Similarity-based ontology alignment in OWL-Lite
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Abstract.  Interoperability of heterogeneous systems on the Wel2  Alignment methods

will be admittedly achieved through an agreement between the un-

derlying ontologies. However, the richer the ontology descriptionThere has been important background work that can be used for on-
language, the more complex the agreement process, and hence tidogy alignment: in discrete mathematics for matching graphs and

more sophisticated the required tools. Among current ontology aligntrees [7, 11], in databases for reconciling and merging schemas [12],
ment paradigms, similarity-based approaches are both powerful arid machine learning for clustering compound objects described in a

flexible enough for aligning ontologies expressed in languages likeestricted FOL [1].

OWL. We define a universal measure for comparing the entities of Basically, aligning amounts at defining a distance between entities

two ontologies that is based on a simple and homogeneous comp&which can be as reduced as an equality predicate) and computing the
ison principle: Similarity depends on the type of entity and involvesbest match between ontologies, i.e., the one that minimizes the total
all the features that make its definition (such as superclasses, propelistance (or maximizes a similarity measure). But there are many

ties, instances, etc.). One-to-many relationships and circularity in erdifferent ways to compute such a distance. Roughly speaking, they

tity descriptions constitute the key difficulties in this context: Thesecan be classified as (this complements the taxonomy provided in [12]

are dealt with through local matching of entity sets and iterative comand only considers features found in actual systems):

putation of recursively dependent similarities, respectively.
terminological (T) comparing the labels of the entitiestring-

based (TS)oes the terminological matching through string struc-
1 The ontology alignment problem ture dissimilarity (e.g., edit distancefgrminological with lexi-
cons (TL) does the terminological matching modulo the relation-

Ontologies are seen as the solution to data heterogeneity on the web.ships found in a lexicon (i.e., considering synonyms as equivalent
However, the available ontologies could themselves introduce het- and hyponyms as subsumed);
erogeneity: given two ontologies, the same entity can be given difinternal structure comparison () comparing the internal structure
ferentnames or simply be defined in different ways, whereas both on- of entities (e.g., the value range or cardinality of their attributes);
tologies may express the same knowledge but in different languagegxternal structure comparison (S) comparing the relations of the

Semantic interoperability can be grounded in ontology reconcili-  entities with other entitiesaxonomical structure (ST) compar-
ation. The underlying problem, which we call the “ontology align-  ing the position of the entities within a taxononexternal struc-
ment” problem, can be described as follows: given two ontologies ture comparison with cycles (SC)an external structure compar-
each describing a set of discrete entities (which can be classes, prop-ison robust to cycles;
erties, predicates, etc.), find the relationships (e.g., equivalence @xtensional comparison (E)comparing the known extension of en-
subsumption) that hold between these entities. Alignment results can tities, i.e. the set of other entities that are attached to them (in gen-
further support visualization of correspondences, transformation of eral instances of classes):
one source into another or formulation of bridge axioms between theemantic comparison (M) comparing the interpretations (or more
ontologies. An overview of alignment methods is presented in §2. exactly the models) of the entities.

We focus on automatic and autonomous ontology alignment, al-
though more interactive scenarios may be built on top of the proposed Some contributions are listed in Table 1, we only provide some
technique (e.g., complete a partial alignment or use the result as salient points for each of them: [3] matches conceptual graphs using
suggestion to the user). It will be also assumed that the ontologieterminological linguistic techniques and comparing superclasses and
are described within the same knowledge representation languagsubclasses. [13] computes the dissimilarity between two taxonomies
OWL-Lite (83.1). The language is based on various features: classds/ comparing for each class the labels of their superclasses and sub-
and subsumption, properties and type constraints, etc. Instead of uslasses. FCA-Merge [14] uses formal concept analysis techniques to
ing the external textual form, we define a dedicated typed graph repnerge two ontologies sharing the same set of instances while prop-
resentation of the language that concentrates the necessary inforneties of classes are ignored. Anchor-Prompt [10] uses a bounded
tion for computing the similarity between OWL entities (83.2). path comparison algorithm with the originality that anchor points can

This paper defines a similarity measure that encompasses ale provided by the users as a partial alignment. Cupid [8] is a first
OWL-Lite features (84.1) while overcoming key alignment prob- approach combining many of the other techniques. It aligns acyclic
lems such as collection comparison (84.2) and circularities (84.3)structures taking into account terminology and data types (internal
Our approach is based on previous work on object-based knowledgaructure) and giving more importance to leaves. [9] creates a graph
representation similarity [15] which is here adapted to the alignmentvhose nodes are candidate aligned pairs and arcs are shared prop-
within current web languages. The computed measure is then usesties. Arcs are weighted by their relevance to nodes and similarity
for generating an actual alignment (85). values are propagated through this graph in a search for a fixed point.



T-tree [5] infers dependencies between classes (bridges) of diffee can restrict the number of objects in a particular relation

ent ontologies sharing the same set of instances based only on thewith another one through the use of cardinality constraints

“extension” of classes. The algorithm of [6] uses a complete prover (owl:minCardinality and owl:maxCardinality ). In OWL-Lite,

to decide subsumption or equivalence between classes given initial these constraints can only take values 0, 1, or infinite.

equivalence of some classes and analysis of the relationships in thﬁ]. . . . .
. . is is enough for expressing complex class expressions as those in

taxonomy. In addition, a number of other systems use machine Iearrgﬁe UML diaaram of Eiqure 1.

ing techniques for finding class similarity from instances [4]. 9 9 ’

spouse
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Table 1. Various contributions to alignment at a glance.

Figure 1. Classes of two ontologies drawn as UML class diagrams.

Despite the variety of alignment techniques used, most of the
above methods cover only subsets of the ontology definitions and
are not robust enough to cycles in definitions, e.g., the iterative com- owL makes use of external data types. In particular it relies on
putation in [9] need not to converge. Our goal is to design a measurg ML Schema datatypes.
that integrates all aspects of OWL-Lite while successfully dealing

with cyclic definitions. 3.2 Representation

When it comes to comparing descriptions that encode relational in-
formation about the represented entities, as OWL does, the textual
To that end, we designed a representation for OWL-Lite ontologiedorm may easily prove much too rigid. Conversely, the graphic rep-
(83.1) that emphasizes entities and their relationships (§3.2). resentation allowed by the RDF syntax is too flexible as it provides
many different ways to express the same constraint and does not pro-
vide typing information without traversing the graph. Thus, a corre-
3.1 The web ontology language OWL sponding but much more explicit graph-based syntax is used here.
OWL [2] is a language for expressing ontologies on the web. Duel Ne OL-graphs, as we call them, contain the following categqries of
to space restrictions, we only present here the ontology constructof0des: class(), object 0), relation (®), property (°), property in-
proposed by the language (the reader can find elsewhere more iftance {1), datatype D), datavalue (), property restriction labels
formation on their semantics). OWL can be thought of as a descriptl)- OL-graph edges model various relationships:

tion Iog_ic embedded in a frame-like syntax. It comes in three fla_vors; rdfs:subClassOf  between two classes or two propertisd;(
OWL-Lite, OWL-DL, and OWL-Full. We concentrate on OWL-Lite o rype  (Z) between objects and classes, property instances and
which is sufficient for many purposes while creating various difficul-  properties, values and datatypes;

3 Ontology representation

ties for alignment algorithms. _ o e Abetween classes and properties, objects and property instances;
OWL-Lite is an extension of RDF which allows the definition of ¢ (:Restriction (R) expressing the restriction on a property in

individuals as class instances and the characterization of inter-class g ¢|ass:

relations (like in Figure 1). Additionally, OWL-Lite: e valuation {/) of a property in an individual

e uses RDF Schema keywordsf§:subClassOf  , rdfs:Property In the remainder relation symbols are used as set-valued functions
rdfs:subPropertyOf , rdfsrange  , rdfs:domain ) for defining  (F(z) = {z;Jy; (x,y) € F}). Additionally, each node is identified
taxonomies of classes and properties and restricting the range A : CUO U RU PU D U A — URIRef) by a URI reference
properties; and can be attached annotations.

e allows the definition of a clasayl:Class ) as more specific or The graph structure makes relationships between language el-
equivalent to the intersection of other classes; ements more explicit, e.g., if a class refers to ¢ via a

e allows the assertion of equalityoWl:sameAs ) or difference  owlallvaluesFrom restriction, a path between the corresponding
(owl:differentFrom ) between two individuals; nodes in the OL-graph will occur. OL-graphs record further infor-

e characterizes properties as inverseowl{nverseOf ), mation that can support comparison, e.g., descriptive knowledge in-
transitive Owl: TransitiveProperty ) or symmetric  herited from nodes of the same or related categories. Finally, to
(owl:SymmetricProperty ); provide the most complete basis for comparison, one may wish

e can restrict the range of a property in a class to be another clage bring knowledge encoded in relation types to the object level.
(owl:allvaluesFrom ) or assert that some objects of a particular This could be done by adding edges between objects that are re-
class must be in the propertyn(:somevaluesFrom ). verse, symmetric or transitive for an existing edge or a pair of



edges. Relation types can be handled by saturation of the graph an anchor pair of a particular computation may be a contributor in
in a lazy way: forowl:TransitiveProperty by adding transitiv-  another one with a specific measure used in each case. However, for
ity arcs; forowl:SymmetricProperty by adding symmetric arcs; for homogeneity reasons, we require a particular node pair to always be
owlinverseOf by adding the reverse arcs (both in generic and in-assigned the same similarity value.

dividual descriptions); fobwl:FunctionnalProperty by adding a Finally, for computational reasons that will be made clear later on,

cardinality constraintywl:InverseFunctionnalProperty isnotac- alinear (weighted) combination for all similarity functions has been

counted for at that stage. chosen. It is widely accepted that weights are useful in such cases to
control the contribution of each factorFormally, given a category

ECeilocomotiony — 77090 > X its similarity measuréimx : X2 — [0, 1] is as follows:

D='‘Person’

domain Simx (z,2') = Z T MSimy (F(x), F(z'))
FEN(X)

where /(X)) is the set of all relationships in whicN participates
(see §3.2). The weights; are normalized, i.3" . \(x) 77 = 1
(see 84.3). For instance, for two classes :

ID="model’

card=[1,1] /'S

¢ card=[1,1]

string Sime (e, ') = nf simr(Mc), A(c'))
) ot ~ + 7 MSimo(T(c), T'(<))
+ 7§ MSima(S(c), 8'(c))
+ TAM Simp(Ac), A'(<))

Fi 2. The OL- h of th d set of cl fi Fi 1. .
1gure ¢ DL-graph ofthe second set ot classes from Figure The set functions\/ Simy, where the category” depends on the

relationshipF, are presented in 84.2. Thus, the similarityroit
andperson is:
To sum up, a hode characterization is mostly spread over its adja-

. _ C . , s y s
cent edges. Thus, since each link of a given category connects qwgime (Flat , Person ) = ”é simp,(flat, person’ )
nodes of precisely defined categories, each node description may be + maq: M Simp ({rooms }, {locomotion  })
seen as a fixed collection of homogeneous sets of links. + 7%o M Simp({address }, {name, salary })

c C H
4 Similarity of OWL entities wherew_Adt andr, are the cqmponents ofq assigned to_data type
and object property parts &fimc (Flat , Person ), respectively (no
Building on the idea of regularity in node characterizations within ar% meansF contributors are ignored). Table 2 illustrates the set of
OL-graph, we establish a family of similarity measures (84.1), onesimilarities in our model.
per node category, whose mutual dependencies follow the structure
. . . unct. Node Factor Measure
of the graph which in turn reflects the OWL grammar. Processing Simg

N . ; > : o€ O (o) simy,
of node/link sets (84.2) and resolution of recursive dependencies in__ ac A (o,a) €A MSima
similarity definition (84.3) are key elements of our model. SimaacA 2 g g” EZ 3 =1 ijgﬁno
Vr(a Iv) ceu JWSi’rc?j’Lv .
Sim veV value tera type dependent
imi i niti S’img ceC NG simr,
. mi arlty measure definition P ep) A o
p » (G P imp
imilari : : N _ c€C,(c,c)eS M Sim
The S|m|Iar|.ty (.Slmx)_ d.eflned between nodes of the OL-graphs fol simp €D A XML SoRema
lows two principles:(7) it depends on the categofy of node con- Simr  rER  A(T) ] simy,
sidered andis) it takes into account all the features of this category = g " fa"r:gg'” é)c)eeRR %gﬂg
(e.g., superclasses, properties). de D, ((7 ran)ge igal) ER SigLD
LT : . T'GR r,r’) e MSimpg
When similarity is sought, identically labeled edge_s of a type Simp pEP TER () ES St
F, from two compared nodes; andn. (of categoryX) induce a ceC, (pal ,¢c)eR MSimo
n € {0 1,00}, (p,card ,n) € R equality

dependency for the similaritgimx (n1,n2) on the similarity of
each pair of nodeény, ny) such thatj, € F(n;) (i = 1,2). In-
deed, the higher the similarity of every single}, n5), the higher  Taple 2. Similarity function decompositiorchrd = cardinality ~ and
Simx (n1,n2). The pair whose similarity is under assessment, here all = allvaluesFrom ).

(n1,m2), will be further referred to as thenchor pair of the com-

parison and all the pairéni,n5) as thecontributor ones (since

the similarity of (n}, n5) potentiallycontributes taSim x (n1, n2).

Although the contributor relationship could be transitively spread Although only Oth- and 1st-order contributors are included in simi-
throughout a pair of OL-graphs by inductively defining contributors larity definition, its recursive nature allows higher-order contributors
of ordern forn = 1,2, . .., we only consider the direct, or 1st-order, to impact an anchor pair similarity as welln other terms, we let

contributors and Oth-order ones, i.e., those lying withinand n o - - - - —

. . . While weight assignment knowingly requires non-trivial knowledge about

like their respective labels or URI references. the domain of the compared data, this drawback is attenuated here by link-
Given two nodes; andns from X, Simx (n1, n2) is a function ing weights to entire descriptive aspects instead of particular entity features.

of the similarities of the Oth- and 1st-order contributors. Moreover,? However their real contribution is inversely propositional to their order.




the similarity “current” flow, or flood as in [9], through edges linking Variable substitutions are as follows:
contributor and anchor pairs. The target similarity values ultimately

depend on the comparison of data types values, and on the way it§1 = Simc (Flat , Person ) z2 = Simc(Room Car)
results propagate throughout the graphs. Measures for data types antg = Simc (Human Person ) x4 = Simc(Flat |, Car)
values should be provided together with an abstract data type definiz,. — gy (Room Person ) z6 = Sime (Human Car )
tion, URI references can be compared by an equality predicate orby Sima( | i ) — Simp(add )
a string similarity applied to suffixes. Y1 = ormrlrooms, locomotion Y2 = OUMRAAAIESS , NAME
ys = Simp(address ,salary ) ya = Simp(surface , model )

4.2 Similarity-based matching of entity collections  Inthe following computation, datatype similarities are set to the iden-
) ) ) ) tity function whereas cardinality measure is 1 if both limits corre-
Given an anchor pair; andn» from X, and a particular link type  g5504 0.5 if only one does s ignored), 0.35 if no match, but still

F, F(ni) = Si (i = 1,2) is generally a set of nodes, hence the setyqre s inclusion, and 0 otherwise. Moreover, the following (arbi-
of contributorsS; x Sa. In order to ensure balance between dlfferenttrary) label similarity values are assumed:

factors inSimx (n1,n2), all contributor similarities are combined
into a single value, by a set similarity functidd Sim. For normal- simpr (flat ,person ) = .4 simp,(room,car ) = .5
ization reasons, alM Sim functions are averages that range over a
restricted subset of; x S2 which is chosen in a way that ensures
consistency and relevance. Therefore, it could be seen as an assign-

ment of 0/1 weights to the members©f x S». Formally, amatching  The following equations are hence composed wherehyice(S)

Pairing(S, S/) of both sets is established which {) of maximal  gimy|ates the set matching underlyifigi.e., it assigns 0/1 weights
total similarity, (i7) exclusive, and4ii) of maximal size [15]. The {5 each variable in the set:

value of M Sim¢ (S, S”) is simply the total similarity of the contrib-

utors in Pairing(S, S’), divided by the size of the larger set: x1 =.16 + .25 * choice({y1}) +.125 * choice({y2,y3})

y1 =.115 + .4 x choice({z1}) +.2 % choice({z2})

9 =.2 4 .125 * choice({ys}) y2 = .525+ .4 * choice({z1})

ys =.225 4+ .4 x choice({x1}) ya = .238 + .4 % choice({z2})

It is noteworthy that the matching at each anchor pair remains lo- ) ] o

cal, i.e., it has no impact on the global ontology alignment which is!f €ach choice could be established a priori, i.e., regardless of effec-
also a specific case of matching. In fact, matching a pair of nodedive similarity values, the result would be a directly solvable system

i.e., choosing it as an effective contributor to another one’s similarity(Since linear). As OWL-Lite ontologies typically produce non-linear
only implies that the underlying resemblances are high for the loca$yStéms, choices cannot be established beforehand. Nevertheless, the

context, but not necessarily for the entire ontology. resulting system could still be solved through an iterative process that
To illustrate M Sim, consider the example of §4.1 and take the Produces the nearest reachable fixed point of a vector function [1].
data type factor of the similarit§imc (Flat , Person ). Assume also The iteration produces a sequence of ever more precise approxima-

simp,(rooms, locomotion ) = .25  simpg(address ,name) = .7

simy (address ,salary ) =.3  simg(surface ,model ) = .35

Z(c,c’)EPairing(S,S’) SimC(Q Cl)

MSimc(S,S") = maz(|S],|S’|)

that Sim p (address , name) = 0.64 andSim p(address ,salary ) = tions of the target solu.tion vector. Initial similarity values are based
0.34 which means the best matching{igddress , name)}. Thus, only on O_—th level (_:ontnpptors. The values at step_l are then com-
puted using the similarities of the 1st-level contributors from step
M Simp({address },{name salary })=0.64/2 =0.32. (including matching re-calculations).

The process of iterative resolution always converges to a solution.
frectivel . imilariti This could be easily proved by induction on the iteration steps: the se-
4.3 Effectively computing similarities guences of values for each variable in the system are non-decreasing

It may easily happen that two pairs of nodes are eactnd bounded by 1, so they converge to a limi{ini]. Moreover,
other’s contributor, e.g.(Flat ,Person ) and (rooms , locomotion ). the iterative resolution mechanism is flexible enough to admit user-

The resulting recursive dependency Sfmc (Flat ,Person ) on provided similarity values (or dissimilgrity ass.ertions).: these are usgd
Simp(rooms , locomotion ) and vice versarequires non standard S cor_lsta_nt_values for the corresponding variable while the respective
computation means. As shown by Bisson [1], an equation systerguation is ignored.
may be composed where the target similarity values are the solutions. The following solutions for selected variables from the entire sys-
To that end, each pair of “alignable” nodes, i.e.(InR and, pos- tem corresponding to Figure 1 were found by the process in six steps:
sibly, O, is assigned a variable;, y;, andzs, respectively, that rep-
resents its similarity. An equation is composed by developing the de-
noted similarity along the guidelines of §4.1 while replacing contrib-
utor similarities by the corresponding variables. As an illustration,
considerSimc (Flat ,Person ), and assume the following weights 5  Structure alignment as similarity maximizing
for C and P categoriek

.342
.353

xr1 = 293 r3 = 566 Ty5 = .156 Y1 = .290 Y3
Xro = .288 T4 = .492 e = .370 Y2 = .642 Ya

The result of the iterative process is not an alignment on its own,
7S xS 7S 7S, 7S, ‘ 7P aP, b xR but rat_her an apprommatlon of the similarity betwe_en_ er_lt_ltles from
opposite ontologies. Nevertheless, the computed similarities suggest
4 0. 1 25 25].25 15 4 2 . : o .
possible mappings of entities, hence they can support an alignment.
3 Space limitations force the merge Bfand R categories in similarity com- Ong V\_Ia)_/ Of_ doing this consists in dSplay'ng the e”“t)’ pairs with
putation. However, the only difference is that property name and domairtheir similarity scores and/or ranks and leaving the choice of the ap-
are directly included ir5im p instead of impacting it viedim . propriate pairs up to the user of the alignment tool.




One could go a step further and attempt at defining algorithms thgtrovides an integrated similarity definition that makes those means
automate alignment extraction from similarity scores. Various strateinteract during computation. Moreover, it successfully copes with the
gies may be applied to the task depending on the properties of thenavoidable circularities that occur within ontologies.
target alignment. As a matter of fact, one can ask the alignment to Yet, this measure does not cover all syntactic con-
be complete (total) for one of the ontologies, i.e., all the entities ofstructions of OWL-Lite (e.g., owl:AlDifferent ,
that ontology must be successfully mapped on the other side. Conowl:InverseFunctionnalProperty ). We plan to integrate them as
pleteness is purposeful whenever thoroughly transcribing knowledgeell as some features of OWL-DL (e.gowl:oneOf ). Moreover,
from one ontology to another is the goal. One can also require théhorough tests of our measure must be performed to find weight
mapping to be injective and hence reversible. ranges and external similarity measures that provide satisfactory

If neither ontology needs to be completely covered by the align+esults while favoring predictable behaviour.
ment, a threshold-based filtering would allows us to retain only the Although the proposed similarity measure is not semantically jus-
most similar entity pairs. Without the injectivity constraint, the pairs tified, it exhibits valuable features such as fitting to various classes
scoring above the threshold represent a sensible alignment. In coof inter-ontology mappings. Furthermore, we would like it to be at
trast, if an injective mapping is required then some choices need tteast syntax-independent for OWL-Lite. To that end, one must ensure
be made in order to maximize the “quality” of the alignement that isthat whatever the description of two entities, if they are semantically
typically measured on the total similarity of the aligned entity pairs.equivalent, they behave identically with respect to the similarity mea-
Consequently, the alignment algorithm must optimize the global crisure. This will amount to either normalizing the graph (e.g., adding

teria rather than maximizing the local similarity at each entity pair. owl:minCardinality

constraints for eaclwl:somevalueFrom  for

To sum up, the alignment computation may seen as a less colirstance) or designing heterogeneous comparison means.

strained version of the basic set similarity functiaisSim. Indeed,
its target features are the sanfg: maximal total similarity,(i) ex-
clusivity and (zi7) maximal cardinality (in entity pairs). However,
(i) and(i4) are not mandatory, they depend on injectivity and com- [1]
pleteness requirements, respectively.

A greedy alignment algorithm could construct the correspon- 2]
dances step-wise, at each step selecting the most similar pair and
deleting its members from the table. The algorithm will then stop
whenever no pair remains whose similarity is above the threshold. [3]

The greedy strategy is not optimal: finding the global optimum
would require the computing of a square assignment (polynomial as{4]
signment algorithms are suggested in [11]). However, the ground on
which a high similarity is forgotten to the advantage of lower sim-
ilarities can be questioned and thus the greedy algorithm could b%]
preferred in some situations.

Given the results produced in the previous section, a threshold of
.5 will select only the correspondence betwesiman and Person .

There is no point in asking for a complete alignment here since]
the classes are quite different (the requirement of a maximal match
would havecar associated telat ). Concerning properties, the high- (7]
est value of the entire system that (not given here) was measured on
the pair ofname properties, as expected. More interestingly, the cho-
sen settings strongly suggest the identificationdafess to model

andage tosalary . This fact illustrates the difficulties in discriminat-

ing 1st-order contributors of an anchor pair having similar ranges. [9]

6 Conclusion

[10]
To support the alignment of ontologies in OWL-Lite, we adapted a
method that was initially designed for instance similarities in object-
based languages. The new method has the advantage of incorporat-
ing most of the descriptive features of an ontology into the alignmenty 1]
computing process: it deals successfully with external data types, in-
ternal structure of classes as given by their properties and constraint$?]
external structure of classes as given by their relationships to oth {3]
classes and the availability of individuals. Moreover, new features a
well as new datatypes can be accommodated through new categories]
of OL-graph nodes or new base similarity functions.

The resulting extensibility is a clear improvement upon other

15]
methods that take advantage only of a subset of all language features
in OWL-Lite. The proposed method not only composes linearly indi-
vidual means for assessing the similarity between entities, but it also
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