
Similarity-based ontology alignment in OWL-Lite
C0377

Abstract. Interoperability of heterogeneous systems on the Web
will be admittedly achieved through an agreement between the un-
derlying ontologies. However, the richer the ontology description
language, the more complex the agreement process, and hence the
more sophisticated the required tools. Among current ontology align-
ment paradigms, similarity-based approaches are both powerful and
flexible enough for aligning ontologies expressed in languages like
OWL. We define a universal measure for comparing the entities of
two ontologies that is based on a simple and homogeneous compar-
ison principle: Similarity depends on the type of entity and involves
all the features that make its definition (such as superclasses, proper-
ties, instances, etc.). One-to-many relationships and circularity in en-
tity descriptions constitute the key difficulties in this context: These
are dealt with through local matching of entity sets and iterative com-
putation of recursively dependent similarities, respectively.

1 The ontology alignment problem

Ontologies are seen as the solution to data heterogeneity on the web.
However, the available ontologies could themselves introduce het-
erogeneity: given two ontologies, the same entity can be given dif-
ferent names or simply be defined in different ways, whereas both on-
tologies may express the same knowledge but in different languages.

Semantic interoperability can be grounded in ontology reconcili-
ation. The underlying problem, which we call the “ontology align-
ment” problem, can be described as follows: given two ontologies
each describing a set of discrete entities (which can be classes, prop-
erties, predicates, etc.), find the relationships (e.g., equivalence or
subsumption) that hold between these entities. Alignment results can
further support visualization of correspondences, transformation of
one source into another or formulation of bridge axioms between the
ontologies. An overview of alignment methods is presented in §2.

We focus on automatic and autonomous ontology alignment, al-
though more interactive scenarios may be built on top of the proposed
technique (e.g., complete a partial alignment or use the result as a
suggestion to the user). It will be also assumed that the ontologies
are described within the same knowledge representation language:
OWL-Lite (§3.1). The language is based on various features: classes
and subsumption, properties and type constraints, etc. Instead of us-
ing the external textual form, we define a dedicated typed graph rep-
resentation of the language that concentrates the necessary informa-
tion for computing the similarity between OWL entities (§3.2).

This paper defines a similarity measure that encompasses all
OWL-Lite features (§4.1) while overcoming key alignment prob-
lems such as collection comparison (§4.2) and circularities (§4.3).
Our approach is based on previous work on object-based knowledge
representation similarity [15] which is here adapted to the alignment
within current web languages. The computed measure is then used
for generating an actual alignment (§5).

2 Alignment methods

There has been important background work that can be used for on-
tology alignment: in discrete mathematics for matching graphs and
trees [7, 11], in databases for reconciling and merging schemas [12],
in machine learning for clustering compound objects described in a
restricted FOL [1].

Basically, aligning amounts at defining a distance between entities
(which can be as reduced as an equality predicate) and computing the
best match between ontologies, i.e., the one that minimizes the total
distance (or maximizes a similarity measure). But there are many
different ways to compute such a distance. Roughly speaking, they
can be classified as (this complements the taxonomy provided in [12]
and only considers features found in actual systems):

terminological (T) comparing the labels of the entities;string-
based (TS)does the terminological matching through string struc-
ture dissimilarity (e.g., edit distance);terminological with lexi-
cons (TL) does the terminological matching modulo the relation-
ships found in a lexicon (i.e., considering synonyms as equivalent
and hyponyms as subsumed);

internal structure comparison (I) comparing the internal structure
of entities (e.g., the value range or cardinality of their attributes);

external structure comparison (S) comparing the relations of the
entities with other entities;taxonomical structure (ST) compar-
ing the position of the entities within a taxonomy;external struc-
ture comparison with cycles (SC)an external structure compar-
ison robust to cycles;

extensional comparison (E)comparing the known extension of en-
tities, i.e. the set of other entities that are attached to them (in gen-
eral instances of classes);

semantic comparison (M) comparing the interpretations (or more
exactly the models) of the entities.

Some contributions are listed in Table 1, we only provide some
salient points for each of them: [3] matches conceptual graphs using
terminological linguistic techniques and comparing superclasses and
subclasses. [13] computes the dissimilarity between two taxonomies
by comparing for each class the labels of their superclasses and sub-
classes. FCA-Merge [14] uses formal concept analysis techniques to
merge two ontologies sharing the same set of instances while prop-
erties of classes are ignored. Anchor-Prompt [10] uses a bounded
path comparison algorithm with the originality that anchor points can
be provided by the users as a partial alignment. Cupid [8] is a first
approach combining many of the other techniques. It aligns acyclic
structures taking into account terminology and data types (internal
structure) and giving more importance to leaves. [9] creates a graph
whose nodes are candidate aligned pairs and arcs are shared prop-
erties. Arcs are weighted by their relevance to nodes and similarity
values are propagated through this graph in a search for a fixed point.

T-tree [5] infers dependencies between classes (bridges) of differ-
ent ontologies sharing the same set of instances based only on the
“extension” of classes. The algorithm of [6] uses a complete prover
to decide subsumption or equivalence between classes given initial
equivalence of some classes and analysis of the relationships in the
taxonomy. In addition, a number of other systems use machine learn-
ing techniques for finding class similarity from instances [4].

Reference T TS TL I S ST SC E M
Dieng & Hug [3] x x x

Staab & Mädche [13] x x x
FCA-Merge [14] x x

Prompt [10] x x x x
Cupid [8] x x x x

Sim. flooding [9] x x x
T-tree [5] x x

Sem. match [6] x x

Table 1. Various contributions to alignment at a glance.

Despite the variety of alignment techniques used, most of the
above methods cover only subsets of the ontology definitions and
are not robust enough to cycles in definitions, e.g., the iterative com-
putation in [9] need not to converge. Our goal is to design a measure
that integrates all aspects of OWL-Lite while successfully dealing
with cyclic definitions.

3 Ontology representation

To that end, we designed a representation for OWL-Lite ontologies
(§3.1) that emphasizes entities and their relationships (§3.2).

3.1 The web ontology language OWL

OWL [2] is a language for expressing ontologies on the web. Due
to space restrictions, we only present here the ontology constructors
proposed by the language (the reader can find elsewhere more in-
formation on their semantics). OWL can be thought of as a descrip-
tion logic embedded in a frame-like syntax. It comes in three flavors:
OWL-Lite, OWL-DL, and OWL-Full. We concentrate on OWL-Lite
which is sufficient for many purposes while creating various difficul-
ties for alignment algorithms.

OWL-Lite is an extension of RDF which allows the definition of
individuals as class instances and the characterization of inter-class
relations (like in Figure 1). Additionally, OWL-Lite:

• uses RDF Schema keywords (rdfs:subClassOf , rdfs:Property ,
rdfs:subPropertyOf , rdfs:range , rdfs:domain) for defining
taxonomies of classes and properties and restricting the range of
properties;

• allows the definition of a class (owl:Class) as more specific or
equivalent to the intersection of other classes;

• allows the assertion of equality (owl:sameAs) or difference
(owl:differentFrom) between two individuals;

• characterizes properties as inverse (owl:inverseOf),
transitive (owl:TransitiveProperty) or symmetric
(owl:SymmetricProperty);

• can restrict the range of a property in a class to be another class
(owl:allValuesFrom) or assert that some objects of a particular
class must be in the property (owl:someValuesFrom).

• can restrict the number of objects in a particular relation
with another one through the use of cardinality constraints
(owl:minCardinality andowl:maxCardinality). In OWL-Lite,
these constraints can only take values 0, 1, or infinite.

This is enough for expressing complex class expressions as those in
the UML diagram of Figure 1.

Human
name : String
age : int11

Flat
address : String

1..*1..* 1..*1..*

Room
surface : int

1..*1..*

Car
model : String

Person
name : String
salary : float

0..*

1

0..*

1 owner

dwelling

spouse

rooms

locomotion

File: R:\Papers\OBKR\Onto\Onto-align.mdl 20:11:10 12 février, 2004 Class Diagram: Logical View / NewDiagram Page 1

Figure 1. Classes of two ontologies drawn as UML class diagrams.

OWL makes use of external data types. In particular it relies on
XML Schema datatypes.

3.2 Representation

When it comes to comparing descriptions that encode relational in-
formation about the represented entities, as OWL does, the textual
form may easily prove much too rigid. Conversely, the graphic rep-
resentation allowed by the RDF syntax is too flexible as it provides
many different ways to express the same constraint and does not pro-
vide typing information without traversing the graph. Thus, a corre-
sponding but much more explicit graph-based syntax is used here.
The OL-graphs, as we call them, contain the following categories of
nodes: class (C), object (O), relation (R), property (P), property in-
stance (A), datatype (D), datavalue (V), property restriction labels
(L). OL-graph edges model various relationships:

• rdfs:subClassOf between two classes or two properties (S);
• rdf:type (I) between objects and classes, property instances and

properties, values and datatypes;
• A between classes and properties, objects and property instances;
• owl:Restriction (R) expressing the restriction on a property in

a class;
• valuation (U) of a property in an individual

In the remainder relation symbols are used as set-valued functions
(F(x) = {x;∃y; 〈x, y〉 ∈ F}). Additionally, each node is identified
(λ : C ∪ O ∪ R ∪ P ∪ D ∪ A −→ URIRef) by a URI reference
and can be attached annotations.

The graph structure makes relationships between language el-
ements more explicit, e.g., if a classc refers to c′ via a
owl:allValuesFrom restriction, a path between the corresponding
nodes in the OL-graph will occur. OL-graphs record further infor-
mation that can support comparison, e.g., descriptive knowledge in-
herited from nodes of the same or related categories. Finally, to
provide the most complete basis for comparison, one may wish
to bring knowledge encoded in relation types to the object level.
This could be done by adding edges between objects that are re-
verse, symmetric or transitive for an existing edge or a pair of

edges. Relation types can be handled by saturation of the graph or
in a lazy way: forowl:TransitiveProperty by adding transitiv-
ity arcs; forowl:SymmetricProperty by adding symmetric arcs; for
owl:inverseOf by adding the reverse arcs (both in generic and in-
dividual descriptions); forowl:FunctionnalProperty by adding a
cardinality constraint;owl:InverseFunctionnalProperty is not ac-
counted for at that stage.

ID=‘locomotion’

ID=‘owner’ID=‘name’

ID=‘salary’

ID=‘model’

ID=‘Person’ ID=‘Car’

string

float
string

domain

domain

domain
domain

range

range

range

range

range

card=[0,*]
A

card=[1,1]

A
card=[1,1]

A

card=[1,1]
A card=[1,1]

A

all

all

all

all

all

S

S

S

S

S

domain

A

Figure 2. The OL-graph of the second set of classes from Figure 1.

To sum up, a node characterization is mostly spread over its adja-
cent edges. Thus, since each link of a given category connects two
nodes of precisely defined categories, each node description may be
seen as a fixed collection of homogeneous sets of links.

4 Similarity of OWL entities

Building on the idea of regularity in node characterizations within a
OL-graph, we establish a family of similarity measures (§4.1), one
per node category, whose mutual dependencies follow the structure
of the graph which in turn reflects the OWL grammar. Processing
of node/link sets (§4.2) and resolution of recursive dependencies in
similarity definition (§4.3) are key elements of our model.

4.1 Similarity measure definition

The similarity (SimX) defined between nodes of the OL-graphs fol-
lows two principles:(i) it depends on the categoryX of node con-
sidered and(ii) it takes into account all the features of this category
(e.g., superclasses, properties).

When similarity is sought, identically labeled edges of a type
F , from two compared nodesn1 andn2 (of categoryX) induce a
dependency for the similaritySimX(n1, n2) on the similarity of
each pair of nodes(n′1, n

′
2) such thatn′i,∈ F(ni) (i = 1, 2). In-

deed, the higher the similarity of every single(n′1, n
′
2), the higher

SimX(n1, n2). The pair whose similarity is under assessment, here
(n1, n2), will be further referred to as theanchorpair of the com-
parison and all the pairs(n′1, n

′
2) as thecontributor ones (since

the similarity of(n′1, n
′
2) potentiallycontributes toSimX(n1, n2).

Although the contributor relationship could be transitively spread
throughout a pair of OL-graphs by inductively defining contributors
of ordern for n = 1, 2, . . ., we only consider the direct, or 1st-order,
contributors and 0th-order ones, i.e., those lying withinn1 andn2

like their respective labels or URI references.
Given two nodesn1 andn2 from X, SimX(n1, n2) is a function

of the similarities of the 0th- and 1st-order contributors. Moreover,

an anchor pair of a particular computation may be a contributor in
another one with a specific measure used in each case. However, for
homogeneity reasons, we require a particular node pair to always be
assigned the same similarity value.

Finally, for computational reasons that will be made clear later on,
a linear (weighted) combination for all similarity functions has been
chosen. It is widely accepted that weights are useful in such cases to
control the contribution of each factor1. Formally, given a category
X its similarity measureSimX : X2 → [0, 1] is as follows:

SimX(x, x′) =
X

F∈N (X)

πX
F MSimY (F(x),F(x′))

whereN (X) is the set of all relationships in whichX participates
(see §3.2). The weightsπX

F are normalized, i.e.,
P

F∈N (X) πX
F = 1

(see §4.3). For instance, for two classesc, c′ :

SimC(c, c′) = πC
L simL(λ(c), λ(c′))

+ πC
I MSimO(I(c), I′(c′))

+ πC
S MSimC(S(c),S ′(c′))

+ πC
AMSimP (A(c),A′(c′))

The set functionsMSimY , where the categoryY depends on the
relationshipF , are presented in §4.2. Thus, the similarity ofFlat

andPerson is:

SimC(Flat , Person) = πC
L simL(’flat’ , ’person’)

+ πC
AdtMSimP ({rooms }, {locomotion })

+ πC
AoMSimP ({address }, {name, salary })

whereπC
Adt andπC

Ao are the components ofπC
A assigned to data type

and object property parts ofSimC(Flat , Person), respectively (no
πC
F meansF contributors are ignored). Table 2 illustrates the set of

similarities in our model.

Funct. Node Factor Measure
SimO o ∈ O λ(o) simL

a ∈ A, (o, a) ∈ A MSimA

SimA a ∈ A r ∈ R, (a, r) ∈ R SimR
o ∈ O, (a, o) ∈ U MSimO
v ∈ V , (a, v) ∈ U MSimV

SimV v ∈ V value literal type dependent
SimC c ∈ C λ(c) simL

p ∈ P , (c, p) ∈ A MSimP

c′ ∈ C, (c, c′) ∈ S MSimC

simD d ∈ D λ(r) XML-Schema
SimR r ∈ R λ(r) simL

c ∈ C, (r, domain , c) ∈ R MSimC
c ∈ C, (r, range , c) ∈ R MSimC
d ∈ D, (r, range , d) ∈ R SimD

r′ ∈ R, (r, r′) ∈ S MSimR

SimP p ∈ P r ∈ R, (p, r′) ∈ S SimR
c ∈ C, (p, all , c) ∈ R MSimC
n ∈ {0, 1,∞}, (p, card , n) ∈ R equality

Table 2. Similarity function decomposition (card = cardinality and
all = allValuesFrom).

Although only 0th- and 1st-order contributors are included in simi-
larity definition, its recursive nature allows higher-order contributors
to impact an anchor pair similarity as well2. In other terms, we let

1 While weight assignment knowingly requires non-trivial knowledge about
the domain of the compared data, this drawback is attenuated here by link-
ing weights to entire descriptive aspects instead of particular entity features.

2 However their real contribution is inversely propositional to their order.

the similarity “current” flow, or flood as in [9], through edges linking
contributor and anchor pairs. The target similarity values ultimately
depend on the comparison of data types values, and on the way its
results propagate throughout the graphs. Measures for data types and
values should be provided together with an abstract data type defini-
tion, URI references can be compared by an equality predicate or by
a string similarity applied to suffixes.

4.2 Similarity-based matching of entity collections

Given an anchor pairn1 andn2 from X, and a particular link type
F , F(ni) = Si (i = 1, 2) is generally a set of nodes, hence the set
of contributorsS1×S2. In order to ensure balance between different
factors inSimX(n1, n2), all contributor similarities are combined
into a single value, by a set similarity functionMSim. For normal-
ization reasons, allMSim functions are averages that range over a
restricted subset ofS1 × S2 which is chosen in a way that ensures
consistency and relevance. Therefore, it could be seen as an assign-
ment of 0/1 weights to the members ofS1×S2. Formally, a matching
Pairing(S, S′) of both sets is established which is:(i) of maximal
total similarity, (ii) exclusive, and(iii) of maximal size [15]. The
value ofMSimC(S, S′) is simply the total similarity of the contrib-
utors inPairing(S, S′), divided by the size of the larger set:

MSimC(S, S′) =

P
〈c,c′〉∈Pairing(S,S′) SimC(c, c′)

max(|S|, |S′|)

It is noteworthy that the matching at each anchor pair remains lo-
cal, i.e., it has no impact on the global ontology alignment which is
also a specific case of matching. In fact, matching a pair of nodes,
i.e., choosing it as an effective contributor to another one’s similarity
only implies that the underlying resemblances are high for the local
context, but not necessarily for the entire ontology.

To illustrateMSim, consider the example of §4.1 and take the
data type factor of the similaritySimC(Flat , Person). Assume also
thatSimP (address , name) = 0.64 andSimP (address , salary) =
0.34 which means the best matching is{(address , name)}. Thus,

MSimP ({address }, {name, salary }) = 0.64/2 = 0.32.

4.3 Effectively computing similarities

It may easily happen that two pairs of nodes are each
other’s contributor, e.g.,(Flat , Person) and (rooms , locomotion).
The resulting recursive dependency ofSimC(Flat , Person) on
SimP (rooms , locomotion) and vice versarequires non standard
computation means. As shown by Bisson [1], an equation system
may be composed where the target similarity values are the solutions.

To that end, each pair of “alignable” nodes, i.e., inC, R and, pos-
sibly, O, is assigned a variablexi, yj , andzk, respectively, that rep-
resents its similarity. An equation is composed by developing the de-
noted similarity along the guidelines of §4.1 while replacing contrib-
utor similarities by the corresponding variables. As an illustration,
considerSimC(Flat , Person), and assume the following weights
for C andP categories3:

πC
L πC

I πC
S πC

Ao πC
Ad πP

L πP
card πP

A πP
R

.4 0. .1 .25 .25 .25 .15 .4 .2

3 Space limitations force the merge ofP andR categories in similarity com-
putation. However, the only difference is that property name and domain
are directly included inSimP instead of impacting it viaSimR.

Variable substitutions are as follows:

x1 = SimC(Flat , Person) x2 = SimC(Room, Car)

x3 = SimC(Human, Person) x4 = SimC(Flat , Car)

x5 = SimC(Room, Person) x6 = SimC(Human, Car)

y1 = SimR(rooms , locomotion) y2 = SimR(address , name)

y3 = SimR(address , salary) y4 = SimR(surface , model)

In the following computation, datatype similarities are set to the iden-
tity function whereas cardinality measure is 1 if both limits corre-
spond, 0.5 if only one does (∗ is ignored), 0.35 if no match, but still
there is inclusion, and 0 otherwise. Moreover, the following (arbi-
trary) label similarity values are assumed:

simL(flat , person) = .4 simL(room , car) = .5

simL(rooms , locomotion) = .25 simL(address , name) = .7

simL(address , salary) = .3 simL(surface , model) = .35

The following equations are hence composed wherebychoice(S)
simulates the set matching underlyingS, i.e., it assigns 0/1 weights
to each variable in the set:

x1 =.16 + .25 ∗ choice({y1}) +.125 ∗ choice({y2, y3})
y1 =.115 + .4 ∗ choice({x1}) +.2 ∗ choice({x2})
x2 =.2 + .125 ∗ choice({y4}) y2 = .525 + .4 ∗ choice({x1})
y3 =.225 + .4 ∗ choice({x1}) y4 = .238 + .4 ∗ choice({x2})

If each choice could be established a priori, i.e., regardless of effec-
tive similarity values, the result would be a directly solvable system
(since linear). As OWL-Lite ontologies typically produce non-linear
systems, choices cannot be established beforehand. Nevertheless, the
resulting system could still be solved through an iterative process that
produces the nearest reachable fixed point of a vector function [1].
The iteration produces a sequence of ever more precise approxima-
tions of the target solution vector. Initial similarity values are based
only on 0-th level contributors. The values at stepn+1 are then com-
puted using the similarities of the 1st-level contributors from stepn
(including matching re-calculations).

The process of iterative resolution always converges to a solution.
This could be easily proved by induction on the iteration steps: the se-
quences of values for each variable in the system are non-decreasing
and bounded by 1, so they converge to a limit in[0, 1]. Moreover,
the iterative resolution mechanism is flexible enough to admit user-
provided similarity values (or dissimilarity assertions): these are used
as constant values for the corresponding variable while the respective
equation is ignored.

The following solutions for selected variables from the entire sys-
tem corresponding to Figure 1 were found by the process in six steps:

x1 = .293 x3 = .566 x5 = .156 y1 = .290 y3 = .342
x2 = .288 x4 = .492 x6 = .370 y2 = .642 y4 = .353

5 Structure alignment as similarity maximizing

The result of the iterative process is not an alignment on its own,
but rather an approximation of the similarity between entities from
opposite ontologies. Nevertheless, the computed similarities suggest
possible mappings of entities, hence they can support an alignment.
One way of doing this consists in displaying the entity pairs with
their similarity scores and/or ranks and leaving the choice of the ap-
propriate pairs up to the user of the alignment tool.

One could go a step further and attempt at defining algorithms that
automate alignment extraction from similarity scores. Various strate-
gies may be applied to the task depending on the properties of the
target alignment. As a matter of fact, one can ask the alignment to
be complete (total) for one of the ontologies, i.e., all the entities of
that ontology must be successfully mapped on the other side. Com-
pleteness is purposeful whenever thoroughly transcribing knowledge
from one ontology to another is the goal. One can also require the
mapping to be injective and hence reversible.

If neither ontology needs to be completely covered by the align-
ment, a threshold-based filtering would allows us to retain only the
most similar entity pairs. Without the injectivity constraint, the pairs
scoring above the threshold represent a sensible alignment. In con-
trast, if an injective mapping is required then some choices need to
be made in order to maximize the “quality” of the alignement that is
typically measured on the total similarity of the aligned entity pairs.
Consequently, the alignment algorithm must optimize the global cri-
teria rather than maximizing the local similarity at each entity pair.

To sum up, the alignment computation may seen as a less con-
strained version of the basic set similarity functionsMSim. Indeed,
its target features are the same:(i) maximal total similarity,(ii) ex-
clusivity and(iii) maximal cardinality (in entity pairs). However,
(ii) and(iii) are not mandatory, they depend on injectivity and com-
pleteness requirements, respectively.

A greedy alignment algorithm could construct the correspon-
dances step-wise, at each step selecting the most similar pair and
deleting its members from the table. The algorithm will then stop
whenever no pair remains whose similarity is above the threshold.

The greedy strategy is not optimal: finding the global optimum
would require the computing of a square assignment (polynomial as-
signment algorithms are suggested in [11]). However, the ground on
which a high similarity is forgotten to the advantage of lower sim-
ilarities can be questioned and thus the greedy algorithm could be
preferred in some situations.

Given the results produced in the previous section, a threshold of
.5 will select only the correspondence betweenHuman and Person .
There is no point in asking for a complete alignment here since
the classes are quite different (the requirement of a maximal match
would haveCar associated toFlat). Concerning properties, the high-
est value of the entire system that (not given here) was measured on
the pair ofname properties, as expected. More interestingly, the cho-
sen settings strongly suggest the identification ofaddress to model

andage to salary . This fact illustrates the difficulties in discriminat-
ing 1st-order contributors of an anchor pair having similar ranges.

6 Conclusion

To support the alignment of ontologies in OWL-Lite, we adapted a
method that was initially designed for instance similarities in object-
based languages. The new method has the advantage of incorporat-
ing most of the descriptive features of an ontology into the alignment
computing process: it deals successfully with external data types, in-
ternal structure of classes as given by their properties and constraints,
external structure of classes as given by their relationships to other
classes and the availability of individuals. Moreover, new features as
well as new datatypes can be accommodated through new categories
of OL-graph nodes or new base similarity functions.

The resulting extensibility is a clear improvement upon other
methods that take advantage only of a subset of all language features
in OWL-Lite. The proposed method not only composes linearly indi-
vidual means for assessing the similarity between entities, but it also

provides an integrated similarity definition that makes those means
interact during computation. Moreover, it successfully copes with the
unavoidable circularities that occur within ontologies.

Yet, this measure does not cover all syntactic con-
structions of OWL-Lite (e.g., owl:AllDifferent ,
owl:InverseFunctionnalProperty). We plan to integrate them as
well as some features of OWL-DL (e.g.,owl:oneOf). Moreover,
thorough tests of our measure must be performed to find weight
ranges and external similarity measures that provide satisfactory
results while favoring predictable behaviour.

Although the proposed similarity measure is not semantically jus-
tified, it exhibits valuable features such as fitting to various classes
of inter-ontology mappings. Furthermore, we would like it to be at
least syntax-independent for OWL-Lite. To that end, one must ensure
that whatever the description of two entities, if they are semantically
equivalent, they behave identically with respect to the similarity mea-
sure. This will amount to either normalizing the graph (e.g., adding
owl:minCardinality constraints for eachowl:someValueFrom for
instance) or designing heterogeneous comparison means.

REFERENCES
[1] Gilles Bisson. Learning in FOL with similarity measure. InProc. 10th

American Association for Artificial Intelligence conference, San-Jose
(CA US), pages 82–87, 1992.

[2] Mike Dean and Guus Schreiber (eds.). OWL web ontology language:
reference. Recommendation, W3C, 2004. http://www.w3.org/TR/owl-
ref/.

[3] Rose Dieng and Stefan Hug. Comparison of "personal ontologies"
represented through conceptual graphs. InProc. 13th ECAI, Brighton
(UK), pages 341–345, 1998.

[4] An-Hai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy.
Ontology matching: A machine learning approach. In Steffen Staab and
Rudi Studer, editors,Handbook on Ontologies in Information Systems,
pages 397–416. Springer-Verlag, Heildelberg (DE), 2003.

[5] Jérôme Euzenat. Brief overview of T-tree: the Tropes taxon-
omy building tool. In Proc. 4th ASIS SIG/CR workshop on
classification research, Columbus (OH US), pages 69–87, 1994.
ftp://ftp.inrialpes.fr/pub/sherpa/publications/euzenat93c.ps.gz.

[6] Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. InProc. IJ-
CAI 2003 Workshop on ontologies and distributed systems, pages 139–
146, 2003.

[7] John Hopcroft and Robert Karp. Ann5/2 algorithm for maximum
matchings in bipartite graphs.SIAM Journal on Computing, 2(4):225–
231, 1973.

[8] Jayant Madhavan, Philip Bernstein, and Erhard Rahm. Generic schema
matching using Cupid. InProc. 27th VLDB, Roma (IT), pages 48–58,
2001. http://research.microsoft.com/ philbe/CupidVLDB01.pdf.

[9] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity
flooding: a versatile graph matching algorithm. InProc. 18th Inter-
national Conference on Data Engineering (ICDE), San Jose (CA US),
2002.

[10] Natalya Noy and Mark Musen. Anchor-PROMPT: Using non-local
context for semantic matching. InProc. IJCAI 2001 workshop on
ontology and information sharing, Seattle (WA US), pages 63–70,
2001. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-47/.

[11] C. H. Papadimitriou and K. Steiglitz.Combinatorial Optimization :
Algorithms and Complexity. Prentice-Hall, 1998.

[12] Erhard Rahm and Philip Bernstein. A survey of approaches to auto-
matic schema matching.VLDB Journal, 10(4):334–350, 2001.

[13] Steffen Staab and Alexander Mädche. Measuring similarity between
ontologies.Lecture notes in artificial intelligence, 2473:251–263, 2002.

[14] Gerd Stumme and Alexander Mädche. FCA-merge: bottom-up merging
of ontologies. InProc. 17th IJCAI, Seattle (WA US), pages 225–230,
2001.

[15] Petko Valtchev.Construction automatique de taxonomies pour l’aide à
la représentation de connaissances par objets. Thèse d’informatique,
Université Grenoble 1, 1999.

