-
S format to also advertise the basic services provided. Of course this might be
a bit unrealistic for most users including experienced ones. A second way is to
temporarily register user when she sends a service request that might require
interaction with the service provider. We will go in more detail on this process
in a later example.

3.2 Ontology Mapping Services

The domain ontologies we propose in our framework consist of two components:
a conceptual model of the domain, which describes the domain in terms of con-
cepts, relationships, constraints and axioms, and recognizers8 that currently are
based on regular expressions9 to help us recognize concepts, data formats and
units of measure from the agent’s code. We have experimented with this type of
recognizers using various domains with very promising results [12, 15, 16].

7 We emphasize that there is a major difference between our approach and a shared
ontology approach, because an agent’s developer needs to know nothing about any
other agent’s ontology, nor do they need to know anything about the domain ontol-
ogy. It is the ontology mapper that does the work.

8 Recognizers are currently modeled after Data Frames [14] which original purpose
is to allow the extraction of concept instances found in structured or unstructured
content.

9 Although data frames are currently based on regular expressions there is ongoing
research to make them smarter by incorporating other recognition techniques such
as decision trees, neural networks and even latent semantic indexing.



Fig. 2. Message registration and user-agent interaction.

Domain ontologies can either be manually constructed based on ontology
engineering techniques [17, 18] or on automatic ontology generation techniques
being developed by the authors [13, 19].

Agent Ontology Mapping: As Figure 1 illustrates, the Agent Ontology Ex-

traction Engine parses the agent code, finds its services, and expresses them in
an agent-independent way, as proposed by Al-Muhammed [10], in the green page
corresponding to the agent.

The Ontology Mapper then uses the domain ontologies to translate inter-
nal representations of both agents and users into local representations. It uses
recognizers to handle the mapping between agent internal representations and
human generated messages. In this framework it is not required that all agents
and messages be described in terms of the domain ontology, but instead depend
on the recognizers to conciliate the differences between their representations by
recognizing concept equivalences and instances. Concept equivalences deal with
equivalent concepts in different ontologies, in this case the domain-specific ontol-
ogy and the agent-specific ontology. Concept instances are related to information
found in messages that can be thought of as instances of a particular concept in
the domain specific ontology.

User Message Ontology Mapping: When a user sends a message and the
framework has identified a domain for the message, an appropriate domain ontol-



ogy from the Global Ontology Repository is used to allow the Message Ontology

Mapper to employ recognizers associated with the particular domain ontology
to establish message ontology mappings. This results in several mappings of the
message to the ontology to occur and be placed in the Message Ontology Map-

pings. Thus, both the user messages and the agent services are described in terms
of the intermediate domain ontology.

Once the message is parsed and the mappings are placed in the Message

Ontology Mappings repository, two things need to happen: 1) the Message On-

tology Mappings are placed in the User Ontology Mappings repository in the
corresponding User Green pages, and 2) the Message Ontology Mappings are
transferred to the Service Request Generator which generates a service request
for the UDDI registry as shown in Figure 2.

3.3 Communication Services

Rather than having agents deal directly with incoming messages, our frame-
work provides for automatic mapping of incoming messages, either agent or user
generated, to an appropriate service in the UDDI registry. Then, a Message

Translator makes a mapping between the service and incoming messages by 1)
parsing a message and identifying its type and its input and output parameters,
and 2) matching the type of the input and output parameters of the message
with those in a service provided by an agent or user.

User-agent communication is not much unlike agent-agent communication.
The main difference is that there is one more formating step necessary so that
human users can generate and reply to agent requests. Figure 2 illustrates this
kind of user-agent interaction.

If a user sends a message, it is first parsed and mapped to the appropriate
domain ontology and stored in the User Ontology Mappings as described in
Section 3.2. Then the message is translated and an appropriate agent which
can handle the request, is identified through the UDDI register. The message
is then sent to the agent, which processes the message with the appropriate
service. If the agent needs additional information from the user, the agent then
composes a message and sends it to the message translator, which translates it
and then converts it into a human-readable form using the Message Handler ’s
Form Generator10. A form is then presented to the user, who takes the necessary
action and sends it back to the Message Handler. The Message Handler then
converts the form again into a message, which is translated by the Message

Translator and sent back to the original agent which made the request.

10 At the BYU Data Extraction Group [20] with which the authors are affiliated, we
have experimented with ontology-driven forms with much success [12, 21, 22]. Here
we plan to use the results of that research to enable the interaction of humans with
the agents through dynamically generated forms.



3.4 Trust and Security Services

There are many trust and security issues that come to mind in regards to agent-
agent and human-agent interactions. These issues deal with network security,
message content, authentication and authorization. These issues are very com-
mon in any distributed system, however, what makes them unique in this frame-
work of agent and human interactions is that there is no predetermined com-
munication between a server and a client because this framework proposes a
highly distributed architecture with no pre-arranged relationships between ser-
vice providers and requesters. What is needed, therefore, is a trust and security
infrastructure that can be customized to this type of distributed architecture.

There are at least three systems that come to mind that are originally in-
tended for supporting distributed agent interactions in the Semantic Web. The
first and most favored by the authors is the one proposed by Gavriloaie et al
[23], because it does not require registration of the agents or the users in order
to interact and build trust. In addition, it is based on declarative policies which
can be easily maintained as an additional service in the UDDI registry.

The second approach is proposed by Kagal et al [24] and deals with annotat-
ing distributed Semantic Web sources with policies. Although, this could work
with Semantic Web pages and even agents, it would be difficult to maintain for
human users. Yet, the third approach is based on Semantic Web languages for
policy representation and reasoning as described by Tonti et al [25]. Although
these policy based approaches could in theory work with the UDDI registry, they
are not flexible enough to allow users and agents to develop the policies on the
fly as is the case of the approach proposed by Gavriloaie et al [23].

Although, we identify trust and security services as service necessary for our
framework, we have yet to do much work in this area. We leave these issues open
for future work as there still remains much to be studied and done to understand
this area further.

4 Experimental Results

In this section we illustrate the four services described in sections 3.1, 3.2 and
3.3, but not 3.4, since it not in the main scope of this paper.

We have experimented with translation of agent requests and agent-to-agent
service matching. We have also performed experiments in which we have provided
simple interfaces for human users to interact with agents in collaborative tasks.
Because of space limitation, here we describe only one of these experiments, a
computer shopping application, and the results briefly.

First, we constructed a global ontology manually11 from 8 Web sites (ama-

zon.com, cdw.com, dell.com, half.ebay.com, gateway.com, plasmakings,com, price.com

and ubid.com). To construct this mediating ontology, we collected concepts for

11 Eventually, we will use results from our semi-automated ontology generation ap-
proach reported in [13]



each part/attribute of a computer, the units of measurement, and the data for-
mats. For each concept, we then created a recognizer for the concept using data
frames. In addition, we also created recognizers for each unit of measurement
found in each of the 8 sites.

Based on the forms found in each of the Web sites, we manually identified
interesting services generally common in the Web sites through input forms. We
then, for each site, implemented those services in a seller agent (one per site)
generating service signatures by determining service names, input parameters
and return types based on information extracted from the forms in the site. For
instance, to determine data type for a particular form, we chose two possible
types: double if the allowable input contains a decimal point and String oth-
erwise. Service names were assigned by choosing the form label as the name
for the service for each of the Web sites. We then registered the services in the
UDDI directory. We also implemented a buyer agent to interact with the seller
agent. In turn, the user can either interact directly with the buyer, or the service
agent by interacting with forms associated with each agent to request or provide
information.

The bulk of our current experiments include communication between the
buyer agent and the seller agent. The buyer agent communicates with the seller
by making requests indirectly through the matchmaking system reported in [10].
To evaluate the performance in matching requests12, we chose 9 test sites (dif-
ferent from the 8 sites we used to build the global ontology), one for a buyer
agent and the rest for the seller agents. We measured the system performance
in mapping concepts, units of measurement, and data formats used by agents to
the global ontology. The agents’ code included 104 concepts, which the system
needed to map to the global concepts. The system was successful in generating
94 mapping pairs of the form (Local, Global), of which 91 were correct, yielding
(91/104) or 88% recall and (91/94) or 97% precision. The units of measure-
ment, in the agents’ code, that the system needed to recognize were curren-
cies, processor/hard-drive speed units, and memory/hard-disk capacity units.
The currency types in the 9 test sites were US$, GBP (Great Britain Pound),
and EUR (Euro). There were 9 currency instances that the system needed to
recognize. The system recognized 9, all of which were correct. The number of
processor/hard-drive speed units and memory/hard-disk capacity units was 23.
The system recognized 25, of which 23 were correctly associated with their global
counterparts. Altogether there were 32 unit instances; the system recognized 34,
of which 32 were correct, yielding 100% recall and 94% precision.

These results demonstrate that it is possible to create agents with local on-
tologies that can communicate with each other by translating service requests
via a mediating (global) ontology. It also demonstrates that users can interact
with agents to perform simple tasks collaborative such as the one described in
this experiment. Although, we have yet to perform more sophisticated experi-
ments in cross-domain tasks such as the one described by Berners-Lee [26], this

12 Although we used only agent generated requests in the experiment, we found that
user generated requests are not much different



experiment demonstrates that our approach can help exploit the distributed and
ad-hoc nature of the Semantic Web by allowing ontologists to develop decentral-
ized Semantic Web ontologies, developers to develop domain-independent service
agents and users to communicate and guide agents to collaboratively accomplish
complex tasks.

This experiment also highlights some of the limitations of our approach.
Mainly, our approach works well if the agents expose code that can be mapped to
an ontology via our concept-to-instance mapping mechanism. In our experiment,
we generated the code based on the Web site forms, thus the code was available to
us. However, it might be unreasonable to expect all developers to make their code
available for scrutinity. Even if the source code was available, it is not guaranteed
that the mapping from its local ontology to the global ontology might occur
smoothly, especially if the agent is automatically generated or poorly coded.

5 Concluding Remarks

We have described a framework for agent-agent and human-agent interaction in
the Semantic Web. The most interesting and unique contribution of the paper is
that no-matter what or who the problem solving participants are, they are not
required to go through a rigorous ontological commitment or have a common
communication protocol in order to collaborate. We perceive this to be the main
problem that overshadows the successful proliferation of the Semantic Web and
have tackled it head on. Although, there is still much work to be done to expand
the vision of this framework beyond its current form, we are confident that it will
make it possible for “ordinary”, non-technical people to reap the full benefits of
the Semantic Web to come.
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